1
|
Tsochatzis ED, Gika H, Theodoridis G, Maragou N, Thomaidis N, Corredig M. Microplastics and nanoplastics: Exposure and toxicological effects require important analysis considerations. Heliyon 2024; 10:e32261. [PMID: 38882323 PMCID: PMC11180319 DOI: 10.1016/j.heliyon.2024.e32261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) pervade both the environment and the food chain, originating from the degradation of plastic materials from various sources. Their ubiquitous presence raises concerns for ecosystem safety, as well as the health of animals and humans. While evidence suggests their infiltration into mammalian and human tissues and their association with several diseases, the precise toxicological effects remain elusive and require further investigation. MPs and NPs sample preparation and analytical methods are quite scattered without harmonized strategies to exist at the moment. A significant challenge lies in the limited availability of methods for the chemical characterization and quantification of these contaminants. MPs and NPs can undergo further degradation, driven by abiotic or biotic factors, resulting in the formation of cyclic or linear oligomers. These oligomers can serve as indicative markers for the presence or exposure to MPs and NPs. Moreover, recent finding concerning the aggregation of oligomers to form NPs, makes their analysis as markers very important. Recent advancements have led to the development of sensitive and robust analytical methods for identifying and (semi)quantifying these oligomers in environmental, food, and biological samples. These methods offer a valuable complementary approach for determining the presence of MPs and NPs and assessing their risk to human health and the environment.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Niki Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Milena Corredig
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
| |
Collapse
|
2
|
Tsochatzis ED, Vidal NP, Bai W, Diamantidou D, Theodoridis G, Martinez MM. Untargeted screening and in silico toxicity assessment of semi- and non-volatile compounds migrating from polysaccharide-based food contact materials. Food Chem 2023; 425:136499. [PMID: 37285625 DOI: 10.1016/j.foodchem.2023.136499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The chemical safety of representative polysaccharide films made with pea starch, organocatalytic acetylated pea starch and pectin was investigated at different migration conditions (20 °C/10 days, 70 °C/2 h) using two official simulants signifying hydrophilic (simulant A, 10% ethanol) or lipophilic (simulant D1, 50% ethanol) foods. Migrating semi-volatile and non-volatile compounds were identified and semi-quantified by ultra-high performance liquid chromatography-trap ion mobility time-of-flight mass spectrometry (UHPLC-TIMS-TOF-MS/MS), whereas their toxicity was evaluated by in silico models based on qualitative structure activity (QSAR). Physicochemical analysis revealed polymer wash-off into the simulants. Migration testing at 70 °C for 2 h using simulant D1 resulted in detectable concentrations of glycerol (≤72.1 mg/kg), monoacetylated maltose (≤6.5 mg/kg), and dibutyl phthalate (DBP) (≤0.5 mg/kg, compliant with the existing legislative migration limits) in samples containing acetylated starch. Migrating 3-β-galactopyranosyl glucose (≤8.9 mg/kg) and 2,5-diketo-d-gluconic acid (≤4.9 mg/kg) were detected at 20 °C/10 days. In-silico toxicity emphasized no significant toxicity and categorized organocatalytic acetylated pea starch of no safety concern.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Natalia P Vidal
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenqiang Bai
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
3
|
Schreier VN, Çörek E, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Schilter B, Muncke J, Simat TJ, Smieško M, Roth N, Odermatt A. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2023; 176:107978. [PMID: 37210807 DOI: 10.1016/j.envint.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The presence of polyethylene terephthalate (PET) oligomers in food contact materials (FCMs) is well-documented. Consumers are exposed through their migration into foods and beverages; however, there is no specific guidance for their safety evaluation. OBJECTIVES This systematic evidence map (SEM) aims to identify and organize existing knowledge and associated gaps in hazard and exposure information on 34 PET oligomers to support regulatory decision-making. METHODS The methodology for this SEM was recently registered. A systematic search in bibliographic and gray literature sources was conducted and studies evaluated for inclusion according to the Populations, Exposures, Comparators, Outcomes, and Study type (PECOS) framework. Inclusion criteria were designed to record hazard and exposure information for all 34 PET oligomers and coded into the following evidence streams: human, animal, organism (non-animal), ex vivo, in vitro, in silico, migration, hydrolysis, and absorption, distribution, metabolism, excretion/toxicokinetics/pharmacokinetics (ADME/TK/PK) studies. Relevant information was extracted from eligible studies and synthesized according to the protocol. RESULTS Literature searches yielded 7445 unique records, of which 96 were included. Data comprised migration (560 entries), ADME/TK/PK-related (253 entries), health/bioactivity (98 entries) and very few hydrolysis studies (7 entries). Cyclic oligomers were studied more frequently than linear PET oligomers. In vitro results indicated that hydrolysis of cyclic oligomers generated a mixture of linear oligomers, but not monomers, potentially allowing their absorption in the gastrointestinal tract. Cyclic dimers, linear trimers and the respective smaller oligomers exhibit physico-chemical properties making oral absorption more likely. Information on health/bioactivity effects of oligomers was almost non-existent, except for limited data on mutagenicity. CONCLUSIONS This SEM revealed substantial deficiencies in the available evidence on ADME/TK/PK, hydrolysis, and health/bioactivity effects of PET oligomers, currently preventing appropriate risk assessment. It is essential to develop more systematic and tiered approaches to address the identified research needs and assess the risks of PET oligomers.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Emre Çörek
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | | | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Martin F Wilks
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Benoit Schilter
- Consultant of Food Contact Materials Safety, Lausanne, Switzerland.
