1
|
Sircar E, Stoyanovsky DA, Billiar TR, Sengupta R. Immuno-Spin Trapping Method for the Analysis of S-Nitrosylated Proteins. Curr Protoc 2021; 1:e262. [PMID: 34570435 DOI: 10.1002/cpz1.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamic and unstable nature of protein nitrosothiols (PSNOs) derived from complex biological matrices (like cell lysates) make them unsuitable for proteomic/biochemical analysis in vitro. In an attempt to increase the stability of cell-derived PSNOs, scientists have devised methods to derivatize thiols undergoing nitrosylation, with a suitable molecule, to yield a stable adduct that could easily be detected using appropriate antibodies. The Biotin Switch Assay (BTSA) is currently the most widely used method for tagging PSNOs; however, the error-prone and cumbersome nature of the BTSA protocol prompted the development of alternative mechanisms of tagging cell-derived PSNOs. One such method is the immuno-spin trapping method using 5,5-dimethyl-1-pyrroline N-oxide (DMPO), which effectively overcomes the shortcomings of the BTSA and proves to be a promising alternative. Here we describe the protocol for DMPO-based PSNO labeling and subsequent proteomic analysis by western blotting with an anti-DMPO antibody. © 2021 Wiley Periodicals LLC. Basic Protocol: Labeling of cell-derived PSNOs by DMPO-based immuno-spin trapping and their subsequent analysis by immunostaining.
Collapse
Affiliation(s)
- Esha Sircar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.,Present Address: Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | | | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
3
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Hathazi D, Mahuţ SD, Scurtu FV, Bischin C, Stanciu C, Attia AA, Damian G, Silaghi-Dumitrescu R. Involvement of ferryl in the reaction between nitrite and the oxy forms of globins. J Biol Inorg Chem 2014; 19:1233-9. [PMID: 25064750 DOI: 10.1007/s00775-014-1181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The reaction between nitrite and the oxy forms of globins has complex autocatalytic kinetics with several branching steps and evolves through chain reactions mediated by reactive species (including radicals) such as hydrogen peroxide, ferryl and nitrogen dioxide, starting with a lag phase, after which it proceeds onto an autocatalytic phase. Reported here are UV-Vis spectra collected upon stopped-flow mixing of myoglobin with a supraphysiological excess of nitrite. The best fit to the experimental data follows an A → B → C reaction scheme involving the formation of a short-lived intermediate identified as ferryl. This is consistent with a mechanism where nitrite binds to oxy myoglobin to generate an undetectable ferrous-peroxynitrate intermediate, whose decay leads to nitrate and ferryl. The ferryl is then reduced to met by the excess nitrite. DFT calculations reveal an essentially barrierless reaction between nitrite and the oxy heme, with a notable outer-sphere component; the resulting metastable ferrous-peroxynitrate adduct is found to feature a very low barrier towards nitrate liberation, with ferryl as a final product-in good agreement with experiment.
