1
|
Braun H, Hauke M, Eckenstaler R, Petermann M, Ripperger A, Kühn N, Schwedhelm E, Ludwig-Kraus B, Kraus FB, Dubourg V, Zernecke A, Schreier B, Gekle M, Benndorf RA. The F2-isoprostane 8-iso-PGF 2α attenuates atherosclerotic lesion formation in Ldlr-deficient mice - Potential role of vascular thromboxane A 2 receptors. Free Radic Biol Med 2022; 185:36-45. [PMID: 35470061 DOI: 10.1016/j.freeradbiomed.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The F2-isoprostane 8-iso-PGF2α (also known as 15-F2t-isoprostane, iPF2α-III, 8-epi PGF2α, 15(S)-8-iso-PGF2α, or 8-Isoprostane), a thromboxane A2 receptor (TP) agonist, stable biomarker of oxidative stress, and risk marker of cardiovascular disease, has been proposed to aggravate atherogenesis in genetic mouse models of atherosclerotic vascular disease. Moreover, the TP plays an eminent role in the pathophysiology of endothelial dysfunction, atherogenesis, and cardiovascular disease. Yet it is unknown, how the TP expressed by vascular cells affects atherogenesis or 8-iso-PGF2α-related effects in mouse models of atherosclerosis. We studied Ldlr-deficient vascular endothelial-specific (EC) and vascular smooth muscle cell (VSMC)-specific TP knockout mice (TPECKO/Ldlr KO; TPVSMCKO/Ldlr KO) and corresponding wild-type littermates (TPWT/Ldlr KO). The mice were fed a Western-type diet for eight weeks and received either 8-iso-PGF2α or vehicle infusions via osmotic pumps. Subsequently, arterial blood pressure, atherosclerotic lesion formation, and lipid profiles were analyzed. We found that VSMC-, but not EC-specific TP deletion, attenuated atherogenesis without affecting blood pressure or plasma lipid profiles of the mice. In contrast to a previous report, 8-iso-PGF2α tended to reduce atherogenesis in TPWT/Ldlr KO and TPEC KO/Ldlr KO mice, again without significantly affecting blood pressure or lipid profiles of these mice. However, no further reduction in atherogenesis was observed in 8-iso-PGF2α-treated TPVSMC KO/Ldlr KO mice. Our work suggests that the TP expressed in VSMC but not the TP expressed in EC is involved in atherosclerotic lesion formation in Ldlr-deficient mice. Furthermore, we report an inhibitory effect of 8-iso-PGF2α on atherogenesis in this experimental atherosclerosis model, which paradoxically appears to be related to the presence of the TP in VSMC.
Collapse
Affiliation(s)
- Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Petermann
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Niklas Kühn
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021; 22:ijms22052366. [PMID: 33673423 PMCID: PMC7956779 DOI: 10.3390/ijms22052366] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Collapse
Affiliation(s)
- Pauline Chazelas
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Clara Steichen
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Patrick Trouillas
- INSERM U1248, IPPRITT, Université de Limoges, 87032 Limoges, France;
- RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
| | - Patrick Hannaert
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
| | - Raphaël Thuillier
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Giraud
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Thierry Hauet
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
- FHU SUPORT Survival Optimization in Organ Transplantation, 86021 Poitiers, France
- IBiSA Plateforme Modélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT), Do-maine Expérimental du Magneraud, 17700 Surgères, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, 86073 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-38-59
| |
Collapse
|
3
|
Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia-Reperfusion in a Rat Model. Biomolecules 2020; 10:biom10030439. [PMID: 32178273 PMCID: PMC7175177 DOI: 10.3390/biom10030439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background and purpose: Ischemia–reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping. The nature and the intensity of the processes induced by ischemia types are different, hence the therapeutic strategy should be adapted. Herein, we investigated the protective role of tannic acid, a natural polyphenol in a rat model reproducing both renal warm ischemia and kidney allotransplantation. The follow-up was done after 1 week. Experimental approach: To characterize the effect of tannic acid, an in vitro model of endothelial cells subjected to hypoxia–reoxygenation was used. Key results: Tannic acid statistically improved recovery after warm ischemia but not after cold ischemia. In kidneys biopsies, 3 h after warm ischemia–reperfusion, oxidative stress development was limited by tannic acid and the production of reactive oxygen species was inhibited, potentially through Nuclear Factor erythroid-2-Related factor 2 (NRF2) activation. In vitro, tannic acid and its derivatives limited cytotoxicity and the generation of reactive oxygen species. Molecular dynamics simulations showed that tannic acid efficiently interacts with biological membranes, allowing efficient lipid oxidation inhibition. Tannic acid also promoted endothelial cell migration and proliferation during hypoxia. Conclusions: Tannic acid was able to improve renal recovery after renal warm ischemia with an antioxidant effect putatively extended by the production of its derivatives in the body and promoted cell regeneration during hypoxia. This suggests that the mechanisms induced by warm and cold ischemia are different and require specific therapeutic strategies.
