1
|
Ligation-Mediated Polymerase Chain Reaction Detection of 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine and 5-Hydroxycytosine at the Codon 176 of the p53 Gene of Hepatitis C-Associated Hepatocellular Carcinoma Patients. Int J Mol Sci 2020; 21:ijms21186753. [PMID: 32942546 PMCID: PMC7555735 DOI: 10.3390/ijms21186753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular mechanisms underlying Hepatitis C virus (HCV)-associated hepatocellular carcinoma (HCC) pathogenesis are still unclear. Therefore, we analyzed the levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and other oxidative lesions at codon 176 of the p53 gene, as well as the generation of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG), in a cohort of HCV-related HCC patients from Italy. Detection of 8-oxodG and 5-hydroxycytosine (5-OHC) was performed by ligation mediated-polymerase chain reaction assay, whereas the levels of M1dG were measured by chromatography and mass-spectrometry. Results indicated a significant 130% excess of 8-oxodG at –TGC– position of p53 codon 176 in HCV-HCC cases as compared to controls, after correction for age and gender, whereas a not significant increment of 5-OHC at –TGC– position was found. Then, regression models showed an 87% significant excess of M1dG in HCV-HCC cases relative to controls. Our study provides evidence that increased adduct binding does not occur randomly on the sequence of the p53 gene but at specific sequence context in HCV-HCC patients. By-products of lipid peroxidation could also yield a role in HCV-HCC development. Results emphasize the importance of active oxygen species in inducing nucleotide lesions at a p53 mutational hotspot in HCV-HCC patients living in geographical areas without dietary exposure to aflatoxin B1.
Collapse
|
2
|
Cellai F, Capacci F, Sgarrella C, Poli C, Arena L, Tofani L, Giese RW, Peluso M. A Cross-Sectional Study on 3-(2-Deoxy-β-D-Erythro-Pentafuranosyl)Pyrimido[1,2-α]Purin-10(3H)-One Deoxyguanosine Adducts among Woodworkers in Tuscany, Italy. Int J Mol Sci 2019; 20:ijms20112763. [PMID: 31195682 PMCID: PMC6600535 DOI: 10.3390/ijms20112763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Occupational exposure to wood dust has been estimated to affect 3.6 million workers within the European Union (EU). The most serious health effect caused by wood dust is the nasal and sinonasal cancer (SNC), which has been observed predominantly among woodworkers. Free radicals produced by inflammatory reactions as a consequence of wood dust could play a major role in SNC development. Therefore, we investigated the association between wood dust and oxidative DNA damage in the cells of nasal epithelia, the target site of SNC. We have analyzed oxidative DNA damage by determining the levels of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG), a major-peroxidation-derived DNA adduct and a biomarker of cancer risk in 136 woodworkers compared to 87 controls in Tuscany, Italy. We then examined the association of M1dG with co-exposure to volatile organic compounds (VOCs), exposure length, and urinary 15-F2t isoprostane (15-F2t-IsoP), a biomarker of oxidant status. Wood dust at the workplace was estimated by the Information System for Recording Occupational Exposures to Carcinogens. M1dG was measured using 32P-postlabeling and mass spectrometry. 15-F2t-IsoP was analyzed using ELISA. Results show a significant excess of M1dG in the woodworkers exposed to average levels of 1.48 mg/m3 relative to the controls. The overall mean ratio (MR) between the woodworkers and the controls was 1.28 (95% C.I. 1.03-1.58). After stratification for smoking habits and occupational status (exposure to wood dust alone and co-exposure to VOCs), the association of M1dG with wood dust (alone) was even greater in non-smokers workers, MR of 1.43 (95% C.I. 1.09-1.87). Conversely, not consistent results were found in ex-smokers and current smokers. M1dG was significantly associated with co-exposure to VOCs, MR of 1.95 (95% C.I. 1.46-2.61), and occupational history, MR of 2.47 (95% C.I. 1.67-3.62). Next, the frequency of M1dG was significantly correlated to the urinary excretion of 15-F2t-IsoP, regression coefficient (β) = 0.442 ± 0.172 (SE). Consistent with the hypothesis of a genotoxic mechanism, we observed an enhanced frequency of M1dG adducts in woodworkers, even at the external levels below the regulatory limit. Our data implement the understanding of SNC and could be useful for the management of the adverse effects caused by this carcinogen.
Collapse
Affiliation(s)
- Filippo Cellai
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Fabio Capacci
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, 50139 Florence, Italy.
| | - Carla Sgarrella
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, 50139 Florence, Italy.
| | - Carla Poli
- Department of Prevention, Azienda USL Toscana Centro, 50139 Florence, Italy.
| | - Luciano Arena
- Department of Prevention, Azienda USL Toscana Centro, 50139 Florence, Italy.
| | - Lorenzo Tofani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy.
| | - Roger W Giese
- Bouve College of Health Sciences, Barnett Institute, Northeastern University, Northeastern University, Boston, MA 02115, USA.
| | - Marco Peluso
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
3
|
Anlar HG, Bacanli M, İritaş S, Bal C, Kurt T, Tutkun E, Hinc Yilmaz O, Basaran N. Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:688-696. [PMID: 28524802 DOI: 10.1080/15287394.2017.1286923] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica is the second most common element after oxygen, and therefore, exposures to crystalline silica dust occur in a large variety of occupations such as metal foundries, constructions, and ceramic, quarry, and pottery industries. Since crystalline silica exposure has been linked with silicosis, lung cancer, and other pulmonary diseases, adverse effect attributed to this element has be a cause for concern worldwide. Silica dust exposure in workers is still considered to be important health problem especially in developing countries. The aim of the study was to investigate the effects of occupational silica exposure on oxidative stress parameters including the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and levels of total glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) as well as immune system parameters such as interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, and IL-10 and tumor necrosis factor (TNF)-α in Turkish ceramic workers. In this study, nearly 50% of Turkish ceramic workers were diagnosed with silicosis. Eighty-four percent of these silicotic workers were found to present with profusion category 1 silicosis, whereas controls (n = 81) all displayed normal chest radiographs. Data demonstrated a significant decrease in levels of GSH and activities of CAT, SOD, and GPx, but a significant increase in MDA levels and activity of GR in all workers. Further, workers possessed significantly higher levels of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, and TNF-α. These observations suggest that ceramic workers may have impaired antioxidant/oxidant status and activated immune system indicative of inflammatory responses.