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Thomas J Simat
- Chair of Food Contact Materials, Dresden University of Technology, Dresden, Germany.
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Nicolas Roth
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Tsochatzis ED, Lopes JA, Kappenstein O. Study of the ionic strength effect on the migration of polyamide 6 and 66 oligomers into liquid simulants by a LC-qTOF-MS method. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Alberto Lopes J, Tsochatzis ED. Poly(ethylene terephthalate), Poly(butylene terephthalate), and Polystyrene Oligomers: Occurrence and Analysis in Food Contact Materials and Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2244-2258. [PMID: 36716125 DOI: 10.1021/acs.jafc.2c08558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyesters (PES) and polystyrene (PS) are among the most used plastics in the production of food contact materials (FCM). The existence of compounds that could migrate from these materials into food requires a constant analytical control to ensure the safety of consumers due to consumption. It also implies a significant research challenge for their identification and quantification. One of the most important groups of known FCM migrants are the substances known as oligomers. PES and PS oligomers have long been suspected to possess some toxicological effects. The International Agency for Research on Cancer and the European Food Safety Authority alerted recently to the potential carcinogenicity of styrene, with its oligomers consequently being also in the spotlight. At the same time, PES cyclic oligomers are categorized as having Cramer III toxicity. Many recent works on the occurrence of poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), and PS oligomers in FCM and food have been published. The oligomeric chemical analysis requires the use of demanding analytical strategies to address their different physicochemical characteristics (melting points, octanol/water partition coefficients, and solubility properties). Chromatographic methods are normally preferred due to the intrinsic complexity of the target matrices, but the reduced amount of reliable analytical standards still hinders the widespread screening analysis of oligomers in food. This work presents the most relevant recent studies and analytical methodologies used in the analysis of PET, PBT, and PS oligomers in food and FCM, as well as current and future challenges.
Collapse
Affiliation(s)
- J Alberto Lopes
- European Innovation Council and SMEs Executive Agency, 1210 Brussels, Belgium
| | - E D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
6
|
Schreier VN, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Simat TJ, Schilter B, Smieško M, Muncke J, Odermatt A, Roth N. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: Protocol for a systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 167:107387. [PMID: 35841728 DOI: 10.1016/j.envint.2022.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET) oligomers are ubiquitous in PET used in food contact applications. Consumer exposure by migration of PET oligomers into food and beverages is documented. However, no specific risk assessment framework or guidance for the safety evaluating of PET oligomers exist to date. AIM The aim of this systematic evidence map (SEM) is to identify and organize existing knowledge clusters and associated gaps in hazard and exposure information of PET oligomers. Research needs will be identified as an input for chemical risk assessment, and to support future toxicity testing strategies of PET oligomers and regulatory decision-making. SEARCH STRATEGY AND ELIGIBILITY CRITERIA Multiple bibliographic databases (incl. Embase, Medline, Scopus, and Web of Science Core Collection), chemistry databases (SciFinder-n, Reaxys), and gray literature sources will be searched, and the search results will be supplemented by backward and forward citation tracking on eligible records. The search will be based on a single-concept PET oligomer-focused strategy to ensure sensitive and unbiased coverage of all evidence related to hazard and exposure in a data-poor environment. A scoping exercise conducted during planning identified 34 relevant PET oligomers. Eligible work of any study type must include primary research data on at least one relevant PET oligomer with regard to exposure, health, or toxicological outcomes. STUDY SELECTION For indexed scientific literature, title and abstract screening will be performed by one reviewer. Selected studies will be screened in full-text by two independent reviewers. Gray literature will be screened by two independent reviewers for inclusion and exclusion. STUDY QUALITY ASSESSMENT Risk of bias analysis will not be conducted as part of this SEM. DATA EXTRACTION AND CODING Will be performed by one reviewer and peer-checked by a second reviewer for indexed scientific literature or by two independent reviewers for gray literature. SYNTHESIS AND VISUALIZATION The extracted and coded information will be synthesized in different formats, including narrative synthesis, tables, and heat maps. SYSTEMATIC MAP PROTOCOL REGISTRY AND REGISTRATION NUMBER Zenodo: https://doi.org/10.5281/zenodo.6224302.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | | | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Martin F Wilks
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Thomas J Simat
- Chair of Food Contact Materials, Dresden University of Technology, Dresden, Germany.
