1
|
Liu XP, Liang MW, Du B, Zhao YB, Tong ZY. Improve the visualization effect of fingerprint immunolabeling based on biotin-avidin system. J Forensic Sci 2025. [PMID: 39891378 DOI: 10.1111/1556-4029.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Immunolabeling based on fluorescence is a new technique that has been recently applied in the field of forensic science. In this paper, a new immunofluorescence method based on signal amplification was applied to develop fingermarks and improve the quality of pattern recognition with clear ridge details and high contrast. The high affinity between biotin and avidin and the one-to-many binding mode can connect several fluorescent groups together to achieve a signal amplification effect. The results indicated that the fluorescence intensity of the fingermark sample, as displayed by the biotin-avidin signal amplification system (BAS), was nearly three times higher than that revealed by previous immunolabeling methods based on fluorescence. Specifically, more fluorescent chromophores were bound to the friction ridges in BAS. Two proteins were selected as experimental target proteins for fingermark immunofluorescence visualization to optimize the visualization effect. The results showed that compared to keratin 1, dermcidin as the target protein in BAS achieved a more desirable effect, with 88.9% of the experimental samples left on nonporous objects having identification value. This method provides new insights for the development of fingermark spectra and is expected to become an effective and safe technology in the field of forensic science.
Collapse
Affiliation(s)
- Xiao-Peng Liu
- Department of Forensic Science, People's Public Security University of China, Beijing, China
| | - Mu-Wen Liang
- Department of Forensic Science, People's Public Security University of China, Beijing, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Ya-Bin Zhao
- Department of Forensic Science, People's Public Security University of China, Beijing, China
| | - Zhao-Yang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
2
|
Chen H, Ma R, Zhang M. Recent Progress in Visualization and Analysis of Fingerprint Level 3 Features. ChemistryOpen 2022; 11:e202200091. [PMID: 35896949 PMCID: PMC9630047 DOI: 10.1002/open.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Indexed: 01/31/2023] Open
Abstract
Fingerprints provide sufficient and reliable discriminative characteristics which have been considered one of the most robust evidence for individualization. The limitation of current minutiae-based fingerprint technology seems to be solved with the development of level 3 features since they can offer additional information for problematic fingerprint recognition and even donor profiling. So far, tremendous efforts have been devoted to detecting and analysing the third-level details. This review summarizes the advances in level 3 details with an emphasis on their reliability assessment, visualization methods based on physical interaction, residue-response, mass spectrometry and electrochemical techniques, as well as the potentiality for individualization, donor profiling and even other application scenarios. In the end, we also give a personal perspective on the future direction and the remaining challenges in the third-level-detail-related field. We believe that the new exciting progress is expected in the development of level 3 detail detection and analysis with continued interest and attention to this field.
Collapse
Affiliation(s)
- Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing30 Xueyuan RoadBeijing100083P.R. China
| | - Rongliang Ma
- Institute of Forensic ScienceMinistry of Public SecurityBeijing100038P. R. China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing30 Xueyuan RoadBeijing100083P.R. China
| |
Collapse
|
3
|
Technical steps towards enhanced localization of proteins in cultural heritage samples by immunofluorescence microscopy and micro-reflectance imaging spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
5
|
van Dam A, Falkena K, den Daas SA, Veldhuizen I, Aalders MCG. Improving the visualization of fingermarks using multi-target immunolabeling. Forensic Sci Int 2021; 324:110804. [PMID: 34000619 DOI: 10.1016/j.forsciint.2021.110804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
The development of fingermarks is an important step in visualizing ridge patterns for individualization purposes. Immunolabeling can be applied to fingermarks to selectively and sensitively detect antigens in fingermarks, and can be used as a developing method to visualize fingermarks. In this study we investigated single (the detection of one antigen) and multiple targeting approaches (the detection of multiple antigens simultaneously) to improve fingermark development. The detection of dermcidin, an antimicrobial peptide, was used as the gold standard to compare single and multi-target detection of keratins, albumin and/or dermcidin. Single detection of dermcidin and albumin mostly resulted in clear ridge details and/or pore detection, whereas the single keratin detection resulted in a poor visualization of the fingermarks. The multi-target approach in which both dermcidin and albumin were targeted, resulted in improved fingermark development compared to single dermcidin detection. Therefore, we recommend the use of multi-target detection consisting of anti-dermcidin and anti-albumin when using immunolabeling as fingermark development technique. Additionally, the optimized multi-target approach was tested as a pre- and post-development technique in combination with powder dusting and cyanoacrylate fuming. Immunolabeling has not been implemented yet in forensic case work, however we expect that immunolabeling can be used to redevelop poorly developed and/or smudged fingermarks in the nearby future. Currently, an ongoing pilot-study is being conducted in collaboration with the Dutch police.