Collapse
Affiliation(s)
- Hatice Gul Anlar
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
- b Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Çukurova University , Adana , Turkey
| | - Merve Bacanli
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Servet İritaş
- c The Council of Forensic Medicine , Branch Office of Ankara , Ankara , Turkey
| | - Ceylan Bal
- d Yıldırım Beyazıt University, Faculty of Medicine , Department of Medical Biochemistry , Ankara , Turkey
| | - Türker Kurt
- e Faculty of Education , Gazi University , Ankara , Turkey
| | - Engin Tutkun
- f Faculty of Medicine, Department of Public Health , Bozok University , Yozgat , Turkey
| | - O Hinc Yilmaz
- g Ankara Occupational Diseases Hospital Department of Toxiocology Ankara , Turkey
| | - Nursen Basaran
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| |
Collapse
|
4
|
Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells. Int J Mol Sci 2017; 18:ijms18050939. [PMID: 28468256 PMCID: PMC5454852 DOI: 10.3390/ijms18050939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 02/01/2023] Open
Abstract
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.
Collapse
|
5
|
3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine adducts of workers exposed to asbestos fibers. Toxicol Lett 2017; 270:1-7. [PMID: 28188891 DOI: 10.1016/j.toxlet.2017.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023]
Abstract
Asbestos is the commercial name for a group of silicate minerals naturally occurring in the environment and widely used in the industry. Asbestos exposure has been associated with pulmonary fibrosis, mesothelioma, and malignancies, which may appear after a period of latency of 20-40 years. Mechanisms involved in the carcinogenic effects of asbestos are still not fully elucidated, although the oxidative stress theory suggests that phagocytic cells produce large amounts of reactive oxygen species, due to their inability to digest asbestos fiber. We have conducted a mechanistic study to evaluate the association between 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts, a biomarker of oxidative stress and lipid peroxidation, and asbestos exposure in the peripheral blood of 327 subjects living in Tuscany and Liguria, Italy, stratified by occupational exposure to asbestos. Adduct frequency was significantly greater into exposed subjects with respect to the controls. M1dG per 108 normal nucleotides were 4.0±0.5 (SE) in 156 asbestos workers, employed in mechanic, naval, petrochemical, building industries, and in pottery and ceramic plants, versus a value of 2.3±0.1 (SE) in 171 controls (p<0.001). After stratification for occupational history, the effects persisted in 54 current asbestos workers, mainly employed in building renovation industry (2.9±0.3 (SE)), and in 102 former asbestos workers (4.5±0.7 (SE)), with p-values of 0.033, and <0.001, respectively. A significant effect of smoking on heavy smokers was found (p=0.005). Our study gives additional support to the oxidative stress theory, where M1dG may reflect an additional potential mechanism of asbestos-induced toxicity.
Collapse
|
6
|
Song X, Shi Q, Liu Z, Wang Y, Wang Y, Song E, Song Y. Unpredicted Downregulation of RAD51 Suggests Genome Instability Induced by Tetrachlorobenzoquinone. Chem Res Toxicol 2016; 29:2184-2193. [DOI: 10.1021/acs.chemrestox.6b00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiufang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuxin Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
7
|
Bono R, Munnia A, Romanazzi V, Bellisario V, Cellai F, Peluso MEM. Formaldehyde-induced toxicity in the nasal epithelia of workers of a plastic laminate plant. Toxicol Res (Camb) 2016; 5:752-760. [PMID: 30090386 PMCID: PMC6062010 DOI: 10.1039/c5tx00478k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Formaldehyde is a ubiquitous volatile organic compound widely used for various industrial purposes. Formaldehyde was reclassified by the International Agency for Research on Cancer as a human carcinogen, based on sufficient evidence for a casual role for nasopharyngeal cancer. However, the mechanisms by which this compound causes nasopharyngeal cancer are not completely understood. Therefore, we have examined the formaldehyde-induced toxicity in the nasal epithelia of the workers of a plastic laminate plant in Bra, Cuneo, Piedmont region, North-Western Italy, hence in the target site for formaldehyde-related nasal carcinogenesis. We have conducted a cross-sectional study aimed at comparing the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in 50 male exposed workers and 45 male controls using 32P-DNA post-labeling. The personal levels of formaldehyde exposure were analysed by gas-chromatography mass-spectrometry. The smoking status was estimated by measuring the concentrations of urinary cotinine by gas-chromatography mass-spectrometry. The air monitoring results showed that the exposure levels of formaldehyde were significantly greater for the plastic laminate plant workers, 211.4 ± 14.8 standard error (SE) μg m-3, than controls, 35.2 ± 3.4 (SE) μg m-3, P < 0.001. The levels of urinary cotinine were 1064 ± 118 ng ml-1 and 14.18 ± 2.5 ng ml-1 in smokers and non-smokers, respectively, P < 0.001. The M1dG adduct frequency per 108 normal nucleotides was significantly higher among the workers of the plastic laminate plant exposed to formaldehyde, 111.6 ± 14.3 (SE), compared to controls, 49.6 ± 3.4 (SE), P < 0.001. This significant association persisted also when personal dosimeters were used to measure the extent of indoor levels of formaldehyde exposure. No influences of smoking and age were observed across the study population. However, after categorization for occupational exposure, a significant effect was found in the controls, P = 0.018, where the levels of DNA damage were significantly correlated with the levels of urinary cotinine, regression coefficient (β) = 0.494 ± 0.000 (SE), P < 0.002. Our findings indicated that M1dG adducts constitute a potential mechanism of formaldehyde-induced toxicity. Persistent DNA damage contributes to the general decline of the physiological mechanisms designed to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Roberto Bono
- Department of Public Health and Pediatrics, University of Turin , Turin , Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch , Cancer Prevention Laboratory , ISPO-Cancer Prevention and Research Institute , Florence , Italy .
