1
|
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48:400-415. [PMID: 34687092 DOI: 10.1002/biof.1797] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control, and/or molecular damage altering cellular functions. This redox imbalance may trigger different responses depending on the antioxidant potential of a given cell, the level of reactive oxygen/nitrogen species (ROS/RNS) attained and the time of exposure, with protective effects being induced at low ROS/RNS levels in acute or short-term conditions, and harmful effects after high ROS/RNS exposure in prolonged situations. Relevant conditions underlying liver redox imbalance include iron overload associated with ROS production via Fenton chemistry and the magnitude of the iron labile pool achieved, with low iron exposure inducing protective effects related to nuclear factor-κB, signal transducer and activation of transcription 3, and nuclear factor erythroid-related factor 2 (Nrf2) activation and upregulation of ferritin, hepcidin, acute-phase response and antioxidant components, whereas high iron exposure causes drastic oxidation of biomolecules, mitochondrial dysfunction, and cell death due to necrosis, apoptosis and/or ferroptosis. Redox imbalance in nonalcoholic fatty liver disease (NAFLD) is related to polyunsaturated fatty acid depletion, lipogenic factor sterol regulatory element-binding protein-1c upregulation, fatty acid oxidation-dependent peroxisome proliferator-activated receptor-α downregulation, low antioxidant factor Nrf2 and insulin resistance, a phenomenon that is exacerbated in nonalcoholic steatohepatitis triggering an inflammatory response. Thyroid hormone (T3 ) administration determines liver preconditioning against ischemia-reperfusion injury due to the redox activation of several transcription factors, AMP-activated protein kinase, unfolded protein response and autophagy. High grade liver redox imbalance occurring in severe iron overload is adequately handled by iron chelation, however, that underlying NAFLD/NASH is currently under study in several Phase II and Phase III trials.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
3
|
Hernández-Arciga U, Hernández-Álvarez D, López-Cervantes SP, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Königsberg M. Effect of long-term moderate-exercise combined with metformin-treatment on antioxidant enzymes activity and expression in the gastrocnemius of old female Wistar rats. Biogerontology 2020; 21:787-805. [PMID: 32749628 DOI: 10.1007/s10522-020-09894-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
Oxidative stress is known to be involved in the etiology of sarcopenia, a progressive loss of muscle mass and force related to elderly incapacity. A successful intervention to prevent this condition has been exercise-based therapy. Metformin (MTF), an anti-diabetic drug with pleiotropic effects, is known to retain redox homeostasis. However, the combined use of MTF with exercise has shown controversial experimental results. Our research group has shown that MTF-treatment does not limit the benefits provided by exercise, probably by inducing a hormetic response. Hence, our aim was to evaluate the effect of exercise in combination with MTF-treatment on the redox state of old female Wistar rats. Animals were divided into six groups; three groups preformed exercise on a treadmill for 5 days/week for 20 months and the other three were sedentary. Also, two groups of each, exercised and sedentary animals were treated with MTF for 6 or 12 months correspondingly, beside the untreated groups. Rats were euthanized at 24 months. Muscular functionality was analyzed as the relation between the lean mass free of bone with respect to the grip strength. Superoxide dismutase, catalase, and glutathione peroxidase content, enzymatic activity and redox state were determined in the gastrocnemius muscle. Our results showed that the exercised group treated with MTF for 12 months presented higher GSH/GSSG rate and high antioxidant scavenging power in contrast to the MTF-treatment for 6 months, where the beneficial effect was less noticeable.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | - David Hernández-Álvarez
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Stefanie Paola López-Cervantes
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Norma Edith López-Díazguerrero
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | - Adriana Alarcón-Aguilar
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | | | - Mina Königsberg
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019; 8:cells8101131. [PMID: 31547621 PMCID: PMC6829519 DOI: 10.3390/cells8101131] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction and liver failure post-transplantation. To date, ischemia-reperfusion injury is an unsolved problem in clinical practice. In this context, inflammasome activation, recently described during ischemia-reperfusion injury, might be a potential therapeutic target to mitigate the clinical problems associated with liver transplantation and hepatic resections. The present review aims to summarize the current knowledge in inflammasome-mediated inflammation, describing the experimental models used to understand the molecular mechanisms of inflammasome in liver ischemia-reperfusion injury. In addition, a clear distinction between steatotic and non-steatotic livers and between warm and cold ischemia-reperfusion injury will be discussed. Finally, the most updated therapeutic strategies, as well as some of the scientific controversies in the field will be described. Such information may be useful to guide the design of better experimental models, as well as the effective therapeutic strategies in liver surgery and transplantation that can succeed in achieving its clinical application.