Collapse
|
4
|
Tardieu A, Chazelas P, Faye PA, Favreau F, Nadal-Desbarats L, Sallée C, Margueritte F, Couquet CY, Marquet P, Guellec CBL, Gauthier T. Changes in the metabolic composition of storage solution with prolonged cold ischemia of the uterus. J Assist Reprod Genet 2019; 36:1169-1178. [PMID: 31079269 DOI: 10.1007/s10815-019-01477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The development of uterine transplantation (UTx) from deceased donors requires knowledge of the tolerance of the uterus to prolonged cold ischemia (CI). This can be evaluated through the use of biological parameters to assess degradation of the organ between its procurement and transplantation. The objective of this study was to analyze changes in the metabolic composition of the storage solution in cases of prolonged CI in uteri from ewes. METHODS Eighteen uterine auto-transplantations were performed in ewes. CI time was 1 h (T1) or 24 h (T24). Samples of Celsior® were taken when the explanted uterus was flushed (T0) and at the end of CI. A dual approach to metabolic analyses was followed: targeted biochemical analyses targeting several predefined metabolites and non-targeted metabolomics analyses based on nuclear magnetic resonance (NMR). RESULTS Metabolic analyses were performed on 16 explanted uteri. Metabolomic profiles differed significantly between T1 and T24 (p = 0.003). Hypoxia-associated degradation of the organ was demonstrated by the significantly higher lactate levels at T24 than at T1 (p < 0.05), accompanied by cell lysis, and significantly higher levels of creatine kinase activity in T24 than in T1 uteri (p < 0.05). Oxidative stress increased over time, with a significantly higher oxidized glutathione/glutathione ratio for T24 than for T1 uteri (p < 0.05). CONCLUSION The metabolic results indicate a significant degradation of the uterus during 24 h of CI. Metabolic analysis of the storage solution could be used as a non-invasive tool for evaluating uterine degradation during CI before transplantation.
Collapse
Affiliation(s)
- Antoine Tardieu
- INSERM, Inserm Unit U1248, 87000, Limoges, France. .,Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France.
| | - P Chazelas
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | - P-A Faye
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | - F Favreau
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | | | - C Sallée
- Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| | - F Margueritte
- Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| | - C-Y Couquet
- Platform of Medicine, Imagery and experimental surgery (MICE), Hospital of Limoges, 87000, Limoges, France
| | - P Marquet
- INSERM, Inserm Unit U1248, 87000, Limoges, France
| | - C Barin-Le Guellec
- INSERM, Inserm Unit U1248, 87000, Limoges, France.,Faculty of Medicine, University of Tours, 37000, Tours, France
| | - T Gauthier
- INSERM, Inserm Unit U1248, 87000, Limoges, France.,Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| |
Collapse
|
5
|
Cummings M, Massey KA, Mappa G, Wilkinson N, Hutson R, Munot S, Saidi S, Nugent D, Broadhead T, Wright AI, Barber S, Nicolaou A, Orsi NM. Integrated eicosanoid lipidomics and gene expression reveal decreased prostaglandin catabolism and increased 5-lipoxygenase expression in aggressive subtypes of endometrial cancer. J Pathol 2018; 247:21-34. [PMID: 30168128 DOI: 10.1002/path.5160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/30/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
Eicosanoids comprise a diverse group of bioactive lipids which orchestrate inflammation, immunity, and tissue homeostasis, and whose dysregulation has been implicated in carcinogenesis. Among the various eicosanoid metabolic pathways, studies of their role in endometrial cancer (EC) have very much been confined to the COX-2 pathway. This study aimed to determine changes in epithelial eicosanoid metabolic gene expression in endometrial carcinogenesis; to integrate these with eicosanoid profiles in matched clinical specimens; and, finally, to investigate the prognostic value of candidate eicosanoid metabolic enzymes. Eicosanoids and related mediators were profiled using liquid chromatography-tandem mass spectrometry in fresh frozen normal, hyperplastic, and cancerous (types I and II) endometrial specimens (n = 192). Sample-matched epithelia were isolated by laser capture microdissection and whole genome expression analysis was performed using microarrays. Integration of