| | - Valeria Romanazzi
- Department of Public Health and Pediatrics, University of Turin , Turin , Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin , Turin , Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch , Cancer Prevention Laboratory , ISPO-Cancer Prevention and Research Institute , Florence , Italy .
| | - Marco E M Peluso
- Cancer Risk Factor Branch , Cancer Prevention Laboratory , ISPO-Cancer Prevention and Research Institute , Florence , Italy .
| |
Collapse
|
8
|
Hemeryck LY, Decloedt AI, Vanden Bussche J, Geboes KP, Vanhaecke L. High resolution mass spectrometry based profiling of diet-related deoxyribonucleic acid adducts. Anal Chim Acta 2015; 892:123-31. [PMID: 26388482 DOI: 10.1016/j.aca.2015.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022]
Abstract
Exposure of DNA to endo- and exogenous DNA binding chemicals can result in the formation of DNA adducts and is believed to be the first step in chemically induced carcinogenesis. DNA adductomics is a relatively new field of research which studies the formation of known and unknown DNA adducts in DNA due to exposure to genotoxic chemicals. In this study, a new UHPLC-HRMS(/MS)-based DNA adduct detection method was developed and validated. Four targeted DNA adducts, which all have been linked to dietary genotoxicity, were included in the described method; O(6)-methylguanine (O(6)-MeG), O(6)-carboxymethylguanine (O(6)-CMG), pyrimidopurinone (M1G) and methylhydroxypropanoguanine (CroG). As a supplementary tool for DNA adductomics, a DNA adduct database, which currently contains 123 different diet-related DNA adducts, was constructed. By means of the newly developed method and database, all 4 targeted DNA adducts and 32 untargeted DNA adducts could be detected in different DNA samples. The obtained results clearly demonstrate the merit of the described method for both targeted and untargeted DNA adduct detection in vitro and in vivo, whilst the diet-related DNA adduct database can distinctly facilitate data interpretation.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Anneleen I Decloedt
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Karen P Geboes
- Division of Digestive Oncology, Department of Gastroenterology, University Hospital Ghent, De Pintelaan 185, Ghent, 9000, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| |
Collapse
|
9
|
Dai Y, Song Y, Wang S, Yuan Y. Treatment of halogenated phenolic compounds by sequential tri-metal reduction and laccase-catalytic oxidation. WATER RESEARCH 2015; 71:64-73. [PMID: 25596562 DOI: 10.1016/j.watres.2014.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
Halogenated phenolic compounds (HPCs) are exerting negative effects on human beings and ecological health. Zero-valence metal reduction can dehalogenate HPCs rapidly but cannot mineralize them. Enzymatic catalysis can oxidize phenolic compounds but fails to dehalogenate efficiently, and sometimes even produces more toxic products. In this study, [Fe|Ni|Cu] tri-metallic reduction (TMR) and laccase-catalytic oxidation (LCO) processes were combined to sequentially remove HPCs, including triclosan, tetrabromobisphenol A, and 2-bromo-4-fluorophenol in water. The kinetics, pH and temperature dependences of TMR and LCO were obtained. The detailed TMR, LCO, and TMR-LCO transformation pathways of three HPCs were well described based on the identification of intermediate products and frontier molecular orbitals (FMOs) theory. The results showed that the two-stage process worked synergically: TMR that reductively dehalogenated HPCs followed by LCO that completely removed dehalogenated products. TMR was proven to not only improve biodegradability of HPCs but also reduce the yield of potential carcinogenic by-products. Furthermore, a TMR-LCO flow reactor was assembled and launched for 256 h, during which >95% HPCs and >75% TOC were removed. Meanwhile, monitored by microorganism indicators, 83.2%-92.7% acute toxicity of HPCs was eliminated, and the genotoxicity, produced by LCO, was also avoided by using TMR as pretreatment process.
Collapse
Affiliation(s)
- Yunrong Dai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China.
| | - Siyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China.
| | - Yu Yuan
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012 Beijing, PR China.
| |
Collapse
|
10
|
Peluso MEM, Munnia A, Giese RW, Chellini E, Ceppi M, Capacci F. Oxidatively damaged DNA in the nasal epithelium of workers occupationally exposed to silica dust in Tuscany region, Italy. Mutagenesis 2015; 30:519-25. [PMID: 25771384 DOI: 10.1093/mutage/gev014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Chronic silica exposure has been associated to cancer and silicosis. Furthermore, the induction of oxidative stress and the generation of reactive oxygen species have been indicated to play a main role in the carcinogenicity of respirable silica. Therefore, we conducted a cross-sectional study to evaluate the prevalence of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts, a biomarker of oxidative stress and peroxidation of lipids, in the nasal epithelium of 135 silica-exposed workers, employed in pottery, ceramic and marble manufacturing plants as well as in a stone quarry, in respect to 118 controls living in Tuscany region, Italy. The M1dG generation was measured by the (32)P-postlabelling assay. Significant higher levels of M1dG adducts per 10(8) normal nucleotides were observed in the nasal epithelium of smokers, 77.9±9.8 (SE), and in those of former smokers, 80.7±9.7 (SE), as compared to non-smokers, 57.1±6.2 (SE), P = 0.001 and P = 0.004, respectively. Significant increments of M1dG adducts were found in the nasal epithelium of workers that handle artificial marble conglomerates, 184±36.4 (SE), and in those of quarry workers, 120±34.7 (SE), with respect to controls, 50.6±2.7 (SE), P = 0.014 and P < 0.001, respectively. Null increments were observed in association with the pottery and the ceramic factories. After stratification for different exposures, silica-exposed workers that were co-exposed to organic solvents, and welding and exhaust fumes have significantly higher M1dG levels, 90.4±13.4 (SE), P = 0.014 vs. CONTROL Our data suggested that silica exposure might be associated with genotoxicity in the nasal epithelial cells of silica-exposed workers that handle of artificial marble conglomerates and quarry workers. Importantly, we observed that co-exposures to other respiratory carcinogens may have contributed to enhance the burden of M1dG adducts in the nasal epithelium of silica-exposed workers.
