1
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sun H, Qiu X, Li X, Wang H. Eco-friendly, pH-sensitive curcumin-loaded sodium alginate/hydroxyapatite/quaternary ammonium chitosan microspheres with enhanced antibacterial and antioxidant activities for fruit preservation. Int J Biol Macromol 2024; 279:135297. [PMID: 39233149 DOI: 10.1016/j.ijbiomac.2024.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.
Collapse
Affiliation(s)
- Haonan Sun
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyi Li
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyu Wang
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Li H, Ni Y, Zhao J, Li Y, Xu B. Photodynamic inactivation of edible photosensitizers for fresh food preservation: Comprehensive mechanism of action and enhancement strategies. Compr Rev Food Sci Food Saf 2024; 23:e70006. [PMID: 39245914 DOI: 10.1111/1541-4337.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Foodborne harmful bacteria not only cause waste of fresh food, but also pose a major threat to human health. Among many new sterilization and preservation technologies, photodynamic inactivation (PDI) has the advantages of low-cost, broad-spectrum, energy-saving, nontoxic, and high efficiency. In particular, PDI based on edible photosensitizers (PSs) has a broader application prospect due to edible, accessible, and renewable features, it also can maximize the retention of the nutritional characteristics and sensory quality of the food. Therefore, it is meaningful and necessary to review edible PSs and edible PSs-mediated PDI, which can help to arouse interest and concern and promote the further development of edible PSs-mediated PDI in the future field of nonthermally sterilized food preservation. Herein, the classification and modification of edible PSs, PS-mediated in vivo and PS-mediated in vitro mechanism of PDI, strengthening strategy to improve PDI efficiency by the structure change synergistic and multitechnical means, as well as the application in fresh food preservation were reviewed systematically. Finally, the deficiency and possible future perspectives of edible PSs-mediated PDI were articulated. This review aimed to provide new perspective for the future food preservation and microbial control.
Collapse
Affiliation(s)
- Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
5
|
Guleria G, Thakur S, Shandilya M, Sharma S, Thakur S, Kalia S. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:533-549. [PMID: 36521290 DOI: 10.1016/j.plaphy.2022.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The rapid population growth and environmental challenges in agriculture need innovative and sustainable solutions to meet the growing need for food worldwide. Recent nanotechnological advances found its broad applicability in agriculture's protection and post-harvesting. Engineered nanomaterials play a vital role in plant regulation, seed germination, and genetic manipulation. Their size, surface morphology, properties, and composition were designed for controlled release and enhanced properties in agriculture and the food industry. Nanoparticles can potentially be applied for the targeted and controlled delivery of fertilizers, pesticides, herbicides, plant growth regulators, etc. This help to eliminate the use of chemical-based pesticides and their water solubility, protect agrochemicals from breakdown and degradation, improve soil health, and naturally control crop pathogens, weeds, and insects, ultimately leading to enhanced crop growth and production capacity in the food industry. They can be effectively utilized for nano-encapsulation, seed germination, genetic manipulation, etc., for protecting plants and improving crop productivity, safe and improved food quality, and monitoring climate conditions. Nanoparticles played a crucial role in the uptake and translocation processes, genetically modifying the crops, high seed germination, and productivity. In this article, we have reviewed some important applications of nanoparticles for sustainable agro-food systems. The need and role of nanotechnology concerning challenges and problems faced by agriculture and the food industry are critically discussed, along with the limitations and future prospects of nanoparticles.
Collapse
Affiliation(s)
- Geetika Guleria
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Sirmour, (H.P), 173101, India
| | - Shweta Thakur
- School of Basic and Applied Science, Lingayas Vidyapeeth, Faridabad, India
| | - Mamta Shandilya
- Department of Physics and Materials Science, Shoolini University, Solan, 173229, H.P, India
| | - Sushma Sharma
- Department of Plant Pathology, Akal College of Agriculture, Eternal University, Sirmour, (H.P), 173101, India
| | - Sapna Thakur
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Sirmour, (H.P), 173101, India.