eicosanoid and gene expression data showed that the accepted paradigm of increased COX-2-mediated prostaglandin production does not apply in EC carcinogenesis. Instead, there was evidence for decreased PGE2 /PGF2α inactivation via 15-hydroxyprostaglandin dehydrogenase (HPGD) in type II ECs. Increased expression of 5-lipoxygenase (ALOX5) mRNA was also identified in type II ECs, together with proportional increases in its product, 5-hydroxyeicosatetraenoic acid (5-HETE). Decreased HPGD and elevated ALOX5 mRNA expression were associated with adverse outcome, which was confirmed by immunohistochemical tissue microarray analysis of an independent series of EC specimens (n = 419). While neither COX-1 nor COX-2 protein expression had prognostic value, low HPGD combined with high ALOX5 expression was associated with the worst overall and progression-free survival. These findings highlight HPGD and ALOX5 as potential therapeutic targets in aggressive EC subtypes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michele Cummings
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, UK
| | - Karen A Massey
- School of Pharmacy and Centre for Skin Sciences, Bradford School of Pharmacy, School of Life Sciences, University of Bradford, Bradford, UK
| | - Georgia Mappa
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, UK
| | - Nafisa Wilkinson
- Department of Cellular Pathology, University College London Hospital NHS Trust, London, UK
| | - Richard Hutson
- Department of Gynaecological Oncology, St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Sarika Munot
- Department of Gynaecological Oncology, St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Sam Saidi
- Department of Obstetrics and Gynaecology, Central Clinical School, University of Sydney, Camperdown, Australia
| | - David Nugent
- Department of Gynaecological Oncology, St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Timothy Broadhead
- Department of Gynaecological Oncology, St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Alexander I Wright
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, UK
| | - Stuart Barber
- Department of Statistics, University of Leeds, Leeds, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicolas M Orsi
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Leeds, UK
| |
Collapse
|
6
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
7
|
van 't Erve TJ, Lih FB, Kadiiska MB, Deterding LJ, Mason RP. Elevated plasma 8-iso-prostaglandin F 2α levels in human smokers originate primarily from enzymatic instead of non-enzymatic lipid peroxidation. Free Radic Biol Med 2018; 115:105-112. [PMID: 29162517 PMCID: PMC5767525 DOI: 10.1016/j.freeradbiomed.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
It is widely accepted that free radicals in tobacco smoke lead to oxidative stress and generate the popular lipid peroxidation biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α). However, 8-iso-PGF2α can simultaneously be produced in vivo by the prostaglandin-endoperoxide synthases (PGHS) induced by inflammation. This inflammation-dependent mechanism has never been considered as a source of elevated 8-iso-PGF2α in tobacco smokers. The goal of this study is to quantify the distribution of chemical- and PGHS-dependent 8-iso-PGF2α formation in the plasma of tobacco smokers and non-smokers. The influences of gender and hormonal contraceptive use were accounted for. The distribution was determined by measuring the 8-iso-PGF2α/prostaglandin F2α (PGF2α) ratio. When comparing smokers (n = 28) against non-smokers (n = 30), there was a statistically significant increase in the 8-iso-PGF2α concentration. The source of this increased 8-iso-PGF2α was primarily from PGHS. When stratifying for gender, the increase in 8-iso-PGF2α in male smokers (n = 9) was primarily from PGHS. Interestingly, female smokers on hormonal contraceptives had increased 8-iso-PGF2α in both pathways, whereas those not on hormonal contraceptives did not have increased 8-iso-PGF2α. In conclusion, increased plasma 8-iso-PGF2α in tobacco smokers has complex origins, with PGHS-dependent formation as the primary source. Accounting for both pathways provides a definitive measurement of both oxidative stress and inflammation.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Fred B Lih
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Leesa J Deterding
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
8
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
