1
|
Dufayet L, Bargel S, Bonnet A, Boukerma AK, Chevallier C, Evrard M, Guillotin S, Loeuillet E, Paradis C, Pouget AM, Reynoard J, Vaucel JA. Gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4BD), and gamma-butyrolactone (GBL) intoxication: A state-of-the-art review. Regul Toxicol Pharmacol 2023; 142:105435. [PMID: 37343712 DOI: 10.1016/j.yrtph.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
γ-hydroxybutyrate (GHB) is synthesized endogenously from γ-aminobutyric acid (GABA) or exogenously from 1,4-butanediol (butane-1,4-diol; 1,4-BD) or γ-butyrolactone (GBL). GBL, and 1,4-BD are rapidly converted to GHB. The gastric absorption time, volume of distribution, and half-life of GHB are between 5 and 45 min, 0.49 ± 0.9 L/kg, and between 20 and 60 min, respectively. GHB and its analogues have a dose-dependent effect on the activation of GHB receptor, GABA-B, and GABA localized to the central nervous system. After ingestion, most patients present transient neurological disorders (lethal dose: 60 mg/kg). Chronic GHB consumption is associated with disorders of use and a withdrawal syndrome when the consumption is discontinued. GHB, GBL, and 1,4-BD are classified as narcotics but only the use of GHB is controlled internationally. They are used for drug facilitated (sexual) assault, recreational purposes, slamsex, and chemsex. To confirm an exogenous intake or administration of GHB, GBL, or 1-4-BD, the pre-analytical conservation is crucial. The antemortem cutoff doses for detection are 5 and 5-15 mg/L, with detection windows of 6 and 10 h in the blood and urine, respectively Control of GHB is essential to limit the number of users, abuse, associated risks, and death related to their consumption.
Collapse
Affiliation(s)
- Laurene Dufayet
- Unité Médico-judiciaire, Hôtel-Dieu, APHP, 75001, Paris, France; Centre Antipoison de Paris - Fédération de Toxicologie (FeTox), Hôpital Fernand-Widal, APHP, 75010, Paris, France; INSERM, UMRS-1144, Faculté de Pharmacie, 75006, Paris, France; UFR de Médecine, Université de Paris, 75010, Paris, France.
| | - Sophie Bargel
- Section Toxicologie - Sécurité Routière, Laboratoire de Police Scientifique de Lille, SNPS, France
| | - Anastasia Bonnet
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | | | - Marion Evrard
- Centre Antipoison de Nancy, CHRU de Nancy, Nancy, France
| | - Sophie Guillotin
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | - Camille Paradis
- Centre Antipoison de Bordeaux CHU de Bordeaux, Bordeaux, France
| | | | - Julien Reynoard
- Pharmacologie Clinique CAP-TV, APHM, Hôpitaux Sud, Marseille, France
| | | |
Collapse
|
2
|
Steuer AE, Bavato F, Schnider LK, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Steuer C, Kraemer T. Urinary concentrations of GHB and its novel amino acid and carnitine conjugates following controlled GHB administration to humans. Sci Rep 2023; 13:8983. [PMID: 37268859 DOI: 10.1038/s41598-023-36213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC-MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c).
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland.
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Laura K Schnider
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, 8093, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Thimm JS, Hofmann V, Bartel M, Sundermann TR. Phospholipid metabolites of GHB as potential biomarkers in whole blood: Synthesis, analytics, and in vitro formation of homolog 16:0/18:1. Drug Test Anal 2023; 15:192-203. [PMID: 36229420 DOI: 10.1002/dta.3386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) is a common drug of abuse, and the detection of a consumption or administration is a longstanding research objective in clinical and forensic toxicology. However, until now, the short detection window of GHB could not be enlarged by the use of GHB metabolites. Therefore, new biomarkers for the detection of a GHB intake are needed. In analogy to phosphatidylethanols as long-time biomarkers of ethanol, phospholipids with GHB might represent a promising compound class. While the availability of reference compounds often represents a bottleneck in clinical and forensic toxicological research, two phospholipids-phosphatidyl-GHB (16:0/18:1) and its isomer phosphatidyl beta-hydroxybutyric acid (16:0/18:1)-were successfully synthesized by a new highly versatile synthetic route. Structural characterization data, together with 1 H-, 13 C-, and 31 P-NMR and high-resolution mass spectrometry (HRMS) spectra, are reported. Subsequently, a HPLC-MS/MS method was established for the determination of both compounds (limits of detection [LOD] ≤ 2 ng/ml), and the formation of these metabolites was investigated in two in vitro experiments. The formation of phosphatidyl-GHB (16:0/18:1) was observed in an incubation experiment by converting phosphatidylcholine (16:0/18:1) and GHB with phospholipase D and in whole blood samples spiked with 50 mM GHB, respectively. Therefore, phosphatidyl-GHB (16:0/18:1) might represent a valuable new metabolite of GHB with the potential for an extension of the detection window as GHB biomarker.