Collapse
Affiliation(s)
- Denisa Hathazi
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Kumar A, Ganini D, Deterding LJ, Ehrenshaft M, Chatterjee S, Mason RP. Immuno-spin trapping of heme-induced protein radicals: Implications for heme oxygenase-1 induction and heme degradation. Free Radic Biol Med 2013; 61:265-72. [PMID: 23624303 PMCID: PMC3851609 DOI: 10.1016/j.freeradbiomed.2013.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 01/29/2023]
Abstract
Heme, in the presence of hydrogen peroxide, can act as a peroxidase. Intravascular hemolysis results in a massive release of heme into the plasma in several pathophysiological conditions such as hemolytic anemia, malaria, and sickle cell disease. Heme is known to induce heme oxygenase-1(HO-1) expression, and the extent of induction depends on the ratio of albumin to heme in plasma. HO-1 degrades heme and ultimately generates the antioxidant bilirubin. Heme also causes oxidative stress in cells, but whether it causes protein-radical formation has not yet been studied. In the literature, two purposes for the degradation of heme by HO-1 are discussed. One is the production of the antioxidant bilirubin and the other is the prevention of heme-dependent adverse effects. Here we have investigated heme-induced protein-radical formation, which might have pathophysiological consequences, and have used immuno-spin trapping to establish the formation of heme-induced protein radicals in two systems: human serum albumin (HSA)/H2O2 and human plasma/H2O2.We found that excess heme catalyzed the formation of HSA radicals in the presence of hydrogen peroxide. When heme and hydrogen peroxide were added to human plasma, heme was found to oxidize proteins, primarily and predominantly HSA; however, when HSA-depleted plasma was used, heme triggered the oxidation of several other proteins, including transferrin. Thus, HSA in plasma protected other proteins from heme/H2O2-induced oxidation. The antioxidants ascorbate and uric acid significantly attenuated protein-radical formation induced by heme/H2O2; however, bilirubin did not confer significant protection. Based on these findings, we conclude that heme is degraded by HO-1 because it is a catalyst of protein-radical formation and not merely to produce the relatively inefficient antioxidant bilirubin.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marilyn Ehrenshaft
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratories of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Abstract
SIGNIFICANCE Failure to maintain myoglobin (Mb) in the reduced state causes the formation of metMb, ferryl Mb species, and cross-linked Mb. Dissociation of ferriprotoporphyrin IX from the globin and release of iron atoms can also occur as oxidized Mb accumulates. These modifications may contribute to various oxidative pathologies in muscle and muscle foods. RECENT ADVANCES The mechanism of ferryl Mb-mediated oxidative damage to nearby structures has been partially elucidated. Dissociation of ferriprotoporphyrin IX from metMb occurs more readily at acidic pH values. The dissociated ferriprotoporphyrin IX (also called hemin) readily decomposes preformed lipid hydroperoxides to reactive oxygen species. Heme oxygenase as well as lipophilic free radicals can degrade the protoporphyrin IX moiety, which results in the formation of free iron. CRITICAL ISSUES The multiple pathways by which Mb can incur toxicity create difficulties in determining the major cause of oxidative damage in a particular system. Peroxides and low pH activate each of the oxidative Mb forms, ferriprotoporphyrin IX, and released iron. Determining the relative concentration of these species is technically difficult, but essential to a complete understanding of oxidative pathology in muscle tissue. FUTURE DIRECTIONS Improved methods to assess the different pathways of Mb toxicity are needed. Although significant advances have been made in the understanding of Mb interactions with other biomolecules, further investigation is needed to understand the physical and chemical nature of these interactions.
Collapse
Affiliation(s)
- Mark P Richards
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Valez V, Cassina A, Batinic-Haberle I, Kalyanaraman B, Ferrer-Sueta G, Radi R. Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins. Arch Biochem Biophys 2013; 529:45-54. [PMID: 23142682 PMCID: PMC3534903 DOI: 10.1016/j.abb.2012.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Peroxynitrite (ONOO(-)) formation in mitochondria may be favored due to the constant supply of superoxide radical (O(2)(∙-)) by the electron transport chain plus the facile diffusion of nitric oxide ((∙)NO) to this organelle. Herein, a model system of submitochondrial particles (SMP) in the presence of succinate plus the respiratory inhibitor antimycin A (to increase O(2)(∙-) rates) and the (∙)NO-donor NOC-7 was studied to directly establish and quantitate peroxynitrite by a multiplicity of methods including chemiluminescence, fluorescence and immunochemical analysis. While all the tested probes revealed peroxynitrite at near stoichiometric levels with respect to its precursor radicals, coumarin boronic acid (a probe that directly reacts with peroxynitrite) had the more straightforward oxidation profile from O(2)(∙-)-forming SMP as a function of the (∙)NO flux. Interestingly, immunospintrapping studies verified protein radical generation in SMP by peroxynitrite. Substrate-supplemented SMP also reduced Mn(III)porphyrins (MnP) to Mn(II)P under physiologically-relevant oxygen levels (3-30 μM); then, Mn(II)P were capable to reduce peroxynitrite and protect SMP from the inhibition of complex I-dependent oxygen consumption and protein radical formation and nitration of membranes. The data directly support the formation of peroxynitrite in mitochondria and demonstrate that MnP can undergo a catalytic redox cycle to neutralize peroxynitrite-dependent mitochondrial oxidative damage.