Collapse
Affiliation(s)
- Marco E M Peluso
- Cancer Risk Factor Branch, Cancer Prevention Laboratories, Cancer Prevention and Research Institute, Via Cosimo il Vecchio 2, Florence, Italy, Department of Pharmaceutical Sciences in the Bouve College of Health Sciences, Barnett Institute, Northeastern University, 360 Huntington Avenue, Boston, MA, USA, Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute, Via delle Oblate 4, Florence, Italy, IRCSS San Martino Hospital - National Cancer Research Institute, Largo R. Benzi 10, Genoa 16132, Italy and Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, Via della Cupola 64, Florence, Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch, Cancer Prevention Laboratories, Cancer Prevention and Research Institute, Via Cosimo il Vecchio 2, Florence, Italy, Department of Pharmaceutical Sciences in the Bouve College of Health Sciences, Barnett Institute, Northeastern University, 360 Huntington Avenue, Boston, MA, USA, Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute, Via delle Oblate 4, Florence, Italy, IRCSS San Martino Hospital - National Cancer Research Institute, Largo R. Benzi 10, Genoa 16132, Italy and Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, Via della Cupola 64, Florence, Italy
| | - Roger W Giese
- Department of Pharmaceutical Sciences in the Bouve College of Health Sciences, Barnett Institute, Northeastern University, 360 Huntington Avenue, Boston, MA, USA
| | - Elisabetta Chellini
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute, Via delle Oblate 4, Florence, Italy
| | - Marcello Ceppi
- IRCSS San Martino Hospital - National Cancer Research Institute, Largo R. Benzi 10, Genoa 16132, Italy and
| | - Fabio Capacci
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, Via della Cupola 64, Florence, Italy
| |
Collapse
|
11
|
Peluso MEM, Munnia A, Giese RW, Catelan D, Rocca S, Farigu S, Leoni A, Bruzzone M, Ceppi M, Biggeri A. Exocyclic DNA adducts in sheep with skeletal fluorosis resident in the proximity of the Portoscuso-Portovesme industrial estate on Sardinia Island, Italy. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00045a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanisms by which fluoride produces its toxic effects are still not clear.
Collapse
Affiliation(s)
- Marco E. M. Peluso
- Cancer Risk Factor Branch
- ISPO-Cancer Prevention and Research Institute
- Florence
- Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch
- ISPO-Cancer Prevention and Research Institute
- Florence
- Italy
| | - Roger W. Giese
- Department of Pharmaceutical Sciences in the Bouve College of Health Sciences
- Barnett Institute
- Northeastern University
- Boston, Massachusetts
- USA
| | - Dolores Catelan
- Department of Statistics “G. Parenti”
- University of Florence
- Florence
- Italy
- Biostatistic Unit
| | - Stefano Rocca
- Department of Veterinary Medicine
- University of Sassari
- Sassari
- Italy
| | - Serafina Farigu
- Department of Veterinary Medicine
- University of Sassari
- Sassari
- Italy
| | - Antonio Leoni
- Department of Veterinary Medicine
- University of Sassari
- Sassari
- Italy
| | - Marco Bruzzone
- IRCSS San Martino Hospital – National Cancer Research Institute
- Genoa
- Italy
| | - Marcello Ceppi
- IRCSS San Martino Hospital – National Cancer Research Institute
- Genoa
- Italy
| | - Annibale Biggeri
- Department of Statistics “G. Parenti”
- University of Florence
- Florence
- Italy
- Biostatistic Unit
| |
Collapse
|
12
|
Graupner A, Instanes C, Andersen JM, Brandt-Kjelsen A, Dertinger SD, Salbu B, Brunborg G, Olsen AK. Genotoxic effects of two-generational selenium deficiency in mouse somatic and testicular cells. Mutagenesis 2014; 30:217-25. [PMID: 25358475 DOI: 10.1093/mutage/geu059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many studies have investigated genotoxic effects of high Se diets but very few have addressed the genotoxicity of Se deprivation and its consequences in germ cells and none in somatic cells. To address these data gaps, C57BL/6 male mice were subjected to Se deprivation starting in the parental generation, i.e. before conception. Mice were given a diet of either low (0.01mg Se/kg diet) or normal (0.23mg Se/kg diet) Se content. Ogg1-deficient (Ogg1 (-/-) ) mice were used as a sensitive model towards oxidative stress due to their reduced capacity to repair oxidised purines. Ogg1 (-/-) mice also mimic the repair characteristics of human post-meiotic male germ cells which have a reduced ability to repair such lesions. The genotoxicity of Se deficiency was addressed by measuring DNA lesions with the alkaline single cell gel electrophoresis (+ Fpg to detect oxidised DNA lesions) in somatic cells (nucleated blood cells and lung cells) and male germ cells (testicular cells). Total Se concentration in liver and GPx activity in plasma and testicular cells were measured. Gene mutation was evaluated by an erythrocyte-based Pig-a assay. We found that Se deprivation of F1 from their conception and until early adulthood led to the induction of DNA lesions in testicular and lung cells expressed as significantly increased levels of DNA lesions, irrespective of the mouse genotype. In blood cells, Se levels did not appear to affect DNA lesions or mutant cell frequencies. The results suggest that the testis was the most sensitive tissue. Thus, genotoxicity induced by the low Se diet in the spermatozoal genome has potential implications for the offspring.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Chemicals and Radiation, National Institute of Public Health, Oslo 0456, Norway, Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and Litron Laboratories, Rochester, NY 14623, USA
| | - Christine Instanes
- Department of Chemicals and Radiation, National Institute of Public Health, Oslo 0456, Norway, Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and Litron Laboratories, Rochester, NY 14623, USA
| | - Jill M Andersen
- Department of Chemicals and Radiation, National Institute of Public Health, Oslo 0456, Norway, Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and Litron Laboratories, Rochester, NY 14623, USA
| | - Anicke Brandt-Kjelsen
- Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and
| | | | - Brit Salbu
- Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, National Institute of Public Health, Oslo 0456, Norway, Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and Litron Laboratories, Rochester, NY 14623, USA
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, National Institute of Public Health, Oslo 0456, Norway, Department of Plant and Environmental Sciences, University of Life Sciences, Aas 1430, Norway, and Litron Laboratories, Rochester, NY 14623, USA.