Collapse
Affiliation(s)
- Annemieke van Dam
- Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Kim Falkena
- Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Stijn A den Daas
- Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Isabel Veldhuizen
- Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maurice C G Aalders
- Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Co van Ledden Hulsebosch Center (CLHC), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
The compatibility of immunolabeling with STR profiling. Forensic Sci Int Genet 2021; 52:102485. [PMID: 33636658 DOI: 10.1016/j.fsigen.2021.102485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Immunolabeling is a technique, which has recently been introduced to enhance the quality of developed fingermarks and subsequently strengthen the evidential value. The effect of this method on subsequent DNA analysis, however, has not been explored yet. Therefore, the current pilot study aimed to determine whether STR profiling is possible after immunolabeling. Since immunolabeling involves washing steps which could reduce DNA quantities, the use of different fixatives including methanol, formaldehyde and universal molecular fixative (UMFIX) were investigated. STR profiles from the (immunolabeled) fingermarks were generated after four days and four weeks by a direct PCR method to enable comparison of relatively fresh and old fingermarks. The fingermarks were deposited on diverse forensically relevant substrates, including glass, metal and tile. STR profiles could be recovered for all tested fixatives with no significant difference in performance. However, the mean number of detected alleles was the highest when methanol was used for fixation. Furthermore, immunolabeling on aged fingermarks (4 weeks) was also possible, but the number of detected alleles showed a non-significant decrease. DNA could be recovered from deposits on all substrates, of which glass showed the highest mean number of detected alleles followed by metal and tile.
Collapse
|
7
|
Borja T, Karim N, Goecker Z, Salemi M, Phinney B, Naeem M, Rice R, Parker G. Proteomic genotyping of fingermark donors with genetically variant peptides. Forensic Sci Int Genet 2019; 42:21-30. [DOI: 10.1016/j.fsigen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 01/31/2023]
|
8
|
Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 2018; 8:16425. [PMID: 30401937 PMCID: PMC6219553 DOI: 10.1038/s41598-018-34791-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023] Open
Abstract
Fingermarks are trace evidence of great forensic importance, and their omnipresence makes them pivotal in crime investigation. Police and law enforcement authorities have exploited fingermarks primarily for personal identification, but crucial knowledge on when fingermarks were deposited is often lacking, thereby hindering crime reconstruction. Biomolecular constituents of fingermark residue, such as amino acids, lipids and proteins, may provide excellent means for fingermark age determination, however robust methodologies or detailed knowledge on molecular mechanisms in time are currently not available. Here, we address fingermark age assessment by: (i) drafting a first protein map of fingermark residue, (ii) differential studies of fresh and aged fingermarks and (iii), to mimic real-world scenarios, estimating the effects of donor contact with bodily fluids on the identification of potential age biomarkers. Using a high-resolution mass spectrometry-based proteomics approach, we drafted a characteristic fingermark proteome, of which five proteins were identified as promising candidates for fingermark age estimation. This study additionally demonstrates successful identification of both endogenous and contaminant proteins from donors that have been in contact with various bodily fluids. In summary, we introduce state-of-the-art proteomics as a sensitive tool to monitor fingermark aging on the protein level with sufficient selectivity to differentiate potential age markers from body fluid contaminants.