Collapse
Affiliation(s)
- Julian S Thimm
- Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa Hofmann
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marc Bartel
- Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Tom R Sundermann
- Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Steuer AE, Sutter L, Steuer C, Kraemer T. New gamma-hydroxybutyric acid (GHB) biomarkers: Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of GHB amino acid, carnitine, and fatty acid conjugates in urine. Drug Test Anal 2022; 15:426-443. [PMID: 36562189 DOI: 10.1002/dta.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) represents an important drug in clinical and forensic toxicology, particularly in the context of drug-facilitated crimes. Analytically, GHB remains a major challenge given its endogenous occurrence and short detection window. Previous studies identified a number of potential interesting novel conjugates of GHB with carnitine, amino acids (AA, glutamate, glycine, and taurine), or fatty acids. As a basis for comprehensive studies on the suitability of these novel biomarkers, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in human urine. Additionally, already known markers 2,4-dihydroxy butyric acid (2,4-DHB), 3,4-DHB, glycolic acid, succinic acid, succinylcarnitine, and GHB glucuronide were included. The method was fully validated according to (inter)national guidelines. Synthetic urine proved suitable as a surrogate matrix for calibration. Matrix effects were observed for all analytes with suppression effects of about 50% at QC LOW, and approximately 20% to 40% at QC HIGH, but with consistent standard deviation of <25% at QC LOW and <15% at QC HIGH, respectively. All analytes showed acceptable intra- and inter-day imprecision of below 20%, except for inter-day variation of GHB taurine and FA conjugates at the lowest QC. Preliminary applicability studies proved the usefulness of the method and pointed towards GHB glycine, followed by other AA conjugates as the most promising candidates to improve GHB detection. FA conjugates were not detected in urine samples yet. The method can be used now for comprehensive sample analysis on (controlled) GHB administration to prove the usefulness of the novel GHB biomarkers.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Linda Sutter
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Acide γ-Hydroxybutyrique (GHB), γ-butyrolactone (GBL) et 1,4-butanediol (1,4-BD) : revue de la littérature des aspects pharmacologiques, cliniques, analytiques et médico-légaux. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Steuer C, Quattrini D, Raeber J, Waser P, Steuer AE. Easy and convenient millimole-scale synthesis of new, potential biomarkers for gamma-hydroxybutyric acid (GHB) intake - feasible for analytical laboratories. Drug Test Anal 2022; 14:1460-1470. [PMID: 35415886 PMCID: PMC9544675 DOI: 10.1002/dta.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Abstract
New biomarkers indicating the abuse of drugs and alcohol are still of major interest for clinical and forensic sciences. The endogenous neurotransmitter and approved drug, gamma-hydroxybutyric acid (GHB), is often illegally used for drug-facilitated crimes by spiking GHB into alcoholic beverages. Analytical detection windows of only 6 hours in blood and 12 hours in urine often too short to provide reliable proof of GHB ingestion. Therefore, new biomarkers are needed to prove exogenous GHB administration. Previously, amino-acid GHB conjugates were discovered in an untargeted metabolomics screening and fatty acid esters with GHB were recently discussed as promising biomarkers to enlarge the analytical detection time windows. However, the development of analytical methods is still slowed down since reference compounds for targeted screenings are still missing. In this paper, we describe simple procedures for the rapid synthesis and purification of amino acid-GHB conjugates as well as fatty acid esters, which can be adopted in analytical and clinical/forensic laboratories. Structural characterization data, together with IR, 1 H-NMR, 13 C-NMR, high resolution mass spectra (MS), and MS/MS spectra in positive and negative ionization mode are reported for all obtained GHB-conjugates and GHB-conjugate precursors.