| |
Collapse
|
13
|
Merlo DF, Agramunt S, Anna L, Besselink H, Botsivali M, Brady NJ, Ceppi M, Chatzi L, Chen B, Decordier I, Farmer PB, Fleming S, Fontana V, Försti A, Fthenou E, Gallo F, Georgiadis P, Gmuender H, Godschalk RW, Granum B, Hardie LJ, Hemminki K, Hochstenbach K, Knudsen LE, Kogevinas M, Kovács K, Kyrtopoulos SA, Løvik M, Nielsen JK, Nygaard UC, Pedersen M, Rydberg P, Schoket B, Segerbäck D, Singh R, Sunyer J, Törnqvist M, van Loveren H, van Schooten FJ, Vande Loock K, von Stedingk H, Wright J, Kleinjans JC, Kirsch-Volders M, van Delft JHM. Micronuclei in cord blood lymphocytes and associations with biomarkers of exposure to carcinogens and hormonally active factors, gene polymorphisms, and gene expression: the NewGeneris cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:193-200. [PMID: 24252472 PMCID: PMC3914866 DOI: 10.1289/ehp.1206324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/18/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Leukemia incidence has increased in recent decades among European children, suggesting that early-life environmental exposures play an important role in disease development. OBJECTIVES We investigated the hypothesis that childhood susceptibility may increase as a result of in utero exposure to carcinogens and hormonally acting factors. Using cord blood samples from the NewGeneris cohort, we examined associations between a range of biomarkers of carcinogen exposure and hormonally acting factors with micronuclei (MN) frequency as a proxy measure of cancer risk. Associations with gene expression and genotype were also explored. METHODS DNA and protein adducts, gene expression profiles, circulating hormonally acting factors, and GWAS (genome-wide association study) data were investigated in relation to genomic damage measured by MN frequency in lymphocytes from 623 newborns enrolled between 2006 and 2010 across Europe. RESULTS Malondialdehyde DNA adducts (M1dG) were associated with increased MN frequency in binucleated lymphocytes (MNBN), and exposure to androgenic, estrogenic, and dioxin-like compounds was associated with MN frequency in mononucleated lymphocytes (MNMONO), although no monotonic exposure-outcome relationship was observed. Lower frequencies of MNBN were associated with a 1-unit increase expression of PDCD11, LATS2, TRIM13, CD28, SMC1A, IL7R, and NIPBL genes. Gene expression was significantly higher in association with the highest versus lowest category of bulky and M1dG-DNA adducts for five and six genes, respectively. Gene expression levels were significantly lower for 11 genes in association with the highest versus lowest category of plasma AR CALUX® (chemically activated luciferase expression for androgens) (8 genes), ERα CALUX® (for estrogens) (2 genes), and DR CALUX® (for dioxins). Several SNPs (single-nucleotide polymorphisms) on chromosome 11 near FOLH1 significantly modified associations between androgen activity and MNBN frequency. Polymorphisms in EPHX1/2 and CYP2E1 were associated with MNBN. CONCLUSION We measured in utero exposure to selected environmental carcinogens and circulating hormonally acting factors and detected associations with MN frequency in newborns circulating T lymphocytes. The results highlight mechanisms that may contribute to carcinogen-induced leukemia and require further research.
Collapse
Affiliation(s)
- Domenico Franco Merlo
- Epidemiology, Biostatistics, and Clinical Trials, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino-Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peluso M, Munnia A, Ceppi M, Giese RW, Catelan D, Rusconi F, Godschalk RWL, Biggeri A. Malondialdehyde-deoxyguanosine and bulky DNA adducts in schoolchildren resident in the proximity of the Sarroch industrial estate on Sardinia Island, Italy. Mutagenesis 2013; 28:315-21. [PMID: 23446175 PMCID: PMC3630521 DOI: 10.1093/mutage/get005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Air quality is a primary environmental concern in highly industrialised areas, with potential health effects in children residing nearby. The Sarroch industrial estate in Cagliari province, Sardinia Island, Italy, hosts the world's largest power plant and the second largest European oil refinery and petrochemical park. This industrial estate produces a complex mixture of air pollutants, including benzene, heavy metals and polycyclic aromatic hydrocarbons. Thus, we conducted a cross-sectional study to evaluate the prevalence of malondialdehyde-deoxyguanosine adducts in the nasal epithelium of 75 representative children, aged 6-14 years, attending primary and secondary schools in Sarroch in comparison with 73 rural controls. Additionally, the levels of bulky DNA adducts were analysed in a subset of 62 study children. DNA damage was measured by (32)P-postlabelling methodologies. The air concentrations of benzene and ethyl benzene were measured in the school gardens of Sarroch and a rural village by diffusive samplers. Outdoor measurements were also performed in other Sarroch areas and in the proximity of the industrial estate. The outdoor levels of benzene and ethyl benzene were significantly higher in the school gardens of Sarroch than in the rural village. Higher concentrations were also found in other Sarroch areas and in the vicinity of the industrial park. The mean levels of malondialdehyde-deoxyguanosine adducts per 10(8) normal nucleotides ± standard error (SE) were 74.6±9.1 and 34.1±4.4 in the children from Sarroch and the rural village, respectively. The mean ratio was 2.53, 95% confidence interval (CI): 1.71-2.89, P < 0.001, versus rural controls. Similarly, the levels of bulky DNA adducts per 10(8) normal nucleotides ± SE were 2.9±0.4 and 1.6±0.2 in the schoolchildren from Sarroch and the rural village, respectively. The means ratio was 1.90, 95% CI: 1.25-2.89, P = 0.003 versus rural controls. Our study indicates that children residing near the industrial estate have a significant increment of DNA damage.