Collapse
Affiliation(s)
- Valeria Valez
- Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
| | - Adriana Cassina
- Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Balaraman Kalyanaraman
- Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gerardo Ferrer-Sueta
- Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Rafael Radi
- Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay
| |
Collapse
|
10
|
Cheng TM, Mao SJT, Lai ST, Chang CC, Yang MC, Chen NC, Chou SC, Pan JP. Haemoglobin-induced oxidative stress is associated with both endogenous peroxidase activity and H2O2 generation from polyunsaturated fatty acids. Free Radic Res 2010; 45:303-16. [PMID: 21034361 DOI: 10.3109/10715762.2010.532492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Patients with increased haemolytic haemoglobin (Hb) have 10-20-times greater incidence of cardiovascular mortality. The objective of this study was to evaluate the role of Hb peroxidase activity in LDL oxidation. The role of Hb in lipid peroxidation, H(2)O(2) generation and intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed using NaN(3), a peroxidase inhibitor, catalase, a H(2)O(2) decomposing enzyme and human umbilical vein endothelial cells (HUVECs), respectively. Hb induced H(2)O(2) production by reacting with LDL, linoleate and cell membrane lipid extracts. Hb-induced LDL oxidation was inhibited by NaN(3) and catalase. Furthermore, Hb stimulated ICAM-1 and VCAM-1 expression, which was inhibited by the antioxidant, probucol. Thus, the present study suggests that the peroxidase activity of Hb produces atherogenic, oxidized LDL and oxidized polyunsaturated fatty acids (PUFAs) in the cell membrane and reactive oxygen species (ROS) formation mediated Hb-induced ICAM-1 and VCAM-1 expression.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Electron Paramagnetic Resonance - A Powerful Tool of Medical Biochemistry in Discovering Mechanisms of Disease and Treatment Prospects. J Med Biochem 2010. [DOI: 10.2478/v10011-010-0020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Electron Paramagnetic Resonance - A Powerful Tool of Medical Biochemistry in Discovering Mechanisms of Disease and Treatment ProspectsIn pathophysiological conditions related to oxidative stress, the application of selected antioxidants could have beneficial effects on human health. Electron paramagnetic resonance (EPR) spectroscopy is a technique that provides unique insight into the redox biochemistry, due to its ability to: (i) distinguish and quantify different reactive species, such as hydroxyl radical, superoxide, carbon centered radicals, hydrogen atom, nitric oxide, ascorbyl radical, melanin, and others; (ii) evaluate the antioxidative capacity of various compounds, extracts and foods; (iii) provide information on other important parameters of biological systems. A combination of EPR spectroscopy and traditional biochemical methods represents an efficient tool in the studies of disease mechanisms and antioxidative therapy prospects, providing a more complete view into the redox processes in the human organism.