| | - Benoit Schilter
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland.
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Nicolas Roth
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Liquid chromatography-mass spectrometry method for the determination of polyethylene terephthalate and polybutylene terephthalate cyclic oligomers in blood samples. Anal Bioanal Chem 2022; 414:1503-1512. [PMID: 35024915 DOI: 10.1007/s00216-021-03741-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/01/2022]
Abstract
Food contact materials (FCM) polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) used extensively in food packaging may contain cyclic oligomers which may migrate into food and thus cause toxic effects on human health. A simple, fast, and sensitive ultra-high-performance liquid chromatography method quadrupole time-of-flight mass spectrometer was developed for the analysis of 7 cyclic oligomers in post-mortem blood samples. The targeted analytes were separated on a Waters BEH C18 (150 × 2.1 mm, 1.7 µm) analytical column by gradient elution. Calibration curves were constructed based on standard solutions and blood samples and Student's t-test was applied to evaluate the matrix effect. The LODs ranged from 1.7 to 16.7 μg mL-1, while the method accuracy was assessed by recovery experiments and resulting within the range 84.2-114.6%. Such an analytical method for the determination of PET and PBT cyclic oligomers in biological samples is reported for the first time. The developed methodology allows the determination of these oligomers in blood providing a useful analytical tool to assess the exposure and thus the potential hazard and health risks associated with these non-intentionally added substances (NIAS) from PET and PBT FCM through food consumption. The method was validated and successfully applied to the analysis of 34 post-mortem whole blood samples. Polyethylene terephthalate trimer was detected in four of them, for the first time in literature.
Collapse
|
8
|
Osorio J, Aznar M, Nerín C, Elliott C, Chevallier O. Comparison of LC-ESI, DART, and ASAP for the analysis of oligomers migration from biopolymer food packaging materials in food (simulants). Anal Bioanal Chem 2021; 414:1335-1345. [PMID: 34748032 PMCID: PMC8724096 DOI: 10.1007/s00216-021-03755-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022]
Abstract
Biopolymers based on polylactic acid (PLA) and starch have numerous advantages, such as coming from renewable sources or being compostable, though they can have deficiencies in mechanical properties, and for this reason, polyester resins are occasionally added to them in order to improve their properties. In this work, migration from a PLA sample and from another starch-based biopolymer to three different food simulants was studied. Attention was focused on the determination of oligomers. The analysis was first performed by ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF–MS), which allowed the identification of the oligomers present in migration. Then, the samples were analyzed by two ambient desorption/ionization techniques directly coupled to mass spectrometry (ADI), direct analysis in real-time coupled to standardized voltage and pressure (DART-MS) and atmospheric pressure solids analysis probe (ASAP-MS). These methodologies were able to detect simultaneously the main oligomers migrants and their adducts in a very rapid and effective way. Nineteen different polyester oligomers, fourteen linear and five cyclic, composed of different combinations of adipic acid [AA], propylene glycol [PG], dipropylene glycol [DPG], 2,2-dibutyl-1,3-propanediol [DBPG], or isobutanol [i-BuOH] were detected in migration samples from PLA. In migration samples from starch-based biopolymer, fourteen oligomers from poly(butylene adipate co-terephthalate) polyester (PBAT) were identified, twelve cyclic and two linear. The results from ADI techniques showed that they are a very promising alternative tool to assess the safety and legal compliance of food packaging materials.