| | - Susheel Kalia
- Department of Chemistry, Army Cadet College Wing of Indian Military Academy, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
6
|
Siddiqui SA, Zannou O, Bahmid NA, Fidan H, Alamou AF, Nagdalian АА, Hassoun A, Fernando I, Ibrahim SA, Arsyad M. Consumer behavior towards nanopackaging - A new trend in the food industry. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Karmakar S, Ghosh T, Sankhla A, Bhattacharjee S, Katiyar V. Insulin biomolecular condensate formed in ionic microenvironment modulates the structural properties of pristine and magnetic cellulosic nanomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Kaya E, Kahyaoglu LN, Sumnu G. Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. Int J Biol Macromol 2022; 221:536-546. [PMID: 36089086 DOI: 10.1016/j.ijbiomac.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Composite films were prepared by combining different concentrations of curcumin with chitin and glucan complexes (CGCs) extracted from Agaricus bisporus via a solution casting method. The developed curcumin doped CGC (CGC/Cu) films were characterized in terms of surface, optical, structural, barrier, mechanical, antioxidant, and antimicrobial properties. The biodegradability of CGC/Cu films was determined in soil for 14 days. The incorporation of curcumin significantly affected the surface morphology and improved light barrier properties, radical scavenging activity, and total phenolic content of the films. The CGC/Cu films containing different concentrations of curcumin showed antibacterial activity against Escherichia coli, while antibacterial activity against Staphylococcus aureus was not observed with the developed films. Afterward, the microbial properties of the fresh chicken breast were examined during refrigerated storage for 10 days. The shelf-life of chicken samples wrapped in the developed film was extended at least 40 % compared to the control sample. In conclusion, curcumin incorporated CGC based films can serve as a promising biodegradable active packaging material to improve the shelf-life of meat products.
Collapse
Affiliation(s)
- Ecem Kaya
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | | | - Gulum Sumnu
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
9
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Ghosh T, Priyadarshi R, Krebs de Souza C, Angioletti BL, Rhim JW. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Huang J, Hu Z, Li G, Hu L, Chen J, Hu Y. Make your packaging colorful and multifunctional: The molecular interaction and properties characterization of natural colorant-based films and their applications in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Ghosh T, Nakano K, Katiyar V. Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. Int J Biol Macromol 2021; 184:936-945. [PMID: 34153361 DOI: 10.1016/j.ijbiomac.2021.06.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
The developed edible coating with curcumin facilitated iron functionalized cellulose nanofiber (f-CNF) reinforced chitosan (CS) were applied on kiwifruits for maintaining the quality during storage life. The f-CNF was fabricated via anchoring iron particles onto the surface of CNF as evident by FESEM, FETEM, and XRD analysis. The inclusion of f-CNF and curcumin as a component of edible coating can provide a synergistic effect in maintaining the quality of kiwifruits. The f-CNF (1.5 wt%) dispersed CS edible coating assisted by curcumin provided a lamellar and heterogonous surface morphology with a hazy appearance. The used edible coating materials were effective in reducing mass loss, firmness loss, respiration rate, and microbial count of the kiwifruits during storage life (10 days at 10 °C). Additionally, color, and physiological properties of kiwifruits can be modified by using the addressed edible coating materials.
Collapse
Affiliation(s)
- Tabli Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781031, Assam, India
| | - Kohei Nakano
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781031, Assam, India.
| |
Collapse
|
13
|
Ghosh T, Mondal K, Giri BS, Katiyar V. Silk nanodisc based edible chitosan nanocomposite coating for fresh produces: A candidate with superior thermal, hydrophobic, optical, mechanical and food properties. Food Chem 2021; 360:130048. [PMID: 34034054 DOI: 10.1016/j.foodchem.2021.130048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023]
Abstract
This paper demonstrates the fabrication of silk nanodisc (SND) dispersed chitosan (CS) based new edible coating as a candidate for superior thermal, hydrophobic, optical, mechanical, and physicochemical properties, which further provide remarkable storage quality for banana fruits. Fabrication of SND is attained following acid hydrolysis of silk fibroin (SF), where the successful nanostructures formulations are analyzed by FESEM, FETEM and XRD analysis delivering disc shaped morphology with amplified crystallinity (~95.0%). The SF has been fabricated from waste muga cocoons using the degumming process. The superior thermal stability of SND compared to SF portray a new era in required heat resistant packaging. The effectiveness of SND is investigated on packaging properties of CS biocomposites including thermal, wettability, mechanical, color, surface morphology, and others. Wettability of SND incorporated CS biocomposite enhanced by ~ 10° suggesting improved hydrophobicity. The edible coatings are a new candidate to improve the shelf life of bananas over 7 days at 25 °C for prevailing original weight, optical property, firmness, and others.
Collapse
Affiliation(s)
- Tabli Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039
| | - Kona Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039
| | - Balendu Shekher Giri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039.
| |
Collapse
|