Collapse
|
5
|
Videla LA. Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life 2019; 71:1211-1220. [PMID: 31091354 DOI: 10.1002/iub.2067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Liver preconditioning (PC) refers to the development of an enhanced tolerance to injuring stimuli. For example, the protection from ischemia-reperfusion (IR) in the liver that is obtained by previous maneuvers triggering beneficial molecular and functional changes. Recently, we have assessed the PC effects of thyroid hormone (T3; single dose of 0.1 mg/kg) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs; daily doses of 450 mg/kg for 7 days) that abrogate IR injury to the liver. This feature is also achieved by a combined T3 and the n-3 LCPUFA docosahexaenoic acid (DHA) using a reduced period of supplementation of the FA (daily doses of 300 mg/kg for 3 days) and half of the T3 dosage (0.05 mg/kg). T3 -dependent protective mechanisms include (i) the reactive oxygen species (ROS)-dependent activation of transcription factors nuclear factor-κB (NF-κB), AP-1, signal transducer and activator of transcription 3, and nuclear factor erythroid-2-related factor 2 (Nrf2) upregulating the expression of protective proteins. (ii) ROS-induced endoplasmic reticulum stress affording proper protein folding. (iii) The autophagy response to produce FAs for oxidation and ATP supply and amino acids for protein synthesis. (iv) Downregulation of inflammasome nucleotide-bonding oligomerization domain leucine-rich repeat containing family pyrin containing 3 and interleukin-1β expression to prevent inflammation. N-3 LCPUFAs induce antioxidant responses due to Nrf2 upregulation, with inflammation resolution being related to production of oxidation products and NF-κB downregulation. Energy supply to achieve liver PC is met by the combined DHA plus T3 protocol through upregulation of AMPK coupled to peroxisome proliferator-activated receptor-γ coactivator 1α signaling. In conclusion, DHA plus T3 coadministration favors hepatic bioenergetics and lipid homeostasis that is of crucial importance in acute and clinical conditions such as IR, which may be extended to long-term or chronic situations including steatosis in obesity and diabetes. © 2019 IUBMB Life, 71(9):1211-1220, 2019.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
7
|
Valenzuela R, Videla LA. Crosstalk mechanisms in hepatoprotection: Thyroid hormone-docosahexaenoic acid (DHA) and DHA-extra virgin olive oil combined protocols. Pharmacol Res 2018; 132:168-175. [DOI: 10.1016/j.phrs.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
|
8
|
Dossi CG, González-Mañán D, Romero N, Silva D, Videla LA, Tapia GS. Anti-oxidative and anti-inflammatory effects of Rosa Mosqueta oil supplementation in rat liver ischemia-reperfusion. Food Funct 2018; 9:4847-4857. [DOI: 10.1039/c8fo00969d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion (IR) is a deleterious condition associated with liver transplantation or resection that involves pro-oxidant and pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Camila G. Dossi
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Nalda Romero
- Department of Food Science and Chemical Technology
- University of Chile
- Santiago
- Chile
| | - David Silva
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| | - Gladys S. Tapia
- Molecular and Clinical Pharmacology Program
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Chile
- Santiago
| |
Collapse
|
9
|
Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase. Immunol Lett 2017; 184:92-97. [DOI: 10.1016/j.imlet.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/28/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023]
|
10
|
van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. J Endocrinol 2017; 232:R67-R81. [PMID: 27852725 DOI: 10.1530/joe-16-0462] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/23/2022]
Abstract
Thyroid hormone (TH) metabolism and thyroid status have been linked to various aspects of the immune response. There is extensive literature available on the effects of thyroid hormone on innate immune cells. However, only recently have authors begun to study the mechanisms behind these effects and the role of intracellular TH metabolism in innate immune cell function during inflammation. This review provides an overview of the molecular machinery of intracellular TH metabolism present in neutrophils, macrophages and dendritic cells and the role and effects of intracellular TH metabolism in these cells. Circulating TH levels have a profound effect on neutrophil, macrophage and dendritic cell function. In general, increased TH levels result in an amplification of the pro-inflammatory response of these cells. The mechanisms behind these effects include both genomic and non-genomic effects of TH. Besides a pro-inflammatory effect induced by extracellular TH, the cellular response to pro-inflammatory stimuli appears to be dependent on functional intracellular TH metabolism. This is illustrated by the fact that the deiodinase enzymes and in some cell types also thyroid hormone receptors appear to be crucial for adequate innate immune cell function. This overview of the literature suggests that TH metabolism plays an important role in the host defence against infection through the modulation of innate immune cell function.