Collapse
|
12
|
Heinecke J, Ford PC. Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Kapralov A, Vlasova II, Feng W, Maeda A, Walson K, Tyurin VA, Huang Z, Aneja RK, Carcillo J, Bayır H, Kagan VE. Peroxidase activity of hemoglobin-haptoglobin complexes: covalent aggregation and oxidative stress in plasma and macrophages. J Biol Chem 2009; 284:30395-407. [PMID: 19740759 PMCID: PMC2781594 DOI: 10.1074/jbc.m109.045567] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/04/2009] [Indexed: 12/31/2022] Open
Abstract
As a hemoprotein, hemoglobin (Hb) can, in the presence of H(2)O(2), act as a peroxidase. In red blood cells, this activity is regulated by the reducing environment. For stroma-free Hb this regulation is lost, and the potential for Hb to become a peroxidase is high and further increased by inflammatory cells generating superoxide. The latter can be converted into H(2)O(2) and feed Hb peroxidase activity. Haptoglobins (Hp) bind with extracellular Hb and reportedly weaken Hb peroxidase activity. Here we demonstrate that: (i) Hb peroxidase activity is retained upon binding with Hp; (ii) in the presence of H(2)O(2), Hb-Hp peroxidase complexes undergo covalent cross-linking; (iii) peroxidase activity of Hb-Hp complexes and aggregates consumes reductants such as ascorbate and nitric oxide; (iv) cross-linked Hb-Hp aggregates are taken up by macrophages at rates exceeding those for noncovalently cross-linked Hb-Hp complexes; (v) the engulfed Hb-Hp aggregates activate superoxide production and induce intracellular oxidative stress (deplete endogenous glutathione and stimulate lipid peroxidation); (vi) Hb-Hp aggregates cause cytotoxicity to macrophages; and (vii) Hb-Hp aggregates are present in septic plasma. Overall, our data suggest that under conditions of severe inflammation and oxidative stress, peroxidase activity of Hb-Hp covalent aggregates may cause macrophage dysfunction and microvascular vasoconstriction, which are commonly seen in severe sepsis and hemolytic diseases.
Collapse
Affiliation(s)
- Alexandr Kapralov
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Irina I. Vlasova
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
- the
Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Weihong Feng
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Akihiro Maeda
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Karen Walson
- From the
Center for Free Radical and Antioxidant Health
- Critical Care Medicine, and
- the
Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Vladimir A. Tyurin
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Zhentai Huang
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | | | | | - Hülya Bayır
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
- Critical Care Medicine, and
- the
Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Valerian E. Kagan
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| |
Collapse
|
14
|
A highlight of myoglobin diversity: the nitrite reductase activity during myocardial ischemia-reperfusion. Nitric Oxide 2009; 22:75-82. [PMID: 19836457 DOI: 10.1016/j.niox.2009.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 01/05/2023]
Abstract
Myoglobin, famous as an important intracellular oxygen binding hemeprotein, displays a variety of functions. The first pioneering review on myoglobin was published as early as 1939, in which Millikan concluded that "muscle hemoglobin" acts primarily as a short-term dioxygen store, tiding the muscle over from one contraction to the next. Since that time, myoglobin has become one of the most widely studied proteins in a variety of research fields ranging from chemistry to medicine. Recently it was discovered that in the heart myoglobin changes its function in dependence of oxygen tension, acting as an oxygen sensor. Under normoxic conditions myoglobin plays the role of a nitric oxide (NO(*)) scavenger, protecting the heart from the deleterious effects of excessive NO(*). During hypoxia however, myoglobin changes its role from an NO(*) scavenger to an NO(*) producer. Deoxygenated myoglobin reduces nitrite to bioactive NO(*). The produced NO(*) downregulates the cardiac energy status and reduces myocardial oxygen consumption, thus protecting the heart. Myoglobin also exhibits a nitrite reductase function under further pathophysiological conditions. During myocardial reperfusion after ischemia, myoglobin - via nitrite - regulates respiration and cellular viability. This leads to a dramatic reduction of myocardial infarct size and to an improvement of myocardial function. The reaction between myoglobin and nitrite thus seems to play an imminent role in the regulation of cardiac function in physiology and pathophysiology.
Collapse
|
15
|
van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 2009; 29:683-741. [PMID: 19219851 PMCID: PMC2725214 DOI: 10.1002/med.20151] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and nonenzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue.