Collapse
Affiliation(s)
- Marco Peluso
- Cancer Risk Factor Branch, Cancer Prevention and Research Institute, Via il Vecchio 2, 50139 Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
References. PLASMA MEDICINE 2013. [DOI: 10.1002/9781118437704.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Peluso M, Munnia A, Piro S, Jedpiyawongse A, Sangrajrang S, Giese RW, Ceppi M, Boffetta P, Srivatanakul P. Fruit and vegetable and fried food consumption and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α] purin-10(3H)-one deoxyguanosine adduct formation. Free Radic Res 2011; 46:85-92. [PMID: 22081860 DOI: 10.3109/10715762.2011.640676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diet has been shown to modulate M(1)dG adduct, a biomarker of oxidative stress and lipid peroxidation. Thus, we analysed the association between diet and M(1)dG in 120 controls and 67 Map Ta Phut industrial estate workers in Rayong, Thailand, to evaluate the influence of fruit and vegetables, and fried and charcoal-grilled/barbecued food consumption on M(1)dG. M(1)dG was decreased in controls reporting to consume 14-17 servings/week of fruit and vegetables (mean ratio [MR]= 0.35, CI 0.18-0.69, p< 0.05). Conversely, a non-statistically significant M(1)dG increment was detected in controls consuming 9-18 servings/week of fried food (MR = 1.33, CI 0.88-2.00, p = 0.168). No effect of charcoal-grilled/barbecued food was found. No effect of diet was observed in workers. An association with smoking was observed in controls (MR = 1.88, CI 1.14-3.10, p < 0.05), but not in workers. M(1)dG can induce mutations and/or methylation changes within the promoter regions of cancer-related genes, thus promotion of healthy eating practices should be recommended.
Collapse
Affiliation(s)
- Marco Peluso
- Cancer Risk Factor Branch, ISPO-Cancer Prevention and Research Institute, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lonkar P, Dedon PC. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 2011; 128:1999-2009. [PMID: 21387284 DOI: 10.1002/ijc.25815] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.
Collapse
Affiliation(s)
- Pallavi Lonkar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
18
|
Peluso M, Munnia A, Risso GG, Catarzi S, Piro S, Ceppi M, Giese RW, Brancato B. Breast fine-needle aspiration malondialdehyde deoxyguanosine adduct in breast cancer. Free Radic Res 2011; 45:477-82. [PMID: 21250785 DOI: 10.3109/10715762.2010.549485] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study has analysed the generation of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine adduct [M₁dG], a biomarker of oxidative stress and lipid peroxidation, in breast fine-needle aspirate samples of 22 patients with breast cancer, at different clinical stages, in respect to 13 controls. The multivariate analysis show that M(1)dG adduct was higher in cases than in controls (Mean Ratio (MR) = 5.26, 95% CI = 3.16-8.77). Increased M₁dG was observed in women with a tumour grade 3 and a pathological diameter 2 (MR = 7.61, 95% CI = 3.91-14.80 and MR = 5.75, 95% CI = 3.13-10.59, respectively). A trend with increasing tumour grade and pathological diameter was present (MR = 1.98, 95% CI = 1.57-2.50 and MR = 2.44, 95% CI = 1.71-3.48, respectively). Not significant effects of age and smoking habit were found (MR = 1.58, 95% CI = 0.92-2.72 and MR = 1.68, 95% CI 0.88-3.20, respectively). An increment over the background frequency of M₁dG can contribute to breast cancer development. Increasing severity of breast tumour can influence DNA damage level.
Collapse
Affiliation(s)
- Marco Peluso
- Cancer Risk Factor Branch, ISPO-Cancer Prevention and Research Institute, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chan SW, Dedon PC. The biological and metabolic fates of endogenous DNA damage products. J Nucleic Acids 2010; 2010:929047. [PMID: 21209721 PMCID: PMC3010698 DOI: 10.4061/2010/929047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 12/12/2022] Open
Abstract
DNA and other biomolecules are subjected to damaging chemical reactions during normal physiological processes and in states of pathophysiology caused by endogenous and exogenous mechanisms. In DNA, this damage affects both the nucleobases and 2-deoxyribose, with a host of damage products that reflect the local chemical pathology such as oxidative stress and inflammation. These damaged molecules represent a potential source of biomarkers for defining mechanisms of pathology, quantifying the risk of human disease and studying interindividual variations in cellular repair pathways. Toward the goal of developing biomarkers, significant effort has been made to detect and quantify damage biomolecules in clinically accessible compartments such as blood and and urine. However, there has been little effort to define the biotransformational fate of damaged biomolecules as they move from the site of formation to excretion in clinically accessible compartments. This paper highlights examples of this important problem with DNA damage products.
Collapse
Affiliation(s)
- Simon Wan Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, NE47-277, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Cline SD, Lodeiro MF, Marnett LJ, Cameron CE, Arnold JJ. Arrest of human mitochondrial RNA polymerase transcription by the biological aldehyde adduct of DNA, M1dG. Nucleic Acids Res 2010; 38:7546-57. [PMID: 20671026 PMCID: PMC2995074 DOI: 10.1093/nar/gkq656] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological aldehydes, malondialdehyde and base propenal, react with DNA to form a prevalent guanine adduct, M1dG. The exocyclic ring of M1dG opens to the acyclic N2-OPdG structure when paired with C but remains closed in single-stranded DNA or when mispaired with T. M1dG is a target of nucleotide excision repair (NER); however, NER is absent in mitochondria. An in vitro transcription system with purified human mitochondrial RNA polymerase (POLRMT) and transcription factors, mtTFA and mtTFB2, was used to determine the effect of M1dG on POLRMT elongation. DNA templates contained a single adduct opposite either C or T downstream of either the light-strand (LSP) or heavy-strand (HSP1) promoter for POLRMT. M1dG in the transcribed strand arrested 60–90% POLRMT elongation complexes with greater arrest by the adduct when opposite T. POLRMT was more sensitive to N2-OPdG and M1dG after initiation at LSP, which suggests promoter-specific differences in the function of POLRMT complexes. A closed-ring analog of M1dG, PdG, blocked ≥95% of transcripts originating from either promoter regardless of base pairing, and the transcripts remained associated with POLRMT complexes after stalling at the adduct. This work suggests that persistent M1dG adducts in mitochondrial DNA hinder the transcription of mitochondrial genes.