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Videla LA, Fernández V, Cornejo P, Vargas R, Carrasco J, Fernández J, Varela N. Causal role of oxidative stress in unfolded protein response development in the hyperthyroid state. Free Radic Biol Med 2015; 89:401-8. [PMID: 26434419 DOI: 10.1016/j.freeradbiomed.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
L-3,3',5-Triiodothyronine (T3)-induced liver oxidative stress underlies significant protein oxidation, which may trigger the unfolded protein response (UPR). Administration of daily doses of 0.1mg T3 for three consecutive days significantly increased the rectal temperature of rats and liver O2 consumption rate, with higher protein carbonyl and 8-isoprostane levels, glutathione depletion, and absence of morphological changes in liver parenchyma. Concomitantly, liver protein kinase RNA-like endoplasmic reticulum (ER) kinase and eukaryotic translation initiator factor 2α were phosphorylated in T3-treated rats compared to controls, with increased protein levels of binding immunoglobulin protein and activating transcription factor 4. In addition, higher mRNA levels of C/EBP homologous protein, growth arrest and DNA damage 34, protein disulfide isomerase, and ER oxidoreductin 1α were observed, changes that were suppressed by N-acetylcysteine (0.5 g/kg) given before each dose of T3. In conclusion, T3-induced liver oxidative stress involving higher protein oxidation status has a causal role in UPR development, a response that is aimed to alleviate ER stress and promote cell survival.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile.
| | - Virginia Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| | - Pamela Cornejo
- School of Medical Technology, Faculty of Health and Odontology, Diego Portales University, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| | - Juan Carrasco
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| | - Javier Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| | - Nelson Varela
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
12
|
Rebolledo RA, Van Erp AC, Ottens PJ, Wiersema-Buist J, Leuvenink HGD, Romanque P. Anti-Apoptotic Effects of 3,3',5-Triiodo-L-Thyronine in the Liver of Brain-Dead Rats. PLoS One 2015; 10:e0138749. [PMID: 26437380 PMCID: PMC4593580 DOI: 10.1371/journal.pone.0138749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background Thyroid hormone treatment in brain-dead organ donors has been extensively studied and applied in the clinical setting. However, its clinical applicability remains controversial due to a varying degree of success and a lack of mechanistic understanding about the therapeutic effects of 3,3’,5-Triiodo-L-thyronine (T3). T3 pre-conditioning leads to anti-apoptotic and pro-mitotic effects in liver tissue following ischemia/reperfusion injury. Therefore, we aimed to study the effects of T3 pre-conditioning in the liver of brain-dead rats. Methods Brain death (BD) was induced in mechanically ventilated rats by inflation of a Fogarty catheter in the epidural space. T3 (0.1 mg/kg) or vehicle was administered intraperitoneally 2 h prior to BD induction. After 4 h of BD, serum and liver tissue were collected. RT-qPCR, routine biochemistry, and immunohistochemistry were performed. Results Brain-dead animals treated with T3 had lower plasma levels of AST and ALT, reduced Bax gene expression, and less hepatic cleaved Caspase-3 activation compared to brain-dead animals treated with vehicle. Interestingly, no differences in the expression of inflammatory genes (IL-6, MCP-1, IL-1β) or the presence of pro-mitotic markers (Cyclin-D and Ki-67) were found in brain-dead animals treated with T3 compared to vehicle-treated animals. Conclusion T3 pre-conditioning leads to beneficial effects in the liver of brain-dead rats as seen by lower cellular injury and reduced apoptosis, and supports the suggested role of T3 hormone therapy in the management of brain-dead donors.
