1
|
Sundström M, Kriikku P, Ojanperä I, Baessmann C, Pelander A. UHPLC-QTOFMS Urine Drug Screening With Dilute-and-Shoot Sample Preparation and Vacuum-Insulated Probe-Heated Electrospray Ionization. Drug Test Anal 2024. [PMID: 39532671 DOI: 10.1002/dta.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
We developed a method for comprehensive urine drug screening by applying dilute-and-shoot extraction and vacuum-insulated probe-heated electrospray ionization with ultra-high performance liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (DS-UHPLC-VIP-HESI-QTOFMS). The method involved five-fold post-hydrolysis dilution of urine samples and chromatography on a C18 UHPLC column prior to QTOFMS analysis. The recently introduced VIP-HESI ion source was chosen due to its enhanced ionization efficiency and compatibility with UHPLC-QTOFMS. Extensive data was acquired in positive ion mode with a low collision energy (7 eV) and an elevated collision energy (30 eV), using the broadband collision-induced dissociation data acquisition scan mode that continuously generated high-resolution and accurate mass for parent and fragment qualifier ions, and parent ion isotopic patterns. Compound identification was performed against an in-house database with 1263 compound entries, using an automated post-run reverse target database search with preset identification criteria. Method validation with 56 different drugs showed acceptable results for the limit of identification (median 5 ng/mL), matrix effects (70-130%), repeatability of retention times (< 1%), mass accuracy (< 1 mDa), as well as for specificity and stability. As compared with an established UHPLC-QTOFMS method relying on solid-phase extraction and conventional electrospray ionization, DS-UHPLC-VIP-HESI-QTOFMS produced comparable results from authentic clinical urine samples for most drugs, but showed clearly improved detectability for pregabalin, gabapentin, and ritalinic acid. We anticipate that the new method will be a step forward for laboratories performing routine urine drug screening due to its fast turnaround time, reduced manual workload, cost efficiency, and broad substance coverage.
Collapse
Affiliation(s)
- Mira Sundström
- Forensic Chemistry Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Pirkko Kriikku
- Forensic Chemistry Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Ojanperä
- Forensic Chemistry Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna Pelander
- Forensic Chemistry Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
2
|
Ting TT, Chen PC, Chang YC, Chiang PJ, Li HC, Chen SH, Chen PC, Chu HT, Chuang PY, Liu YH, Chen PS. Wastewater-based epidemiology to monitor 68 NPS/conventional drug use in Taipei metropolitan area in Taiwan during and after COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135020. [PMID: 38959832 DOI: 10.1016/j.jhazmat.2024.135020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/18/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Amidst far-reaching COVID-19 effects and social constraints, this study leveraged wastewater-based epidemiology to track 38 conventional drugs and 30 new psychoactive substances (NPS) in northern Taiwan. Analyzing daily samples from four Taipei wastewater plants between September 2021 and January 2024-encompassing club reopenings, holidays, Lunar New Year, an outbreak, and regular periods-thirty-one drugs were detected, including 5 NPS. Tramadol, zolpidem tartrate, CMA, and MDPV were newly detected in Taiwanese sewage with frequency of 1.4 %- 89.0 %. Conventional drug use typically increased post-pandemic, aside from benzodiazepines and methadone. Methamphetamine showed 100 % frequency, indicating ongoing daily consumption despite COVID-19 measures. Methamphetamine and morphine's consumption dipped then rose around club reopening, hinting at limited access. The consumption trend of methadone appeared to compensate for the use of morphine. Ketamine and NPS demonstrated similar patterns throughout the entire period. NPS as party drugs seemed influenced by an unstable supply chain and complexities in implementation. Benzodiazepines, commonly abused alongside synthetic cathinones in Taiwan exhibited an opposing trend to NPS while aligned with acetaminophen, suggesting elevated stress and anxiety levels during the pandemic. No significant differences were observed in drug consumption between weekdays and weekends, potentially indicating that COVID-19 measures blurred the traditional distinctions between these timeframes. ENVIRONMENTAL IMPLICATION: New psychoactive substances refer to chemically modified variants of controlled drugs designed to mimic the effects of the original drugs while evading modern detection methods, categorizing them as hazardous materials. The study presents a sewage monitoring project conducted from 2021 to 2024, collecting samples from four WWTPs to analyze NPS and conventional drug trends during and after the COVID-19 pandemic. The findings uncovered connections between drug consumption patterns and pandemic-related policies. In light of the persistent drug abuse and their environmental presence, the results bear critical importance for both environmental and public health. We provide a thorough assessment of these relationships and prioritize areas for future research.