9
|
Van't Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, Mason RP, Kadiiska MB. Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 2016; 95:65-73. [PMID: 26964509 PMCID: PMC6626672 DOI: 10.1016/j.freeradbiomed.2016.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
Oxidative stress is elevated in numerous environmental exposures and diseases. Millions of dollars have been spent to try to ameliorate this damaging process using anti-oxidant therapies. Currently, the best accepted biomarker of oxidative stress is the lipid oxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α), which has been measured in over a thousand human and animal studies. 8-iso-PGF2α generation has been exclusively attributed to nonenzymatic chemical lipid peroxidation (CLP). However, 8-iso-PGF2α can also be produced enzymatically by prostaglandin-endoperoxide synthases (PGHS) in vivo. When failing to account for PGHS-dependent generation, 8-iso-PGF2α cannot be interpreted as a selective biomarker of oxidative stress. We investigated the formation of 8-iso-PGF2α in rats exposed to carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) using the 8-iso-PGF2α/PGF2α ratio to quantitatively determine the source(s) of 8-iso-PGF2α. Upon exposure to a 120mg/kg dose of CCl4, the contribution of CLP accounted for only 55.6±19.4% of measured 8-iso-PGF2α, whereas in the 1200mg/kg dose, CLP was the predominant source of 8-iso-PGF2α (86.6±8.0% of total). In contrast to CCl4, exposure to 0.5mg/kg LPS was characterized by a significant increase in both the contribution of PGHS (59.5±7.0) and CLP (40.5±14.0%). In conclusion, significant generation of 8-iso-PGF2α occurs through enzymatic as well as chemical lipid peroxidation. The distribution of the contribution is dependent on the exposure agent as well as the dose. The 8-iso-PGF2α/PGF2α ratio accurately determines the source of 8-iso-PGF2α and provides an absolute measure of oxidative stress in vivo.
Collapse
Affiliation(s)
- Thomas J Van't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Fred B Lih
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Casey Jelsema
- Department of Statistics, West Virginia University, Morgantown, WV 26505, USA
| | - Leesa J Deterding
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Thomas E Eling
- Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
10
|
van 't Erve TJ, Lih FB, Kadiiska MB, Deterding LJ, Eling TE, Mason RP. Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radic Biol Med 2015; 83:245-51. [PMID: 25772010 PMCID: PMC4441846 DOI: 10.1016/j.freeradbiomed.2015.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 03/01/2015] [Indexed: 11/27/2022]
Abstract
The biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) is regarded as the gold standard for detection of excessive chemical lipid peroxidation in humans. However, biosynthesis of 8-iso-PGF2α via enzymatic lipid peroxidation by prostaglandin-endoperoxide synthases (PGHSs), which are significantly induced in inflammation, could lead to incorrect biomarker interpretation. To resolve the ambiguity with this biomarker, the ratio of 8-iso-PGF2α to prostaglandin F2α (PGF2α) is established as a quantitative measure to distinguish enzymatic from chemical lipid peroxidation in vitro, in animal models, and in humans. Using this method, we find that chemical lipid peroxidation contributes only 3% to the total 8-iso-PGF2α in the plasma of rats. In contrast, the 8-iso-PGF2α levels in plasma of human males are generated >99% by chemical lipid peroxidation. This establishes the potential for an alternate pathway of biomarker synthesis, and draws into question the source of increases in 8-iso-PGF2α seen in many human diseases. In conclusion, increases in 8-iso-PGF2α do not necessarily reflect increases in oxidative stress; therefore, past studies using 8-iso-PGF2α as a marker of oxidative stress may have been misinterpreted. The 8-iso-PGF2α/PGF2α ratio can be used to distinguish biomarker synthesis pathways and thus confirm the potential change in oxidative stress in the myriad of disease and chemical exposures known to induce 8-iso-PGF2α.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Fred B Lih
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas E Eling
- Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
11
|
Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol 2015; 171:3115-31. [PMID: 24646155 DOI: 10.1111/bph.12677] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.