Collapse
Affiliation(s)
- Rolando A. Rebolledo
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- Physiopathology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anne C. Van Erp
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra J. Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Pamela Romanque
- Physiopathology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
13
|
Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev Mol Med 2015; 17:e10. [DOI: 10.1017/erm.2015.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) exerts important actions on cellular energy metabolism, accelerating O2consumption with consequent reactive oxygen species (ROS) generation and redox signalling affording cell protection, a response that is contributed by redox-independent mechanisms. These processes underlie genomic and non-genomic pathways, which are integrated and exhibit hierarchical organisation. ROS production led to the activation of the redox-sensitive transcription factors nuclear factor-κB, signal transducer and activator of transcription 3, activating protein 1 and nuclear factor erythroid 2-related factor 2, promoting cell protection and survival by TH. These features involve enhancement in the homeostatic potential including antioxidant, antiapoptotic, antiinflammatory and cell proliferation responses, besides higher detoxification capabilities and energy supply through AMP-activated protein kinase upregulation. The above aspects constitute the molecular basis for TH-induced preconditioning of the liver that exerts protection against ischemia-reperfusion injury, a strategy also observed in extrahepatic organs of experimental animals and with other types of injury, which awaits application in the clinical setting. Noteworthy, re-adjusting TH to normal levels results in several beneficial effects; for example, it lengthens the cold storage time of organs for transplantation from brain-dead donors; allows a superior neurological outcome in infants of <28 weeks of gestation; reduces the cognitive side-effects of lithium and improves electroconvulsive therapy in patients with bipolar disorders.
Collapse
|
14
|
Videla LA, Fernández V, Cornejo P, Vargas R. Metabolic basis for thyroid hormone liver preconditioning: upregulation of AMP-activated protein kinase signaling. ScientificWorldJournal 2012; 2012:475675. [PMID: 22919323 PMCID: PMC3417194 DOI: 10.1100/2012/475675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022] Open
Abstract
The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP-) activated protein kinase (AMPK) constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reversible phosphorylation of AMPK, in response to signals such as energy status, serum insulin/glucagon ratio, nutritional stresses, pharmacological and natural compounds, and oxidative stress status. Reactive oxygen species (ROS) lead to cellular AMPK activation and downstream signaling under several experimental conditions. Thyroid hormone (L-3,3′,5-triiodothyronine, T3) administration, a condition that enhances liver ROS generation, triggers the redox upregulation of cytoprotective proteins affording preconditioning against ischemia-reperfusion (IR) liver injury. Data discussed in this work suggest that T3-induced liver activation of AMPK may be of importance in the promotion of metabolic processes favouring energy supply for the induction and operation of preconditioning mechanisms. These include antioxidant, antiapoptotic, and anti-inflammatory mechanisms, repair or resynthesis of altered biomolecules, induction of the homeostatic acute-phase response, and stimulation of liver cell proliferation, which are required to cope with the damaging processes set in by IR.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
15
|
Fernández V, Tapia G, Videla LA. Recent advances in liver preconditioning: Thyroid hormone, n-3 long-chain polyunsaturated fatty acids and iron. World J Hepatol 2012; 4:119-28. [PMID: 22567184 PMCID: PMC3345536 DOI: 10.4254/wjh.v4.i4.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/08/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Liver preconditioning (PC), defined as an enhanced tolerance to injuring stimuli induced by previous specific maneuvers triggering beneficial functional and molecular changes, is of crucial importance in human liver transplantation and major hepatic resection. For these reasons, numerous PC strategies have been evaluated in experimental models of ischemia-reperfusion liver injury, which have not been transferred to clinical application due to side effects, toxicity and difficulties in implementation, with the exception of the controversial ischemic PC. In recent years, our group has undertaken the assessment of alternate experimental liver PC protocols that might have application in the clinical setting. These include thyroid hormone (T(3)), n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA), or iron, which suppressed liver damage due to the 1 h ischemia-20 h reperfusion protocol. T(3), n-3 LCPUFA and iron are hormetic agents that trigger biologically beneficial effects in the low-dose range, whose multifactorial mechanisms of action are discussed in the work.
Collapse
Affiliation(s)
- Virginia Fernández
- Virginia Fernández, Gladys Tapia, Luis A Videla, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70000, Santiago-7, Chile
| | | | | |
Collapse
|
16
|
Videla LA, Cornejo P, Romanque P, Santibáñez C, Castillo I, Vargas R. Thyroid hormone-induced cytosol-to-nuclear translocation of rat liver Nrf2 is dependent on Kupffer cell functioning. ScientificWorldJournal 2011; 2012:301494. [PMID: 22649286 PMCID: PMC3353293 DOI: 10.1100/2012/301494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/24/2011] [Indexed: 01/22/2023] Open
Abstract
L-3,3′,5-triiodothyronine (T3) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl3; 10 mg/kg i.v. 72 h before T3 [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T3), and determinations were performed 2 h after T3. T3 increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl3 treatment prior to T3, an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T3-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl3 administration. Similar to GdCl3, apocynin given before T3 significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T3. This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl3 or apocynin given prior to T3, thus hindering Nrf2 activation.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70000, Santiago-7, Chile.