Collapse
Affiliation(s)
- Te-Tien Ting
- Department of Data Science, School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Pin-Chuan Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ya-Chi Chang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Ju Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu-Cheng Li
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Hsun Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Chieh Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Tien Chu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ping-Yu Chuang
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Hsin Liu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| | - Pai-Shan Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Yen YT, Zhou SL, Huang DY, Tseng SH, Wang CF, Chyueh SC. 2-Methyl-4'-(methylthio)-2-morpholinopropiophenone: A commercial photoinitiator being used as a new psychoactive substance. Forensic Sci Int 2024; 360:112074. [PMID: 38823217 DOI: 10.1016/j.forsciint.2024.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Synthetic cathinones, which are novel psychoactive substances, have caused major social problems worldwide. A substance called 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MMMP), which is employed as a commercial industrial photoinitiator for triggering polymerization, has a basic cathinone backbone; however, few reports regarding MMMP have been published. In the current study, three potential metabolites of MMMP-namely hydroxy-MMMP (HO-MMMP), HO-MMMP-sulfoxide (HO-MMMP-SO), and HO-MMMP-sulfone (HO-MMMP-SO2)-were successfully synthesized, and MMMP and these three potential metabolites were used as standards to establish an analytic method based on liquid chromatography-tandem mass spectrometry for the quantitative analysis of urine. This analytic method and related parameters-including dynamic range, limit of quantification, selectivity, precision, accuracy, carryover effect, matrix effect, interference, and dilution integrity-were optimized and validated. Forty urine samples from 1,691 individuals who abused drugs were determined to contain MMMP, HO-MMMP, HO-MMMP-SO, or HO-MMMP-SO2; the results of this study indicate that approximately 2.37 % of drug abusers in Taiwan consumed MMMP in 2023. These 40 urine samples were analyzed to investigate the metabolism of MMMP in humans. The results indicate that HO-MMMP-SO is the main metabolite in human urine. This study recommends HO-MMMP-SO with a concentration of 2 ng/mL as a target and cutoff value, respectively, for identifying individuals who have consumed MMMP.
Collapse
Affiliation(s)
- Yao-Te Yen
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan.
| | - Song-Lin Zhou
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan
| | - Deng-Ying Huang
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan
| | - Shih-Hao Tseng
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan
| | - Chung-Feng Wang
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan
| | - San-Chong Chyueh
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, Xindian Dist, New Taipei City 231209, Taiwan
| |
Collapse
|
4
|
Xiang J, Wen D, Zhai W, Zhao J, Xiang P, Ma C, Shi Y. Metabolic characterization of 25X-NBOH and 25X-NBOMe phenethylamines based on UHPLC-Q-Exactive Orbitrap MS in human liver microsomes. J Pharm Biomed Anal 2024; 242:116020. [PMID: 38359493 DOI: 10.1016/j.jpba.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The types and quantities of new psychoactive substances synthesized based on structural modifications have increased rapidly in recent years and pose a great challenge to clinical and forensic laboratories. N-benzyl derivatives of phenethylamines, 25B-NBOH, 25E-NBOH, 25H-NBOH, and 25iP-NBOMe have begun to flow into the black market and have caused several poisoning cases and even fatal cases. The aim of this study was to avoid false negative results by detecting the parent drug and its metabolites to extend the detection window in biological matrices and provide basic data for the simultaneous determination of illegal drugs and metabolites in forensic and emergency cases. To facilitate the comparison of metabolic characteristics, we divided the four compounds into two groups of types, 25X-NBOH and 25X-NBOMe. The in vitro phase I and phase II metabolism of these four compounds was investigated by incubating 10 mg mL-1 pooled human liver microsomes with co-substrates for 180 min at 37 ℃, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 70 metabolites were obtained for the four compounds. The major biotransformations were O-demethylation, hydroxylation, dehydrogenation, N-dehydroxybenzyl, N-demethoxybenzyl, oxidate transformation to ketone and carboxylate, glucuronidation, and their combination reactions. We recommended the major metabolites with high peak area ratio as biomarkers, B2-1 (56.61%), B2-2 (17.43%) and B6 (17.78%) for 25B-NBOH, E2-1 (42.81%), E2-2 (34.90%) and E8-2 (10.18%) for 25E-NBOH, H5 (49.28%), H2-1 (21.54%), and H1 (18.37%) for 25H-NBOH, P3-1 (10.94%), P3-2 (33.18%), P3-3 (14.85%) and P12-2 (23.00%) for 25iP-NBOMe. This is a study to evaluate their metabolic characteristics in detail. Comparative analysis of the N-benzyl derivatives of phenethylamines provided basic data for elucidating their pharmacology and toxicity. Timely analysis of the metabolic profiles of compounds with abuse potential will facilitate the early development of regulatory measures.