Collapse
Affiliation(s)
- Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Switzerland
| | - Dario Quattrini
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Switzerland
| | - Justine Raeber
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Switzerland
| | - Philipp Waser
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Switzerland
| | - Andrea E Steuer
- Zurich Institute of Forensic Medicine (ZIFM), Department of Forensic Pharmacology and Toxicology, University of Zurich, Switzerland
| |
Collapse
|
7
|
Wang T, Nielsen KL, Frisch K, Lassen JK, Nielsen CB, Andersen CU, Villesen P, Andreasen MF, Hasselstrøm JB, Johannsen M. A Retrospective Metabolomics Analysis of Gamma-Hydroxybutyrate in Humans: New Potential Markers and Changes in Metabolism Related to GHB Consumption. Front Pharmacol 2022; 13:816376. [PMID: 35308203 PMCID: PMC8927817 DOI: 10.3389/fphar.2022.816376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
GHB is an endogenous short-chain organic acid presumably also widely applied as a rape and knock out drug in cases of drug-facilitated crimes or sexual assaults (DFSA). Due to the endogenous nature of GHB and its fast metabolism in vivo, the detection window of exogenous GHB is however narrow, making it challenging to prove use of GHB in DFSA cases. Alternative markers of GHB intake have recently appeared though none has hitherto been validated for forensic use. UHPLC-HRMS based screening of blood samples for drugs of abuse is routinely performed in several forensic laboratories which leaves an enormous amount of unexploited data. Recently we devised a novel metabolomics approach to use archived data from such routine screenings for elucidating both direct metabolites from exogenous compounds, but potentially also regulation of endogenous metabolism and metabolites. In this paper we used UHPLC-HRMS data acquired over a 6-year period from whole blood analysis of 51 drivers driving under the influence of GHB as well as a matched control group. The data were analyzed using a metabolomics approach applying a range of advanced analytical methods such as OPLS-DA, LASSO, random forest, and Pearson correlation to examine the data in depth and demonstrate the feasibility and potential power of the approach. This was done by initially detecting a range of potential biomarkers of GHB consumption, some that previously have been found in controlled GHB studies, as well as several new potential markers not hitherto known. Furthermore, we investigate the impact of GHB intake on human metabolism. In aggregate, we demonstrate the feasibility to extract meaningful information from archived data here exemplified using GHB cases. Hereby we hope to pave the way for more general use of the principle to elucidate human metabolites of e.g. new legal or illegal drugs as well as for applications in more global and large scale metabolomics studies in the future.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
- *Correspondence: Tingting Wang, ; Mogens Johannsen,
| | - Kirstine L. Nielsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Kim Frisch
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Johan K. Lassen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Camilla B. Nielsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Charlotte U. Andersen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Palle Villesen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette F. Andreasen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Jørgen B. Hasselstrøm
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
- *Correspondence: Tingting Wang, ; Mogens Johannsen,
| |
Collapse
|
8
|
Kraemer M, Broecker S, Kueting T, Madea B, Maas A. Fatty acid esters as novel metabolites of γ-hydroxybutyric acid: A preliminary investigation. Drug Test Anal 2022; 14:690-700. [PMID: 34983082 DOI: 10.1002/dta.3213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is a substance frequently abused as a knockout agent. Because of possible amnesia experienced by victims of GHB exposure and the short detection time of GHB in biological samples, the proof of GHB uptake is often challenging for forensic toxicologists. For this reason, various approaches have been evaluated to prolong the detection of GHB intake. In the present study, a fatty acid ester of GHB (4-palmitoyloxy butyrate [GHB-Pal; 3-carboxypropyl hexadecanoate]) was synthesized with the intent of examining whether such esters could be detected as metabolites of GHB in blood samples. Using the structurally elucidated synthesis product (structural elucidation by means of high performance liquid chromatography quadrupole time of flight mass spectrometry [LC-QToF-MS]), an LC triple quadrupole mass spectrometric (LC-MS/MS) method was established for the detection of GHB-Pal. Blood (plasma) samples from four cases in which GHB was previously detected at relevant concentrations (56.1-96.5 μg/ml) were analyzed with respect to GHB-Pal. Signals for GHB-Pal, as well as possible signals for other fatty acid esters of GHB, were detectable in these specimens. (Negative) control samples (20 plasma samples and 20 red blood cell/blood clot samples; from cases in which an intake of GHB or its precursors was not assumed) were all negative for GHB-Pal. To evaluate a possible forensic benefit of GHB fatty acid esters (prolongation of the detection window of a GHB uptake), the analysis of additional plasma samples collected after GHB uptake (or controlled GHB administration) and quantification of GHB fatty acid esters are needed.