Collapse
Affiliation(s)
- Ernst E van Faassen
- Department of Interface Physics, Debye Institute, Utrecht University, Princetonplein 1, 3508 TA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 2009; 46:1439-53. [PMID: 19285551 PMCID: PMC2732771 DOI: 10.1016/j.freeradbiomed.2009.03.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/16/2022]
Abstract
Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt c's conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria--its asymmetric transmembrane distribution and mechanisms of collapse, the regulation of its synthesis, remodeling, and fatty acid composition--are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with antiapoptotic effects are presented.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gomez-Mejiba SE, Zhai Z, Akram H, Deterding LJ, Hensley K, Smith N, Towner RA, Tomer KB, Mason RP, Ramirez DC. Immuno-spin trapping of protein and DNA radicals: "tagging" free radicals to locate and understand the redox process. Free Radic Biol Med 2009; 46:853-65. [PMID: 19159679 PMCID: PMC2692890 DOI: 10.1016/j.freeradbiomed.2008.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 12/31/2022]
Abstract
Biomolecule-centered radicals are intermediate species produced during both reversible (redox modulation) and irreversible (oxidative stress) oxidative modification of biomolecules. These oxidative processes must be studied in situ and in real time to understand the molecular mechanism of cell adaptation or death in response to changes in the extracellular environment. In this regard, we have developed and validated immuno-spin trapping to tag the redox process, tracing the oxidatively generated modification of biomolecules, in situ and in real time, by detecting protein- and DNA-centered radicals. The purpose of this methods article is to introduce and update the basic methods and applications of immuno-spin trapping for the study of redox biochemistry in oxidative stress and redox regulation. We describe in detail the production, detection, and location of protein and DNA radicals in biochemical systems, cells, and tissues, and in the whole animal as well, by using immuno-spin trapping with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide.
Collapse
Affiliation(s)
- Sandra E. Gomez-Mejiba
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zili Zhai
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Hammad Akram
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Kenneth Hensley
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Rheal A. Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Ronald P. Mason
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Dario C. Ramirez
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
18
|
Piknova B, Keszler A, Hogg N, Schechter AN. The reaction of cell-free oxyhemoglobin with nitrite under physiologically relevant conditions: Implications for nitrite-based therapies. Nitric Oxide 2008; 20:88-94. [PMID: 19010434 DOI: 10.1016/j.niox.2008.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/03/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO*) participates in the regulation of a wide array of biological processes and its deficit contributes to the severity of many diseases. Recently, a role of NO deficiency that occurs as a result of intravascular hemolysis and increases in levels of cell-free hemoglobin in the pathway of chronic anemic pathologies has been suggested. Experimental evidence for deoxyhemoglobin-catalyzed reduction of nitrite to NO* leads to the possibility of nitrite infusion-based therapies to correct NO* deficits. However, the presence of plasma hemoglobin also raises the possibility of deleterious free radical-mediated oxidative damage from the reaction between nitrite and oxyhemoglobin in the vasculature. We show that the conditions required for the reaction between nitrite and oxyhemoglobin to exhibit free radical-mediated autocatalytic kinetics are highly unlikely to occur in the plasma compartment, even during extensive hemolysis and with pharmacological nitrite doses. Although the presence of haptoglobin enhances the rate of the reaction between nitrite and oxyhemoglobin, common plasma antioxidants-ascorbate and urate, as well as catalase-prevent autocatalysis. Our findings suggest that pharmacological doses of nitrite are unlikely to cause free radical or ferrylhemoglobin formation in plasma originating from the reaction of nitrite with cell-free oxyhemoglobin in vivo.
Collapse
Affiliation(s)
- Barbora Piknova
- National Institutes of Health, NIH, NIDDK, Molecular Medicine Branch, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
19
|
Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 2008; 283:17855-63. [PMID: 18424432 DOI: 10.1074/jbc.m801785200] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that nitrite is an important storage form and source of NO in biological systems. Controversy remains, however, regarding whether NO formation from nitrite occurs primarily in tissues or in blood. Questions also remain regarding the mechanism, magnitude, and contributions of several alternative pathways of nitrite-dependent NO generation in biological systems. To characterize the mechanism and magnitude of NO generation from nitrite, electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, and immunoassays of cGMP formation were performed. The addition of nitrite triggered a large amount of NO generation in tissues such as heart and liver, but only trace NO production in blood. Carbon monoxide increased NO release from blood, suggesting that hemoglobin acts to scavenge NO not to generate it. Administration of the xanthine oxidase (XO) inhibitor oxypurinol or aldehyde oxidase (AO) inhibitor raloxifene significantly decreased NO generation from nitrite in heart or liver. NO formation rates increased dramatically with decreasing pH or with decreased oxygen tension. Isolated enzyme studies further confirm that XO and AO, but not hemoglobin, are critical nitrite reductases. Overall, NO generation from nitrite mainly occurs in tissues not in the blood, with XO and AO playing critical roles in nitrite reduction, and this process is regulated by pH, oxygen tension, nitrite, and reducing substrate concentrations.