Collapse
Affiliation(s)
- Jiahong Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Wenya Zhai
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Junbo Zhao
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China.
| |
Collapse
|
5
|
Feigel B, Adamowicz P, Wybraniec S. Recent advances in analysis of new psychoactive substances by means of liquid chromatography coupled with low-resolution tandem mass spectrometry. Anal Bioanal Chem 2024; 416:107-124. [PMID: 38001373 DOI: 10.1007/s00216-023-05057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
The number of methods for the analysis of new psychoactive substances (NPS) is continually increasing, and there is no indication that this trend will change in the near future. The constantly growing market of "designer drugs" makes it necessary to develop new methods of their analysis. The aim of this review is to present the multi-component methods of detection and identification of NPS using low-resolution tandem mass spectrometry coupled with liquid chromatography. For this purpose, 36 articles were selected by applying strictly defined search criteria. Due to the large differences in the matrices and physicochemical properties of the analytes, the described research methods are diverse. These differences are visible in sample preparation methods, chromatographic columns, mobile phases, gradients, or additives to mobile phases used. This work collects and organizes the existing information on the subject of NPS screening analysis methods and will be helpful to forensic scientists working on this topic.
Collapse
Affiliation(s)
- Bartłomiej Feigel
- Jan Sehn Institute of Forensic Research, Cracow, Poland.
- Cracow University of Technology, Cracow, Poland.
| | | | | |
Collapse
|
6
|
Chen HW, Liu HT, Kuo YN, Yang DP, Ting TT, Chen JH, Chiu JY, Jair YC, Li HC, Chiang PJ, Chen WR, Lin MC, Hsu YH, Chen PS. Rapid and sensitive dilute-and-shoot analysis using LC-MS-MS for identification of multi-class psychoactive substances in human urine. J Pharm Biomed Anal 2023; 233:115443. [PMID: 37210892 DOI: 10.1016/j.jpba.2023.115443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
The emergence of new psychoactive substances currently exceeding a thousand is rapidly changing substance prevalence patterns and straining the methods used for detection, most of which are suitable only for a single class of substances. This study presents a rapid and facile dilute-and-shoot system operated in conjunction with an optimized liquid chromatographic separation system for the high-sensitivity detection of substances across a range of substance classes with 3 isotopes used only. The proposed method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is able to identify 68 substance and their metabolites in urine samples as small as 50 μL. Optimal chromatographic conditions including 95% water/methanol ratio with 0.1% added formic acid and a prolonged LC gradient run-time (15 min) improved the peak shape of polar compounds and enhanced signal strength by 5%. Under 4-fold dilution, all analytes were within 80-120% of tolerance response levels, indicating that the matrix effect was insignificant. In experiments, the limit of detection (LOD) ranged from 0.05 to 0.5 ng mL-1, while the coefficient of determination (R2) was > 0.9950. The retention time shift of each peak remained at < 2% with an inter-day relative standard deviation (RSD) of 0.9-14.9% and intra-day RSD of 1.1%- 13.8%. The rapid dilute-and-shoot presents a high-sensitivity, significant stability, robustness and reproducibility without serious interference. To demonstrate the effectiveness of the system, 532 urine samples were collected from suspected drug abusers, and the proposed method was used for rapid analysis. Of these samples, 79.5% contained between one and twelve analytes, and 12.4% tested positive for new psychoactive substances, mostly derivatives of amphetamine and synthetic cathinones. The study presents a high-sensitivity analytic system that is capable of detecting substances from multiple classes and can be used for effective monitoring of substance prevalence in urine.