Collapse
Affiliation(s)
- Michael Kraemer
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| | | | - Theresa Kueting
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany.,Institute of Forensic Medicine, University Hospital Essen, Forensic Toxicology, Essen, Germany
| | - Burkhard Madea
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| | - Alexandra Maas
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| |
Collapse
|
9
|
Tête X, Masson Y, Donat N, Rager G, Leclerc T, Fontaine B. Mise au point sur l’utilisation du GammaOH en anesthésie–réanimation. ANESTHÉSIE & RÉANIMATION 2021. [PMCID: PMC8346353 DOI: 10.1016/j.anrea.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Steuer AE, Raeber J, Simbuerger F, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Towards Extending the Detection Window of Gamma-Hydroxybutyric Acid-An Untargeted Metabolomics Study in Serum and Urine Following Controlled Administration in Healthy Men. Metabolites 2021; 11:metabo11030166. [PMID: 33809281 PMCID: PMC7998200 DOI: 10.3390/metabo11030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Correspondence: ; Tel.: +41-(0)4-4635-5679
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Fabio Simbuerger
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| |
Collapse
|
11
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
12
|
Maurer HH. Hyphenated high-resolution mass spectrometry-the "all-in-one" device in analytical toxicology? Anal Bioanal Chem 2020; 413:2303-2309. [PMID: 33247339 PMCID: PMC7987635 DOI: 10.1007/s00216-020-03064-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
This trend article reviews papers with hyphenated high-resolution mass spectrometry (HRMS) approaches applied in analytical toxicology, particularly in clinical and forensic toxicology published since 2016 and referenced in PubMed. The article focuses on the question of whether HRMS has or will become the all-in-one device in these fields as supposed by the increasing number of HRMS presentations at scientific meetings, corresponding original papers, and review articles. Typical examples for the different application fields are discussed such as targeted or untargeted drug screening, quantification, drug metabolism studies, and metabolomics approaches. Considering the reviewed papers, HRMS is currently the only technique that fulfills the criteria of an all-in-one device for the various applications needed in analytical toxicology. Graphical abstract![]()
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421, Homburg (Saar), Germany.
| |
Collapse
|
13
|
Jarsiah P, Kueting T, Roehrich J, Germerott T, Remane D, Toennes SW, Scholtis S, Krumbiegel F, Hess C. GHB related acids (dihydroxy butyric acids, glycolic acid) can help in the interpretation of post mortem GHB results. Forensic Sci Int 2020; 316:110536. [DOI: 10.1016/j.forsciint.2020.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
|
14
|
Comparative Untargeted Metabolomics Analysis of the Psychostimulants 3,4-Methylenedioxy-Methamphetamine (MDMA), Amphetamine, and the Novel Psychoactive Substance Mephedrone after Controlled Drug Administration to Humans. Metabolites 2020; 10:metabo10080306. [PMID: 32726975 PMCID: PMC7465486 DOI: 10.3390/metabo10080306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use.