Collapse
Affiliation(s)
- Stijn Oonk
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Tom Schuurmans
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands
| | - Martin Pabst
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Louis C P M de Smet
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Wageningen University & Research, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcel de Puit
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
9
|
Wei Q, Zhang M, Ogorevc B, Zhang X. Recent advances in the chemical imaging of human fingermarks (a review). Analyst 2018; 141:6172-6189. [PMID: 27704072 DOI: 10.1039/c6an01121g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the considerable advances in the chemical imaging of human fingermarks that provide more chemical information, including numerous endogenous and exogenous constituents. Despite remarkable development in DNA analysis and recognition, human fingermark analysis remains one of the priority approaches available for obtaining reliable forensic evidence. Additional information about the donor can be obtained from the chemical composition of latent fingermarks in addition to the ridge pattern, such as the age, gender, medical history, and possible drug habits. The analytical approaches reviewed here include spectroscopy, mass spectrometry, immuno-labelling and electrochemical methods. Each method has different capabilities with respect to sensitivity, reproducibility, selectivity, reliability and ultimately applicability, either for use in routine forensic practice or in academic research work. The advantages of spectroscopic techniques, including infrared, Raman and micro-X-ray fluorescence spectroscopy, are the capabilities of a rapid and non-destructive imaging of fingermarks by providing spectral information on chemical composition. In addition, mass spectrometry imaging can provide spatially specific information on fingermark chemical composition. Recently, the use of immuno-labelling in latent fingermark detection has attracted significant attention because it can overcome the sensitivity and selectivity problems experienced with other existing methods. The electrochemical method has also been employed to image latent fingermarks by measuring the electric current changes with the spatial chemical composition from the ridges and valleys at high resolution to provide a third level of detail, which is especially useful for multicoloured background surfaces or for surfaces contaminated with blood or other bodily fluids.
Collapse
Affiliation(s)
- Qianhui Wei
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Meiqin Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Božidar Ogorevc
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
10
|
Identification and detection of protein markers to differentiate between forensically relevant body fluids. Forensic Sci Int 2018; 290:196-206. [DOI: 10.1016/j.forsciint.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
|
11
|
|
12
|
van Dam A, van Beek FT, Aalders MC, van Leeuwen TG, Lambrechts SA. Techniques that acquire donor profiling information from fingermarks — A review. Sci Justice 2016; 56:143-54. [DOI: 10.1016/j.scijus.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/30/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
13
|
Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal Bioanal Chem 2016; 408:2781-91. [DOI: 10.1007/s00216-015-9216-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/14/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023]
|
14
|
van Dam A, Aalders MC, Todorovski T, van Leeuwen TG, Lambrechts SA. On the autofluorescence of aged fingermarks. Forensic Sci Int 2016; 258:19-25. [DOI: 10.1016/j.forsciint.2015.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
15
|
de la Hunty M, Moret S, Chadwick S, Lennard C, Spindler X, Roux C. Understanding Physical Developer (PD): Part II – Is PD targeting eccrine constituents? Forensic Sci Int 2015; 257:488-495. [DOI: 10.1016/j.forsciint.2015.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022]
|
16
|
Immunolabeling and the compatibility with a variety of fingermark development techniques. Sci Justice 2014; 54:356-62. [DOI: 10.1016/j.scijus.2014.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/21/2022]
|
17
|
van Dam A, Schwarz JCV, de Vos J, Siebes M, Sijen T, van Leeuwen TG, Aalders MCG, Lambrechts SAG. Oxidationsbeobachtung mit Fluoreszenzspektroskopie offenbart das Alter von Fingerabdrücken. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
van Dam A, Schwarz JCV, de Vos J, Siebes M, Sijen T, van Leeuwen TG, Aalders MCG, Lambrechts SAG. Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angew Chem Int Ed Engl 2014; 53:6272-5. [PMID: 24847728 DOI: 10.1002/anie.201402740] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 01/15/2023]
Abstract
No forensic method exists that can reliably estimate the age of fingermarks found at a crime scene. Information on time passed since fingermark deposition is desired as it can be used to distinguish between crime related and unrelated fingermarks and to support or refute statements made by the fingermark donors. We introduce a non-contact method that can estimate the age of fingermarks. Fingermarks were approached as protein-lipid mixtures and an age-estimation model was build based on the expected protein and lipid oxidation reactions. Two measures of oxidation are required from the fingermark to estimate its age: 1) the relative amount of fluorescent oxidation products 2) the rate at which these products are formed. Fluorescence spectroscopy was used to obtain these measures. We tested the method on 44 fingermarks and were able to estimate the age of 55% of the male fingermarks, up to three weeks old with an uncertainty of 1.9 days.
Collapse
Affiliation(s)
- Annemieke van Dam
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam (The Netherlands)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu L, Zhou Z, Zhang C, He Y, Su B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem Commun (Camb) 2014; 50:9097-100. [DOI: 10.1039/c4cc03466j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined use of electrochemiluminescence imaging and enzyme immunoassay allows both identification of latent fingermarks and recognition of protein/polypeptide secretions.
Collapse
Affiliation(s)
- Linru Xu
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Zhenyu Zhou
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Congzhe Zhang
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Yayun He
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| |
Collapse
|