Collapse
Affiliation(s)
- Jazmín Osorio
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain.,ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 9, Belfast, Northern Ireland, UK
| | - Margarita Aznar
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain.
| | - Cristina Nerín
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain
| | - Christopher Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 9, Belfast, Northern Ireland, UK
| | - Olivier Chevallier
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 9, Belfast, Northern Ireland, UK
| |
Collapse
|
9
|
Ubeda S, Aznar M, Nerín C, Kabir A. Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 2021; 233:122603. [PMID: 34215091 DOI: 10.1016/j.talanta.2021.122603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Oligomers are potential migrants from polymers or biopolymers intended to food packaging and they have to be under control. In order to comply with European regulation 10/2011, their concentration in migration must be below 0.01 μg g-1. In this work, fabric phase sorptive extraction (FPSE) was explored as an effective method for extraction and pre-concentration of oligomers migrated from a blend PLA-polyester material. Both food simulant B (3% acetic acid) and juice, as real food, were used for migration experiments. The parameters of FPSE were optimized and the analysis was done by UHPLC-QTOF and UHPLC-QqQ. A total of 21 oligomers were identified, 9 of them coming from PLA and 12 oligomers from the polyester part. These oligomers were formed by adipic acid (AA), phthalic acid (PA) and/or butanediol (BD), ten were cyclic and 11 were linear molecules. Using the optimized FPSE procedure in 3% acetic acid as food simulant, it was possible to identify 3 new compounds that were not detected by direct injection of the simulant into UHPLC-QTOF. In addition, 2 extra compounds, cyclic PA-BD4-AA3 and cyclic PA2-BD3-AA, were only identified in juice samples after FPSE extraction. Besides, in order to quantify the compounds identified, an isolation procedure for PLA oligomers was carried out. Two oligomers were isolated: cyclic (LA)6 and linear HO-(LA)4-H, both with a purity higher than 90% (LA: lactic acid). The highest concentration value was found for the cyclic oligomer [AA-BD]2, that showed 22.63 μg g-1 in 3% acetic acid and 19.64 μg g-1 in juice. The concentration of the total amount of remaining oligomers was below 7.56 μg g-1 in 3% acetic acid as well as in juice.
Collapse
Affiliation(s)
- Sara Ubeda
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Fl, 33199, USA
| |
Collapse
|
10
|
Alberto Lopes J, Tsochatzis ED, Karasek L, Hoekstra EJ, Emons H. Analysis of PBT and PET cyclic oligomers in extracts of coffee capsules and food simulants by a HPLC-UV/FLD method. Food Chem 2021; 345:128739. [PMID: 33333359 PMCID: PMC7896039 DOI: 10.1016/j.foodchem.2020.128739] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
A HPLC-UV/FLD method was validated for the quantification of six polyethylene terephthalate (PET) and four polybutylene terephthalate (PBT) oligomers. PBT oligomers are EU regulated, while the PET ones are considered non-intentionally added substances (NIAS). LOQs were higher than 0.4 and 3.5 μg kg-1 for the simulants and in the polymer extracts, respectively. Recoveries ranged from 95 to 114 % with RSDs below 12%. Migration testing of PBT and polypropylene coffee capsules were performed with H2O and simulant C, and extracts were obtained with accelerated solvent extraction (ASE). For the latter legislative limits weren't surpassed. As no migration limits are existing for the analytes, both EFSA's toxicological threshold of concern (TTC) and sum of oligomers approaches were applied. The majority of oligomers were below the TTC (90 µg/person/day), but the limit value of 50 µg/kg food was surpassed for some capsules, which indicates a significant intake in both single and multiple consumption.