Collapse
|
15
|
Jarsiah P, Roehrich J, Wyczynski M, Hess C. Phase I metabolites (organic acids) of gamma‐hydroxybutyric acid–validated quantification using GC–MS and description of endogenous concentration ranges. Drug Test Anal 2020; 12:1135-1143. [DOI: 10.1002/dta.2820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Pouria Jarsiah
- Institute of Forensic Medicine, Forensic Toxicology Johannes Gutenberg University Mainz Mainz Germany
- Special Laboratory, Medical Care Centers Dr. Eberhard & Partner Dortmund Germany
| | - Joerg Roehrich
- Institute of Forensic Medicine, Forensic Toxicology Johannes Gutenberg University Mainz Mainz Germany
| | - Marek Wyczynski
- Special Laboratory, Medical Care Centers Dr. Eberhard & Partner Dortmund Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, Forensic Toxicology Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
16
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
17
|
Meng L, Chen S, Zhu B, Zhang J, Mei Y, Cao J, Zheng K. Application of dispersive liquid-liquid microextraction and GC–MS/MS for the determination of GHB in beverages and hair. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122058. [DOI: 10.1016/j.jchromb.2020.122058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/04/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
18
|
Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front Chem 2019; 7:319. [PMID: 31134189 PMCID: PMC6523029 DOI: 10.3389/fchem.2019.00319] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Drug of abuse (DOA) consumption is a growing problem worldwide, particularly with increasing numbers of new psychoactive substances (NPS) entering the drug market. Generally, little information on their adverse effects and toxicity are available. The direct detection and identification of NPS is an analytical challenge due to their ephemerality on the drug scene. An approach that does not directly focus on the structural detection of an analyte or its metabolites, would be beneficial for this complex analytical scenario and the development of alternative screening methods could help to provide fast response on suspected NPS consumption. A metabolomics approach might represent such an alternative strategy for the identification of biomarkers for different questions in DOA testing. Metabolomics is the monitoring of changes in small (endogenous) molecules (<1,000 Da) in response to a certain stimulus, e.g., DOA consumption. For this review, a literature search targeting "metabolomics" and different DOAs or NPS was conducted. Thereby, different applications of metabolomic strategies in biomarker research for DOA identification were identified: (a) as an additional tool for metabolism studies bearing the major advantage that particularly a priori unknown or unexpected metabolites can be identified; and (b) for identification of endogenous biomarker or metabolite patterns, e.g., for synthetic cannabinoids or also to indirectly detect urine manipulation attempts by chemical adulteration or replacement with artificial urine samples. The majority of the currently available literature in that field, however, deals with metabolomic studies for DOAs to better assess their acute or chronic effects or to find biomarkers for drug addiction and tolerance. Certain changes in endogenous compounds are detected for all studied DOAs, but often similar compounds/pathways are influenced. When evaluating these studies with regard to possible biomarkers for drug consumption, the observed changes appear, albeit statistically significant, too small to reliably work as biomarker for drug consumption. Further, different drugs were shown to affect the same pathways. In conclusion, metabolomic approaches possess potential for detection of biomarkers indicating drug consumption. More studies, including more sensitive targeted analyses, multi-variant statistical models or deep-learning approaches are needed to fully explore the potential of omics science in DOA testing.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lana Brockbals
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Steuer AE, Raeber J, Steuer C, Boxler MI, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Identification of new urinary gamma‐hydroxybutyric acid markers applying untargeted metabolomics analysis following placebo‐controlled administration to humans. Drug Test Anal 2019; 11:813-823. [DOI: 10.1002/dta.2558] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) Switzerland
| | - Martina I. Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
- Institute of Pharmacology and ToxicologyUniversity of Zürich Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
- Zürich Center for interdisciplinary Sleep Research (ZiS)University of Zürich Switzerland
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
- Zürich Center for interdisciplinary Sleep Research (ZiS)University of Zürich Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| |
Collapse
|
20
|