| | | | | | | | | | | |
Collapse
|
17
|
Mardones M, Valenzuela R, Romanque P, Covarrubias N, Anghileri F, Fernández V, Videla LA, Tapia G. Prevention of liver ischemia reperfusion injury by a combined thyroid hormone and fish oil protocol. J Nutr Biochem 2011; 23:1113-20. [PMID: 22137030 DOI: 10.1016/j.jnutbio.2011.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 10/14/2022]
Abstract
Several preconditioning strategies are used to prevent ischemia-reperfusion (IR) liver injury, a deleterious condition associated with tissue resection, transplantation or trauma. Although thyroid hormone (T₃) administration exerts significant protection against liver IR injury in the rat, its clinical application is controversial due to possible adverse effects. Considering that prevention of liver IR injury has also been achieved by n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to rats, we studied the effect of n-3 PUFA dietary supplementation plus a lower dose of T₃ against IR injury. Male Sprague-Dawley rats receiving fish oil (300 mg/kg) for 3 days followed by a single intraperitoneal dose of 0.05 mg T₃/kg were subjected to 1 h of ischemia followed by 20 h of reperfusion. Parameters of liver injury (serum transaminases, histology) and oxidative stress (liver contents of GSH and oxidized proteins) were correlated with fatty acid composition, NF-κB activity, and tumor necrosis factor-α (TNF-α) and haptoglobin expression. IR significantly modified liver histology; enhanced serum transaminases, TNF-α response or liver oxidative stress; and decreased liver NF-κB activity and haptoglobin expression. Although IR injury was not prevented by either n-3 PUFA supplementation or T₃ administration, substantial decrease in liver injury and oxidative stress was achieved by the combined protocol, which also led to increased liver n-3 PUFA content and decreased n-6/n-3 PUFA ratios, with recovery of NF-κB activity and TNF-α and haptoglobin expression. Prevention of liver IR injury achieved by a combined protocol of T₃ and n-3 PUFA supplementation may represent a novel noninvasive preconditioning strategy with potential clinical application.
Collapse
Affiliation(s)
- Marcelo Mardones
- Oxidative Stress and Hepatotoxicity Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li F, Lu S, Zhu R, Zhou Z, Ma L, Cai L, Liu Z. Heme oxygenase-1 is induced by thyroid hormone and involved in thyroid hormone preconditioning-induced protection against renal warm ischemia in rat. Mol Cell Endocrinol 2011; 339:54-62. [PMID: 21458530 DOI: 10.1016/j.mce.2011.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/13/2011] [Accepted: 03/24/2011] [Indexed: 01/05/2023]
Abstract
Thyroid hormone pretreatment was indicated to increase tissue tolerance to ischemia-reperfusion injury (IRI) in various organs, but the underlying molecular mechanisms remains largely unknown. Induction of heme oxygenase-1 (HO-1) protects organs against IRI. The present study investigated the effect of thyroid hormone on HO-1 expression and the possible relation between HO-1 and the thyroid hormone induced renal protection. T(3) administration in rat kidneys induced HO-1 expression in a time-dependent and dose-dependent way, and its expression was accompanied with significant depletion of reduced glutathione and increase in malondialdehyde content, showing a moderate oxidative stress that turns to normal level 48 h after drug injection. Thyroid hormone pretreatment (10 μg/100g body weight) 48 h before IR procedure significantly decreased serum creatinine and urea nitrogen and preserved renal histology, with significant reduction of parameters about oxidative stress and over-expression of HO-1 compared with that of IR group. In conclusion, T(3) administration involving oxidative stress in kidney exerts significant enhancement of HO-1 expression which may, at least in part, account for the renal preconditioning induced by T(3).