Collapse
Affiliation(s)
| | | | - Lubomir Karasek
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Eddo J Hoekstra
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hendrik Emons
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| |
Collapse
|
11
|
Tsochatzis ED, Alberto Lopes J, Gika H, Kastrup Dalsgaard T, Theodoridis G. Development and validation of an UHPLC-qTOF-MS method for the quantification of cyclic polyesters oligomers in pasta by applying a modified QuEChERS clean-up. Food Chem 2021; 347:129040. [PMID: 33484960 DOI: 10.1016/j.foodchem.2021.129040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
An Ultra High-Performance Liquid chromatography method quadruple time-of-flight mass spectrometry has been developed for the analysis of 11 cyclic polyesters oligomers, following a modified QuEChERS clean-up with alumina/primary secondary amine, in pasta. Target analytes were polyethylene terephthalate (PET) 1st series cyclic dimer to heptamer, polybutylene terephthalate (PBT) dimer to pentamer and a polyurethane oligomer. Standard addition method was applied for the calibration, and the limits of quantification ranged from 3.2 to 17.2 ng g-1. Recoveries ranged from 86.4 to 109.8%, RSDs were lower than 12% for all analytes, and matrix effect never exceeded ± 2.5%. The method was successfully applied to real commercial pasta samples, where the PET 1st series cyclic trimer was the most abundant oligomer, being found in all tested samples. The 1st series PET cyclic dimer and tetramer, as well as 1,4,7-trioxacyclotridecane-8,13-dione, were found in considerable amounts. Traces of the 2nd and 3rd series PET cyclic dimers were also found.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, iFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | | | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Trine Kastrup Dalsgaard
- Department of Food Science, iFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Tsochatzis ED, Gika H, Theodoridis G. Development and validation of a fast gas chromatography mass spectrometry method for the quantification of selected non-intentionally added substances and polystyrene/polyurethane oligomers in liquid food simulants. Anal Chim Acta 2020; 1130:49-59. [PMID: 32892938 DOI: 10.1016/j.aca.2020.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
A simple, fast, sensitive and reliable method was developed for the simultaneous determination of 13 food contact materials (FCM) regulated substances and non-intentionally added substances (NIAS) migrating into official food simulants. The method has been optimized to quantify the monomers styrene and α-methyl styrene, selected polystyrene oligomers (dimers, trimers) and polyester urethane-based oligomers (PU) cyclic oligomers, as well as cyclic NIAS originating from food packaging such as 2,6-Di-tert-butylbenzoquinone and 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione. The method employs liquid-liquid extraction of aqueous ethanol food simulants with dichloromethane, and analysis with gas chromatography coupled to mass spectrometry (GC-MS) with a total analysis time of less than 16 min, with limits of detections ranging from 0.32 ng mL-1 (1,1-diphenyl-ethylene) to 14.8 ng mL-1 for 7,9-di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione and respective limits of quantification from 1.0 ng mL-1 to 41.7 ng mL-1, for the same analytes. Accuracy and precision results showed that the method is sufficiently accurate for all target analytes, with recoveries ranging between 80 and 110% and relative standard deviations (RSDs) smaller than 16% at the three selected concentration levels. The method has been successfully applied to seven FCM. Results indicated that significant amounts of polystyrene monomers, dimers and trimers are migrating into food simulants; this is also the case for polyester urethane-based oligomers (PU). Exposure assessment estimation was performed using EFSA's approach on the total sum of migrating oligomers. In certain cases, amounts of PS and PU oligomers found to be in some cases higher than the respective limits, for the sum of oligomers with a MW lower than 1000 Da.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece.
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
13
|
Tsochatzis ED, Alberto Lopes J, Hoekstra E, Emons H. Development and validation of a multi-analyte GC-MS method for the determination of 84 substances from plastic food contact materials. Anal Bioanal Chem 2020; 412:5419-5434. [PMID: 32583214 PMCID: PMC7387375 DOI: 10.1007/s00216-020-02758-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Chemical substances shall not migrate from food contact materials (FCM) at levels that are potentially harmful for the consumers. Each of the current analytical methods applied to verify the migration of substances from FCM covers only one or few substances. There is a very limited number of publications on the development of analytical methods allowing the simultaneous determination of several classes of FCM substances, and almost none of them reported methods entirely dedicated to the ones in the positive list of Commission Regulation (EU) No. 10/2011 for plastic FCMs. Therefore, a simple, sensitive and reliable multi-analyte method was developed for the analysis of FCM substances in food simulants. It employs an optimised liquid-liquid extraction with dichloromethane as extraction solvent in the presence of 10% m/v NaCl, followed by quantitative analysis with gas chromatography coupled to mass spectrometry (GC-MS). A combination of total ion chromatograms (TICs) and extracted ion chromatograms (EICs) was used. The optimisation and validation of the method have been carried out according to current international guidelines. Adequate sensitivity was demonstrated in the selected concentration ranges for most of the analytes, with limits of quantification (LOQs) at least three times lower than the legislative limit, when existing. The results showed that the method is sufficiently accurate for the majority of substances, with recoveries between 70 and 115% and relative standard deviations (RSDs) smaller than 20% at three concentration levels. The method was applied to the analysis of some FCM multilayers. The method allows, for the first time, the simultaneous quantification of 84 FCM substances in two of the official food simulants (A and C) at levels of a few ng g−1. Graphical abstract ![]()
Collapse
Affiliation(s)
| | - Joao Alberto Lopes
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440, Geel, Belgium.
| | - Eddo Hoekstra
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, Italy
| | - Hendrik Emons
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440, Geel, Belgium
| |
Collapse
|