Busardò FP, Jones AW. Interpreting γ-hydroxybutyrate concentrations for clinical and forensic purposes. Clin Toxicol (Phila) 2018; 57:149-163. [PMID: 30307336 DOI: 10.1080/15563650.2018.1519194] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION γ-Hydroxybutyric acid is an endogenous substance, a therapeutic agent, and a recreational drug of abuse. This psychoactive substance acts as a depressant of the central nervous system and is commonly encountered in clinical and forensic practice, including impaired drivers, poisoned patients, and drug-related intoxication deaths. OBJECTIVE The aim of this review is to assist clinical and forensic practitioners with the interpretation of γ-hydroxybutyric acid concentrations in blood, urine, and alternative biological specimens from living and deceased persons. METHODS The information sources used to prepare this review were PubMed, Scopus, and Web-of-Science. These databases were searched using keywords γ-hydroxybutyrate (GHB), blood, urine, alternative specimens, non-conventional biological matrices, saliva, oral fluid, sweat, hair, vitreous humor (VH), brain, cerebrospinal fluid (CSF), dried blood spots (DBS), breast milk, and various combinations thereof. The resulting 4228 references were screened to exclude duplicates, which left 1980 articles for further consideration. These publications were carefully evaluated by taking into account the main aims of the review and 143 scientific papers were considered relevant. Analytical methods: The analytical methods used to determine γ-hydroxybutyric acid in blood and other biological specimens make use of gas- or liquid-chromatography coupled to mass spectrometry. These hyphenated techniques are accurate, precise, and specific for their intended purposes and the lower limit of quantitation in blood and other specimens is 0.5 mg/L or less. Human pharmacokinetics: GHB is rapidly absorbed from the gut and distributes into the total body water compartment. Only a small fraction of the dose (1-2%) is excreted unchanged in the urine. The plasma elimination half-life of γ-hydroxybutyric acid is short, being only about 0.5-0.9 h, which requires timely sampling of blood and other biological specimens for clinical and forensic analysis. Endogenous concentrations of GHB in blood: GHB is both an endogenous metabolite and a drug of abuse, which complicates interpretation of the laboratory results of analysis. Moreover, the concentrations of GHB in blood and other specimens tend to increase after sampling, especially in autopsy cases. This requires the use of practical "cut-off" concentrations to avoid reporting false positive results. These cut-offs are different for different biological specimen types. Concentrations of GHB in clinical and forensic practice: As a recreational drug GHB is predominantly used by young males (94%) with a mean age of 27.1 years. The mean (median) and range of concentrations in blood from apprehended drivers was 90 mg/L (82 mg/L) and 8-600 mg/L, respectively. The concentration distributions in blood taken from living and deceased persons overlapped, although the mean (median) and range of concentrations were higher in intoxication deaths; 640 mg/L (280 mg/L) and 30-9200 mg/L, respectively. Analysis of GHB in alternative specimens: All biological fluids and tissue containing water are suitable for the analysis of GHB. Examples of alternative specimens discussed in this review are CSF, saliva, hair strands, breast milk, DBS, VH, and brain tissue. CONCLUSIONS Body fluids for the analysis of GHB must be obtained as quickly as possible after a poisoned patient is admitted to hospital or after a person is arrested for a drug-related crime to enhance chances of detecting the drug. The sampling of urine lengthens the window of detection by 3-4 h compared with blood samples, but with longer delays between last intake of GHB and obtaining specimens, hair strands, and/or nails might be the only option. In postmortem toxicology, the concentrations of drugs tend to be more stable in bladder urine, VH, and CSF compared with blood, because these sampling sites are protected from the spread of bacteria from the gut. Accordingly, the relationship between blood and urine concentrations of GHB furnishes useful information when drug intoxication deaths are investigated.
Collapse
Affiliation(s)
- Francesco Paolo Busardò
- a Department of Anatomical, Histological, Forensic and Orthopaedic Sciences , Sapienza University of Rome , Rome , Italy
| | - Alan Wayne Jones
- b Department of Clinical Pharmacology , University of Linköping , Linköping , Sweden
| |
Collapse
|
21
|
Jones AW, Holmgren A, Kugelberg FC, Busardò FP. Relationship Between Postmortem Urine and Blood Concentrations of GHB Furnishes Useful Information to Help Interpret Drug Intoxication Deaths. J Anal Toxicol 2018; 42:587-591. [DOI: 10.1093/jat/bky041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/28/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- A W Jones
- Department of Clinical Pharmacology, University of Linköping, 58185 Linköping, Sweden
| | - A Holmgren
- Division of Forensic Toxicology, National Board of Forensic Toxicology, 58758 Linköping, Sweden
| | - F C Kugelberg
- Department of Clinical Pharmacology, University of Linköping, 58185 Linköping, Sweden
- Division of Forensic Toxicology, National Board of Forensic Toxicology, 58758 Linköping, Sweden
| | - F P Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
22
|
Pichini S, Busardò FP. Comment on “Direct Monitoring of Exogenous γ-Hydroxybutyric Acid in Body Fluids by NMR Spectroscopy”: Several Issues to Consider When Quantifying γ-Hydroxybutyric Acid in Biological Matrixes. Anal Chem 2018; 90:1044-1045. [DOI: 10.1021/acs.analchem.7b03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Pichini
- National
Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161,Rome, Italy
| | - Francesco Paolo Busardò
- Unit
of Forensic Toxicology (UoFT), Department of Anatomical, Histological,
Forensic and Orthopedic Sciences, Sapienza University, 00185, Rome, Italy
| |
Collapse
|