Collapse
Affiliation(s)
- Jochen Bauer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Chatauret N, Favreau F, Giraud S, Thierry A, Rossard L, Le Pape S, Lerman LO, Hauet T. Diet-induced increase in plasma oxidized LDL promotes early fibrosis in a renal porcine auto-transplantation model. J Transl Med 2014; 12:76. [PMID: 24655356 PMCID: PMC3994364 DOI: 10.1186/1479-5876-12-76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/12/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In kidney transplantation, the prevalence of hypercholesterolemia as a co-morbidity factor known to affect graft function, is rising due to the increased number of older donors in response to organ shortage as well as to the hyperlipidemic effects of immunosuppressors in recipient. This study aimed to characterize the effects of hypercholesterolemia on renal graft outcome, investigating the role of oxidized low-density lipoprotein (OxLDL). METHODS In vivo, we used a porcine preclinical model of renal auto-transplantation modulated by two experimental diets: a normal (n = 6) or a hyperlipidemic diet (n = 5) maintained during the 3 month follow-up after the surgical procedure. Kidney function and OxLDL levels were monitored as well as fibrosis, LOX-1 and TGF beta signaling pathways. In vitro, we used human artery endothelial cells subjected to OxLDL to investigate the TGF beta profibrotic pathway and the role of the scavenger receptor LOX-1. RESULTS Hyperlipidemic diet-induced increase in plasma OxLDL levels at the time of surgery correlated with an increase in proteinuria 3 months after transplantation, associated with an early graft fibrosis combined with an activation of renal TGF beta signaling. These data suggest a direct involvement of OxLDL in the hyperlipidemic diet-induced activation of the pro-fibrotic TGF beta pathway which seems to be activated by LOX-1 signaling. These results were supported by studies with endothelial cells incubated in culture medium containing OxLDL promoting TGF beta expression inhibited by LOX-1 antibody. CONCLUSIONS These results implicate OxLDL in the hyperlipidemic diet-promoted fibrosis in transplanted kidneys, suggesting LOX-1 as a potential therapeutic target and reinforce the need to control cholesterol levels in kidney transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thierry Hauet
- INSERM, U1082, Ischémie-reperfusion en transplantation rénale, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers 86000, France.
| |
Collapse
|
13
|
Tsikas D, Suchy MT, Niemann J, Tossios P, Schneider Y, Rothmann S, Gutzki FM, Frölich JC, Stichtenoth DO. Glutathione promotes prostaglandin H synthase (cyclooxygenase)-dependent formation of malondialdehyde and 15(S)-8-iso-prostaglandin F2α. FEBS Lett 2012; 586:3723-30. [PMID: 22982857 DOI: 10.1016/j.febslet.2012.09.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) H synthases (PGHS) or cyclooxygenases (COX) catalyse the peroxidation of arachidonic acid (AA) to PGG(2) and PGH(2) which are further converted to a series of prostaglandins and thromboxane A(2). Here, we report that GSH promotes concomitant formation of the current oxidative stress biomarkers malondialdehyde (MDA) and 15(S)-8-iso-prostaglandin F(2α) from AA via PGHS. This illustrates an uncommon interplay of enzymatic and chemical reactions to produce species that are considered to be exclusively produced by free-radical-catalysed reactions. We propose mechanisms for the PGHS/AA/GSH-dependent formation of MDA, 15(S)-8-iso-prostaglandin F(2α) and other F(2)-isoprostanes. These mechanisms are supported by clinical observations.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nikolaidis MG, Kyparos A, Vrabas IS. F2-isoprostane formation, measurement and interpretation: The role of exercise. Prog Lipid Res 2011; 50:89-103. [DOI: 10.1016/j.plipres.2010.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/02/2010] [Indexed: 01/14/2023]
|
15
|
Comet assay in evaluating DNA damage associated with ischaemia-reperfusion injury in patients undergoing coronary surgery. Arh Hig Rada Toksikol 2009; 60:307-15. [PMID: 19789160 DOI: 10.2478/10004-1254-60-2009-1934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ischaemia-reperfusion (I/R) injury is responsible for a number of conditions such as coronary bypass and myocardial infarction, and deaths. Oxygen-free radicals formed during I/R have been proposed as the leading causes of tissue injury, and they play an important role in I/R injury. I/R induces oxidative DNA damage (such as purinic and pyrimidinic base lesions). Comet assay is a suitable and sensitive method for early detection of low-level DNA damage. We used modified alkaline comet assay in peripheral blood lymphocytes and evaluated I/R-induced DNA damage in patients undergoing coronary artery bypass graft (CABG) operation (in vivo model for I/R). No statistically significant difference in DNA damage levels was found before surgery, after anaesthesia, ischemia, reperfusion, and surgery. However, blood lactate levels (assessed in parallel with the comet assay) increased after I/R and did not return to the baseline level. Our findings showed that I/R injury did not induce DNA damage, but increased the lactate levels. This finding suggests that there might be reversible and uncommon necrosis that did not reflect on overall DNA base damage. Further studies are needed using this approach.