Collapse
Affiliation(s)
- Susan D Cline
- Division of Basic Medical Sciences, Mercer University School of Medicine, Mercer, GA 31207, USA.
| | | | | | | | | |
Collapse
|
21
|
van Helden YGJ, Keijer J, Heil SG, Picó C, Palou A, Oliver P, Munnia A, Briedé JJ, Peluso M, Franssen-van Hal NL, van Schooten FJ, Godschalk RWL. Beta-carotene affects oxidative stress-related DNA damage in lung epithelial cells and in ferret lung. Carcinogenesis 2010; 30:2070-6. [PMID: 19638427 DOI: 10.1093/carcin/bgp186] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beta-carotene (BC) was found to enhance lung cancer risk in smokers. This adverse effect was unexpected because BC was thought to act as an anti-oxidant against cigarette smoke-derived radicals. These radicals can directly or indirectly damage DNA, leading to the formation of pro-mutagenic DNA lesions such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 3-(2-deoxy-beta-D-erythro-pentafuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one deoxyguanosine (M(1)dG). Later, it was suggested that high concentrations of BC could also result in pro-oxidant effects. Therefore, we investigated whether high but physiologically feasible concentrations of BC were able to alter (i) the formation of radicals in vitro assessed by electron spin resonance spectroscopy, (ii) the levels of 8-oxo-dG and M(1)dG in vitro in lung epithelial cells after incubation with hydrogen peroxide (H(2)O(2)) and the smoke-derived carcinogen benzo[a]pyrene (B[a]P) and (iii) the levels of 8-oxo-dG and M(1)dG in vivo in ferrets' lung after chronic exposure to B[a]P. BC increased in vitro hydroxyl radical formation in the Fenton reaction but inhibited the formation of carbon-centered radicals. Similarly, BC was able to enhance 8-oxo-dG in vitro in lung epithelial cells. On the other hand, BC significantly inhibited M(1)dG formation in lung epithelial cells, especially after induction of M(1)dG by H(2)O(2) or B[a]P. Finally, BC supplementation of ferrets also resulted in a significant decrease in M(1)dG, but in contrast to the in vitro experiments, no effect was observed on 8-oxo-dG levels, probably because of increased base excision repair capacities as assessed by a modified comet assay. These data indicate that the fate of BC being a pro- or anti-oxidant strongly depends on the type of radical involved.
Collapse
Affiliation(s)
- Yvonne G J van Helden
- Department of Health Risk Analysis and Toxicology, Research Institute School of Nutrition, Metabolism and Toxicology, Maastricht University, PO box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peluso M, Srivatanakul P, Munnia A, Jedpiyawongse A, Ceppi M, Sangrajrang S, Piro S, Boffetta P. Malondialdehyde-deoxyguanosine adducts among workers of a Thai industrial estate and nearby residents. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:55-59. [PMID: 20056580 PMCID: PMC2831967 DOI: 10.1289/ehp.0900907] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. OBJECTIVE We measured the levels of malondialdehyde-deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. DESIGN We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. RESULTS The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4-6 years of employment among the petrochemical complexes. CONCLUSIONS Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution.
Collapse
Affiliation(s)
- Marco Peluso
- Cancer Risk Factor Branch, Analytical and Biomolecular Cytology Unit, ISPO-Cancer Prevention and Research Institute, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Knutson CG, Rubinson EH, Akingbade D, Anderson CS, Stec DF, Petrova KV, Kozekov ID, Guengerich FP, Rizzo CJ, Marnett LJ. Oxidation and glycolytic cleavage of etheno and propano DNA base adducts. Biochemistry 2009; 48:800-9. [PMID: 19132922 PMCID: PMC2975463 DOI: 10.1021/bi801654j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that pyrimidopurinone DNA adducts are subject to enzymatic oxidation in vitro and in vivo and that base adducts are better substrates for oxidation than the corresponding 2′-deoxynucleosides. We tested the possibility that structurally similar exocyclic base adducts may be good candidates for enzymatic oxidation in vitro. We investigated the in vitro oxidation of several endogenously occurring etheno adducts [1,N2-ε-guanine (1,N2-ε-Gua), N2,3-ε-Gua, heptanone-1,N2-ε-Gua, 1,N6-ε-adenine (1,N6-ε-Ade), and 3,N4-ε-cytosine (3,N4-ε-Cyt)] and their corresponding 2′-deoxynucleosides. Both 1,N2-ε-Gua and heptanone-1,N2-ε-Gua were substrates for enzymatic oxidation in rat liver cytosol; heteronuclear NMR experiments revealed that oxidation occurred on the imidazole ring of each substrate. In contrast, the partially or fully saturated pyrimidopurinone analogues [i.e., 5,6-dihydro-M1G and 1,N2-propanoguanine (PGua)] and their 2′-deoxynucleoside derivatives were not oxidized. The 2′-deoxynucleoside adducts, 1,N2-ε-dG and 1,N6-ε-dA, underwent glycolytic cleavage in rat liver cytosol. Together, these data suggest that multiple exocyclic adducts undergo oxidation and glycolytic cleavage in vitro in rat liver cytosol, in some instances in succession. These multiple pathways of biotransformation produce an array of products. Thus, the biotransformation of exocyclic adducts may lead to an additional class of biomarkers suitable for use in animal and human studies.