Collapse
Affiliation(s)
- Haitao Li
- Center for Biomedical EPR Spectroscopy and Imaging, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
20
|
Keszler A, Piknova B, Schechter AN, Hogg N. The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem 2008; 283:9615-22. [PMID: 18203719 DOI: 10.1074/jbc.m705630200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitrite anion (NO(-)(2)) has recently received much attention as an endogenous nitric oxide source that has the potential to be supplemented for therapeutic benefit. One major mechanism of nitrite reduction is the direct reaction between this anion and the ferrous heme group of deoxygenated hemoglobin. However, the reaction of nitrite with oxyhemoglobin (oxyHb) is well established and generates nitrate and methemoglobin (metHb). Several mechanisms have been proposed that involve the intermediacy of protein-free radicals, ferryl heme, nitrogen dioxide (NO(2)), and hydrogen peroxide (H(2)O(2)) in an autocatalytic free radical chain reaction, which could potentially limit the usefulness of nitrite therapy. In this study we show that none of the previously published mechanisms is sufficient to fully explain the kinetics of the reaction of nitrite with oxyHb. Based on experimental data and kinetic simulation, we have modified previous models for this reaction mechanism and show that the new model proposed here is consistent with experimental data. The important feature of this model is that, whereas previously both H(2)O(2) and NO(2) were thought to be integral to both the initiation and propagation steps, H(2)O(2) now only plays a role as an initiator species, and NO(2) only plays a role as an autocatalytic propagatory species. The consequences of uncoupling the roles of H(2)O(2) and NO(2) in the reaction mechanism for the in vivo reactivity of nitrite are discussed.
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
21
|
Grubina R, Huang Z, Shiva S, Joshi MS, Azarov I, Basu S, Ringwood LA, Jiang A, Hogg N, Kim-Shapiro DB, Gladwin MT. Concerted Nitric Oxide Formation and Release from the Simultaneous Reactions of Nitrite with Deoxy- and Oxyhemoglobin. J Biol Chem 2007; 282:12916-27. [PMID: 17322300 DOI: 10.1074/jbc.m700546200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductase that may mediate nitric oxide (NO)-dependent signaling along the physiological oxygen gradient. Nitrite reacts with deoxyhemoglobin in an allosteric reaction that generates NO and oxidizes deoxyhemoglobin to methemoglobin. NO then reacts at a nearly diffusion-limited rate with deoxyhemoglobin to form iron-nitrosyl-hemoglobin, which to date has been considered a highly stable adduct and, thus, not a source of bioavailable NO. However, under physiological conditions of partial oxygen saturation, nitrite will also react with oxyhemoglobin, and although this complex autocatalytic reaction has been studied for a century, the interaction of the oxy- and deoxy-reactions and the effects on NO disposition have never been explored. We have now characterized the kinetics of hemoglobin oxidation and NO generation at a range of oxygen partial pressures and found that the deoxy-reaction runs in parallel with and partially inhibits the oxy-reaction. In fact, intermediates in the oxy-reaction oxidize the heme iron of iron-nitrosyl-hemoglobin, a product of the deoxy-reaction, which releases NO from the iron-nitrosyl. This oxidative denitrosylation is particularly striking during cycles of hemoglobin deoxygenation and oxygenation in the presence of nitrite. These chemistries may contribute to the oxygen-dependent disposition of nitrite in red cells by limiting oxidative inactivation of nitrite by oxyhemoglobin, promoting nitrite reduction to NO by deoxyhemoglobin, and releasing free NO from iron-nitrosyl-hemoglobin.
Collapse
Affiliation(s)
- Rozalina Grubina
- Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|