Collapse
|
16
|
de Vries DK, Lindeman JHN, Tsikas D, de Heer E, Roos A, de Fijter JW, Baranski AG, van Pelt J, Schaapherder AFM. Early renal ischemia-reperfusion injury in humans is dominated by IL-6 release from the allograft. Am J Transplant 2009; 9:1574-84. [PMID: 19459788 DOI: 10.1111/j.1600-6143.2009.02675.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathophysiology of ischemia/reperfusion (I/R) injury is complex, and current knowledge of I/R injury in humans is incomplete. In the present study, human living-donor kidney transplantation was used as a highly reproducible model to systematically study various processes potentially involved in early I/R injury. Unique, direct measurements of arteriovenous concentration differences over the kidney revealed massive release of interleukin (IL)-6 in the first 30 minutes of graft reperfusion and a modest release of IL-8. Among the assessed markers of oxidative and nitrosative stress, only 15(S)-8-iso-PGF(2alpha) was released. When assessing cell activation, release of prothrombin factor 1 + 2 indicated thrombocyte activation, whereas there was no release of markers for endothelial activation or neutrophil activation. Common complement activation complex sC5b-9 was not released into the bloodstream, but was released into urine rapidly after reperfusion. To investigate whether IL-6 plays a modulating role in I/R injury, a mouse experiment of renal I/R injury was performed. Neutralizing anti-IL-6 antibody treatment considerably worsened kidney function. In conclusion, this study shows that renal I/R in humans is dominated by local IL-6 release. Neutralization of IL-6 in mice resulted in a significant aggravation of renal I/R injury.
Collapse
Affiliation(s)
- D K de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Favreau F, Rossard L, Zhang K, Desurmont T, Manguy E, Belliard A, Fabre S, Liu J, Han Z, Thuillier R, Papadopoulos V, Hauet T. Expression and modulation of translocator protein and its partners by hypoxia reoxygenation or ischemia and reperfusion in porcine renal models. Am J Physiol Renal Physiol 2009; 297:F177-90. [PMID: 19386723 DOI: 10.1152/ajprenal.90422.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is an 18-kDa drug- and cholesterol-binding protein localized to the outer mitochondrial membrane and implicated in a variety of cell and mitochondrial functions. To determine the role of TSPO in ischemia-reperfusion injury (IRI), we used both in vivo and in vitro porcine models: an in vivo renal ischemia model where different conservation modalities were tested and an in vitro model where TSPO-transfected porcine proximal tubule LLC-PK(1) cells were exposed to hypoxia and oxidative stress. The expression of TSPO and its partners in steroidogenic cells, steroidogenic acute regulatory protein (StAR) and cytochrome P-450 side chain cleavage CYP11A1, as well as the impact of TSPO overexpression and exposure to TSPO ligands in vitro in hypoxia-ischemia conditions were investigated. Hypoxia induced caspase activation, reduction of ATP content, and LLC-PK(1) cell death. Transfection and overexpression of TSPO rescued the cells from the detrimental effects of hypoxia and reoxygenation. Moreover, TSPO overexpression was accompanied by a reduction of H(2)O(2)-induced necrosis. TSPO drug ligands did not affect TSPO-mediated functions. In vivo, TSPO expression was modulated by IRI and during regeneration particularly in proximal tubule cells, which do not express this protein at the basal level. Under the same conditions, StAR and CYP11A1 protein and gene expression was reduced without apparent relation to TSPO changes. Pregnenolone was identified and measured in the pig kidney. Pregnenolone synthesis was not affected by the experimental conditions used. Taken together, these results indicate that changes in TSPO expression in kidney regenerating tissue could be important for renal protection and maintenance of kidney function.