Collapse
Affiliation(s)
- Charles G Knutson
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeong YC, Walker NJ, Burgin DE, Kissling G, Gupta M, Kupper L, Birnbaum LS, Swenberg JA. Accumulation of M1dG DNA adducts after chronic exposure to PCBs, but not from acute exposure to polychlorinated aromatic hydrocarbons. Free Radic Biol Med 2008; 45:585-91. [PMID: 18534201 PMCID: PMC2570591 DOI: 10.1016/j.freeradbiomed.2008.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 04/16/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
Abstract
Oxidative DNA damage is one of the key events thought to be involved in mutation and cancer. The present study examined the accumulation of M1dG, 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, DNA adducts after single dose or 1-year exposure to polyhalogenated aromatic hydrocarbons (PHAH) in order to evaluate the potential role of oxidative DNA damage in PHAH toxicity and carcinogenicity. The effect of PHAH exposure on the number of M1dG adducts was explored initially in female mice exposed to a single dose of either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or a PHAH mixture. This study demonstrated that a single exposure to PHAH had no significant effect on the number of M1dG adducts compared to the corn oil control group. The role of M1dG adducts in polychlorinated biphenyl (PCB)-induced toxicity and carcinogenicity was further investigated in rats exposed for a year to PCB 153, PCB 126, or a mixture of the two. PCB 153, at doses up to 3000 microg/kg/day, had no significant effect on the number of M1dG adducts in liver and brain tissues from the exposed rats compared to controls. However, 1000 ng/kg/day of PCB 126 resulted in M1dG adduct accumulation in the liver. More importantly, coadministration of equal proportions of PCB 153 and PCB 126 resulted in dose-dependent increases in M1dG adduct accumulation in the liver from 300 to 1000 ng/kg/day of PCB 126 with 300-1000 microg/kg/day of PCB 153. Interestingly, the coadministration of different amounts of PCB 153 with fixed amounts of PCB 126 demonstrated more M1dG adduct accumulation with higher doses of PCB 153. These results are consistent with the results from cancer bioassays that demonstrated a synergistic effect between PCB 126 and PCB 153 on toxicity and tumor development. In summary, the results from the present study support the hypothesis that oxidative DNA damage plays a key role in toxicity and carcinogenicity following long-term PCB exposure.
Collapse
Affiliation(s)
- Yo-Chan Jeong
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 USA
| | - Nigel J. Walker
- National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, P.O. Box 12233, MD EC-34, Research Triangle Park, NC 27709 USA
| | - Deborah E. Burgin
- USEPA, ORD NHEERL ETD, MD-B143-01,109 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Grace Kissling
- National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, P.O. Box 12233, MD EC-34, Research Triangle Park, NC 27709 USA
| | - Mayetri Gupta
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599 USA
| | - Lawrence Kupper
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599 USA
| | - Linda S. Birnbaum
- USEPA, ORD NHEERL ETD, MD-B143-01,109 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 USA
| |
Collapse
|
25
|
Affiliation(s)
- Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, NE47-277, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
26
|
Knutson CG, Wang H, Rizzo CJ, Marnett LJ. Metabolism and elimination of the endogenous DNA adduct, 3-(2-deoxy-beta-D-erythropentofuranosyl)-pyrimido[1,2-alpha]purine-10(3H)-one, in the rat. J Biol Chem 2007; 282:36257-64. [PMID: 17951255 DOI: 10.1074/jbc.m706814200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endogenously occurring damage to DNA is a contributing factor to the onset of several genetic diseases, including cancer. Monitoring urinary levels of DNA adducts is one approach to assess genomic exposure to endogenous damage. However, metabolism and alternative routes of elimination have not been considered as factors that may limit the detection of DNA adducts in urine. We recently demonstrated that the peroxidation-derived deoxyguanosine adduct, 3-(2-deoxy-beta-D-erythropentofuranosyl)-pyrimido[1,2-alpha]purine-10(3H)-one (M1dG), is subject to enzymatic oxidation in vivo resulting in the formation of a major metabolite, 6-oxo-M1dG. Based on the administration of [14C]M1dG (22 microCi/kg) to Sprague-Dawley rats (n=4), we now report that 6-oxo-M1dG is the principal metabolite of M1dG in vivo representing 45% of the total administered dose. When [14C]6-oxo-M1dG was administered to Sprague-Dawley rats, 6-oxo-M1dG was recovered unchanged (>97% stability). These studies also revealed that M1dG and 6-oxo-M1dG are subject to biliary elimination. Additionally, both M1dG and 6-oxo-M1dG exhibited a long residence time following administration (>48 h), and the major species observed in urine at late collections was 6-oxo-M1dG.
Collapse
Affiliation(s)
- Charles G Knutson
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
27
|
Jeong YC, Nakamura J, Upton PB, Swenberg JA. Pyrimido[1,2-a]-purin-10(3H)-one, M1G, is less prone to artifact than base oxidation. Nucleic Acids Res 2005; 33:6426-34. [PMID: 16282591 PMCID: PMC1283527 DOI: 10.1093/nar/gki944] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrimido[1,2-a]-purin-10(3H)-one (M1G) is a secondary DNA damage product arising from primary reactive oxygen species (ROS) damage to membrane lipids or deoxyribose. The present study investigated conditions that might lead to artifactual formation or loss of M1G during DNA isolation. The addition of antioxidants, DNA isolation at low temperature or non-phenol extraction methods had no statistically significant effect on the number of M1G adducts measured in either control or positive control tissue samples. The number of M1G adducts in nuclear DNA isolated from brain, liver, kidney, pancreas, lung and heart of control male rats were 0.8, 1.1, 1.1, 1.1, 1.8 and 4.2 M1G/10(8) nt, respectively. In rat liver tissue, the mitochondrial DNA contained a 2-fold greater number of M1G adducts compared with nuclear DNA. Overall, the results from this study demonstrated that measuring M1G is a reliable way to assess oxidative DNA damage because the number of M1G adducts is significantly affected by the amount of ROS production, but not by DNA isolation procedures. In addition, this study confirmed that the background number of M1G adducts reported in genomic DNA could have been overestimated by one to three orders of magnitude in previous reports.
Collapse
Affiliation(s)
| | | | | | - James A. Swenberg
- To whom correspondence should be addressed. Tel: +1 919 966 6139; Fax: +1 919 966 6123;
| |
Collapse
|