Collapse
Affiliation(s)
- Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsin-Tung Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yun-Ning Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Da-Peng Yang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Te-Tien Ting
- School of Big Data Management, Soochow University, Taipei, Taiwan, ROC
| | - Jung-Hsuan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Jui-Yi Chiu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yung-Cheng Jair
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsu-Cheng Li
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Pin-Ju Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Ru Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Chih Lin
- Taiwan Food and Drug Administration, Taipei, Taiwan, ROC
| | - Ya-Hui Hsu
- Taiwan Food and Drug Administration, Taipei, Taiwan, ROC
| | - Pai-Shan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Zhai W, Qiao Z, Xiang P, Dang Y, Shi Y. A UPLC-MS/MS methodological approach for the analysis of 75 phenethylamines and their derivatives in hair. J Pharm Biomed Anal 2023; 229:115367. [PMID: 37018959 DOI: 10.1016/j.jpba.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
A rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the targeted analysis of 75 phenethylamines and their derivatives from the hair matrix. The monitored classes of phenethylamines included the 2C series, D series, N-benzyl derivatives, mescaline-derived compounds, MDMA analogs, and benzodifurans. Approximately 20 mg of hair was weighed and pulverized with 0.1% formic acid in methanol by cryogenic grinding. After ultrasonication, centrifugation, and filtration, the supernatant was analyzed by LC-MS/MS operating in the scheduled multiple reaction monitoring mode. Phenethylamines and their derivatives were separated in 13 min on a biphenyl column (2.6 µm, 100 Å, 100 × 3.0 mm) using a gradient eluting mobile phase composed of 0.1% formic acid in water and acetonitrile. The developed and validated method showed good selectivity, sensitivity (LOD: 0.5-10 pg/mg and LOQ: 1-20 pg/mg), linearity (R2 > 0.997), accuracy and precision (< 20%), and stability. The method also showed good recovery and acceptable matrix effects for most of the targeted compounds. This analytical approach was successfully applied for the identification and quantification of phenethylamines in hair from authentic forensic cases.
Collapse
Affiliation(s)
- Wenya Zhai
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China.
| |
Collapse
|
8
|
Pascual-Caro S, Borrull F, Aguilar C, Calull M. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Determination of 40 Drugs of Abuse in Human Urine: Application to Real Cases. J Anal Toxicol 2023; 47:33-42. [PMID: 35348715 DOI: 10.1093/jat/bkac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse are constantly evolving, while new synthetized substances are constantly emerging to avoid regulations. However, traditional drugs such as cocaine and amphetamine are still two of the most consumed drugs in the world. It is important, therefore, to provide suitable multiresidue methods for determining a wide range of drugs for use in toxicological and forensic analyses. The aim of this study is to develop a method for determining several families of drugs of abuse, including classic drugs, new psychoactive substances and some of their metabolites, in urine by liquid chromatography-tandem mass spectrometry. Urine is one of the most common biological matrices used in drug analysis because of its easy collection and a wide window of detection. In this study, we used solid-phase extraction to remove interferences and extract analytes from urine. Four different mixed-mode cation-exchange commercial sorbents were evaluated. The best results, in terms of apparent recoveries, were achieved with one of the strong cationic sorbents, ExtraBond SCX. The method achieved detection limits from 0.003 to 0.500 ng/mL and quantification limits from 0.050 to 1.500 ng/mL, which are suitable for determining these compounds at the usual levels found in the urine of drug users. The applicability of this method was demonstrated by analyzing real urine specimens from women following a detoxification program. Our results showed that the drug most consumed was cocaine, since it was detected in most urine specimens together with its main metabolite, benzoylecgonine. The polyconsumption of drugs from different families was also observed in some urine samples analyzed.
Collapse
Affiliation(s)
- Sergi Pascual-Caro
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Carme Aguilar
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, Tarragona 43007, Spain
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
9
|
Nieddu M, Baralla E, Sodano F, Boatto G. Analysis of 2,5-dimethoxy-amphetamines and 2,5-dimethoxy-phenethylamines aiming their determination in biological matrices: a review. Forensic Toxicol 2023; 41:1-24. [PMID: 36652064 PMCID: PMC9849320 DOI: 10.1007/s11419-022-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE The present review aims to provide an overview of methods for the quantification of 2,5-dimethoxy-amphetamines and -phenethylamines in different biological matrices, both traditional and alternative ones. METHODS A complete literature search was carried out with PubMed, Scopus and the World Wide Web using relevant keywords, e.g., designer drugs, amphetamines, phenethylamines, and biological matrices. RESULTS Synthetic phenethylamines represent one of the largest classes of "designer drugs", obtained through chemical structure modifications of psychoactive substances to increase their pharmacological activities. This practice is also favored by the fact that every new synthetic compound is not considered illegal by existing legislation. Generally, in a toxicological laboratory, the first monitoring of drugs of abuse is made by rapid screening tests that sometimes can occur in false positive or false negative results. To reduce evaluation errors, it is mandatory to submit the positive samples to confirmatory methods, such as gas chromatography or liquid chromatography combined to mass spectrometry, for a more specific qualitative and quantitative analysis. CONCLUSIONS This review highlights the great need for updated comprehensive analytical methods, particularly when analyzing biological matrices, both traditional and alternative ones, for the search of newly emerging designer drugs.
Collapse
Affiliation(s)
- Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Elena Baralla
- grid.11450.310000 0001 2097 9138Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Federica Sodano
- grid.4691.a0000 0001 0790 385XDepartment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Gianpiero Boatto
- grid.11450.310000 0001 2097 9138Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|