Collapse
Affiliation(s)
- Frederic Favreau
- Inserm, U927, Faculté de Médecine, Université de Poitiers, 86021 Poitiers Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
[Oxidative stress and the possibilities of measuring it for environmental medicine: Report of the Commission "Methods and Quality Assurance in Environmental Medicine"]]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2009; 51:1464-82. [PMID: 19137223 DOI: 10.1007/s00103-008-0720-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
The Effect of Warm Ischemic Time on Renal Function and Injury in the Isolated Hemoperfused Kidney. Transplantation 2008; 86:445-51. [DOI: 10.1097/tp.0b013e31817fe0cd] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
EFFECTS OF INTRARENAL ADMINISTRATION OF THE CALCIUM ANTAGONIST NIMODIPINE DURING PORCINE AORTIC OCCLUSION-INDUCED ISCHEMIA/REPERFUSION INJURY. Shock 2008; 29:717-23. [DOI: 10.1097/shk.0b013e318160d6f9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Waller HL, Harper SJF, Hosgood SA, Bagul A, Yang B, Kay MD, Kaushik M, Nicholson ML. Biomarkers of oxidative damage to predict ischaemia-reperfusion injury in an isolated organ perfusion model of the transplanted kidney. Free Radic Res 2007; 40:1218-25. [PMID: 17050175 DOI: 10.1080/10715760600907368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ischaemia-reperfusion (IR) injury is known to be a risk factor influencing both short and long-term graft function following transplantation. The pathophysiology of IR injury is suggested to involve elevated reactive oxygen species production resulting in oxidative damaged cellular macromolecules. The objective of this study was to evaluate oxidative damage following IR using an isolated organ perfusion model of the transplanted kidney, in order to determine a simple, preferably non-invasive biomarker for IR injury. Porcine kidneys were retrieved with 10 or 40 min warm ischaemic (WI) time and haemoperfused for 6 h on an isolated organ perfusion machine. ELISA was used to detect carbonyls, 8-isporostane and 8-hydroxy-2'-deoxyguanosine, representing protein, lipid and DNA damage respectively in pre and post reperfusion samples of plasma, urine and biopsy material. Plasma carbonyl and 8-isporostane and were significantly increased in the 40 min group compared to pre-perfusion (0.96 +/- 0.10 vs. 0.62 +/- 0.06, P < 0.001 and 1.57(1.28-4.9) vs. 0.36(0.09-0.59), P < 0.05). The levels also correlated with creatinine clearance used to determine renal function (r = - 0.6150, P < 0.01 and r = - 0.7727, P < 0.01). The results of this study suggest both plasma carbonyl and 8-isporostane to be reliable biomarkers to predict the level IR injury.
Collapse
Affiliation(s)
- Helen L Waller
- Transplant Surgery Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
McMichael MA, Ruaux CG, Baltzer WI, Kerwin SC, Hosgood GL, Steiner JM, Williams DA. Concentrations of 15F2t isoprostane in urine of dogs with intervertebral disk disease. Am J Vet Res 2006; 67:1226-31. [PMID: 16817747 DOI: 10.2460/ajvr.67.7.1226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure 15F(2t) isoprostane concentrations in the urine of dogs undergoing ovariohysterectomy (OHE) and dogs undergoing surgery because of intervertebral disk disease (IVDD) and to assess relationships between urinary concentrations of 15F(2t) isoprostanes and neurologic score in dogs with IVDD. ANIMALS 11 dogs undergoing OHE and 32 dogs with IVDD undergoing hemilaminectomy. PROCEDURES Paired urine samples were obtained at induction of anesthesia and approximately 1 hour after OHE (controls) and were collected from dogs with IVDD at induction of anesthesia (28 samples) and approximately 1 hour after hemilaminectomy (31 samples); 26 paired urine samples were obtained from dogs with IVDD. Urinary isoprostane concentrations were measured by use of a commercial ELISA, and results were adjusted on the basis of urinary creatinine concentrations. Differences in the mean isoprostane-to-creatinine ratio were analyzed. Neurologic score was determined in dogs with IVDD by use of the modified Frankel scoring system. RESULTS Urinary isoprostane-to-creatinine ratios were significantly higher in dogs with IVDD than in control dogs before and after surgery. There was no significant difference between values before and after surgery for either group. There was a significant correlation of neurologic score and urinary isoprostane-to-creatinine ratio because dogs that had higher neurologic scores (ie, less severely affected) generally had higher isoprostane-to-creatinine ratios. CONCLUSIONS AND CLINICAL RELEVANCE Urinary isoprostane-to-creatinine ratios were higher in dogs with IVDD before and after surgery. Analysis of these data suggests that dogs with IVDD are in a state of oxidative stress and that preemptive treatment with antioxidants warrants further investigation.
Collapse
Affiliation(s)
- Maureen A McMichael
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, 77843-4474, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Pagano G, Degan P, d'Ischia M, Kelly FJ, Nobili B, Pallardó FV, Youssoufian H, Zatterale A. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol 2005; 75:93-100. [PMID: 16000125 DOI: 10.1111/j.1600-0609.2005.00507.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fanconi anaemia (FA) is a genetic disease characterised by bone marrow failure with excess risk of myelogenous leukaemia and solid tumours. A widely accepted notion in FA research invokes a deficiency of response to DNA damage as the fundamental basis of the 'crosslinker sensitivity' observed in this disorder. However, such an isolated defect cannot readily account for the full cellular and clinical phenotype, which includes a number of other abnormalities, such as malformations, endocrinopathies, and typical skin spots. An extensive body of evidence pointing toward an involvement of oxidative stress in the FA phenotype includes the following: (i) In vitro and ex vivo abnormalities in a number of redox status endpoints; (ii) the functions of several FA proteins in protecting cells from oxidative stress; (iii) redox-related toxicity mechanisms of the xenobiotics evoking excess toxicity in FA cells. The clinical features in FA and the in vivo abnormalities of redox parameters are here reconsidered in view of the pleiotropic clinical phenotype and known biochemical and molecular links to an in vivo prooxidant state, which causes oxidative damage to biomolecules, resulting in an excessive number of acquired abnormalities that may overwhelm the cellular repair capacity rather than a primary deficiency in DNA repair. FA may thus represent a unique model disease in testing the integration between the acquisition of macromolecular damage as a result of oxidative stress and the ability of the mammalian cell to respond effectively to such damage.
Collapse
Affiliation(s)
- Giovanni Pagano
- Centre for Research, Innovation and Technological Transfer in Oncology and Life Sciences, Mercogliano (AV), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee BH, Seo HW, Yi KY, Lee S, Lee S, Yoo SE. Effects of KR-32570, a new Na+/H+ exchanger inhibitor, on functional and metabolic impairments produced by global ischemia and reperfusion in the perfused rat heart. Eur J Pharmacol 2005; 511:175-82. [PMID: 15792786 DOI: 10.1016/j.ejphar.2005.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 01/27/2005] [Indexed: 11/28/2022]
Abstract
The present study was performed to evaluate the cardioprotective effects of [5-(2-methoxy-5-chloro-5-phenyl)furan-2-ylcarbonyl]guanidine (KR-32570) on ischemia/reperfusion-induced mechanical and metabolic dysfunction in isolated rat hearts. In addition, the effects of KR-32570 on the Na(+)/H(+)-exchanger (NHE) and lipid peroxidation were also evaluated. KR-32570 strongly inhibited the recovery from acidosis induced by an NH(4)Cl prepulse in PS120 fibroblast cells expressing the human NHE-1 isoform (IC(50): 0.05 and 1.16 microM for KR-32570 and cariporide, respectively). In isolated perfused rat hearts subjected to 30-min ischemia/30-min reperfusion, KR-32570 (1-10 microM) significantly and concentration dependently improved cardiac contractile function and severe contracture in conjunction with causing a marked reduction in lactate dehydrogenase release. Additionally, it (1-10 microM) significantly increased the content of ATP, creatine phosphate and glycogen as well as decreased the tissue lactate content in heart homogenates following ischemia and reperfusion. KR-32570 (1-10 microM) significantly decreased the concentration of 8-iso-prostaglandin F(2 alpha), a reliable marker for oxidant stress, in perfusates from rat hearts subjected to ischemia and reperfusion. In separate experiments, KR-32570 significantly lowered the concentration of malondialdehyde in rat liver homogenate and inhibited Cu(2+)-induced peroxidation of low-density lipoprotein. Taken together, these results suggest that KR-32570 possesses potent cardioprotective effects in perfused rat hearts, and its effects may be mediated by inhibition of NHE-1, preservation of high-energy phosphates, and inhibition of lipid peroxidation.
Collapse
Affiliation(s)
- Byung Ho Lee
- Medicinal Science Division, Korea Research Institute of Chemical Technology, #100, Jang-dong, Yusong, Taejon 305-343, Republic of Korea.
| | | | | | | | | | | |
Collapse
|