Collapse
Affiliation(s)
- Fei Li
- Central Laboratory, Changzhou NO.2 hospital affiliated to Nanjing Medical University, Changzhou 213000, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Videla LA. Hormetic responses of thyroid hormone calorigenesis in the liver: Association with oxidative stress. IUBMB Life 2010; 62:460-6. [PMID: 20503439 DOI: 10.1002/iub.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thyroid hormone (L-3,3',5-triiodothyronine, T(3)) exerts calorigenic effects by accelerating mitochondrial O(2) consumption through transcriptional activation of respiratory genes, with consequent increased reactive oxygen species (ROS) production. In the liver, ROS generation occurs at different sites of hepatocytes and in the respiratory burst of Kupffer cells, triggering the activation of the transcription factors nuclear factor-kappaB, signal transducer and activator of transcription 3, and activating protein 1. Under these conditions, the redox upregulation of Kupffer cell-dependent expression of cytokines [tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6] is achieved, which upon interaction with specific receptors in hepatocytes trigger the expression of antioxidant enzymes (manganese superoxide dismutase, inducible nitric oxide synthase), antiapoptotic proteins (Bcl-2), and acute-phase proteins (haptoglobin, beta-fibrinogen). These responses and the promotion of hepatocyte and Kupffer cell proliferation observed represent hormetic effects re-establishing redox homeostasis, promoting cell survival, and protecting the liver against ischemia-reperfusion (IR) injury. It is proposed that hormesis underlying T(3) action may constitute a novel preconditioning strategy for IR injury during liver surgery in man or in liver transplantation using reduced-size grafts from living donors, considering that (i) with the exception of the controversial ischemic preconditioning, all other studied strategies have failed to reach the clinical setting and (ii) T(3) is a well-tolerated therapeutic agent that either lacks major adverse effects or has minimal and controlled side effects.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
20
|
Tapia G, Santibáñez C, Farías J, Fuenzalida G, Varela P, Videla LA, Fernández V. Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Mol Cell Endocrinol 2010; 323:292-7. [PMID: 20303386 DOI: 10.1016/j.mce.2010.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/10/2010] [Indexed: 01/22/2023]
Abstract
We studied the role of Kupffer cell functioning in T3 liver preconditioning against ischemia-reperfusion (IR) injury using the macrophage inactivator gadolinium chloride (GdCl3) previous to T3 treatment. Male Sprague-Dawley rats given a single i.p. dose of 0.1 mg T3/kg were subjected to 1 h ischemia followed by 20 h reperfusion, in groups of animals pretreated with 10 mg GdCl3/kg i.v. 72 h before T(3) or with the respective vehicles. IR resulted in significant enhancement of serum aspartate aminotransferase (3.3-fold increase) and tumor necrosis factor-alpha (93% increase) levels, development of liver damage, and diminished nuclear factor-kappaB DNA binding over control values. These changes, which were suppressed by the T3 administration prior to IR, persisted in animals given GdCl3 before T3 treatment, under conditions of complete elimination of ED2+ Kupffer cells achieved in a time window of 72 h. It is concluded that Kupffer cell functioning is essential for T3 liver preconditioning, assessed in a warm IR injury model by hepatic macrophage inactivation.
Collapse
Affiliation(s)
- G Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago 7, Chile
| | | | | | | | | | | | | |
Collapse
|
21
|
Videla LA. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J Hepatol 2009; 1:72-8. [PMID: 21160968 PMCID: PMC2999253 DOI: 10.4254/wjh.v1.i1.72] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a redox imbalance between pro-oxidants and antioxidants in favour of the former ones, leading to different responses depending on the level of pro-oxidants and the duration of the exposure. In this article, we discuss the damaging or cytoprotective signaling mechanisms associated with oxidative stress by addressing (1) the role of prolonged and severe oxidative stress and insulin resistance as determinant factors in the pathogenesis of non-alcoholic fatty liver disease associated with obesity, which, with the concurrence of nutritional factors, may determine the onset of fatty liver and its progression to steatohepatitis; and (2) the development of an acute and mild pro-oxidant state by thyroid hormone administration, which elicits the redox up-regulation of the expression of proteins affording cell protection, as a preconditioning strategy against ischemia-reperfusion liver injury.
Collapse
Affiliation(s)
- Luis A Videla
- Luis A Videla, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
22
|
Aller MA, García-Fernández MI, Sánchez-Patán F, Santín L, Rioja J, Anchuelo R, Arias J, Arias JL. Plasma redox status is impaired in the portacaval shunted rat--the risk of the reduced antioxidant ability. COMPARATIVE HEPATOLOGY 2008; 7:1. [PMID: 18251997 PMCID: PMC2262055 DOI: 10.1186/1476-5926-7-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 02/05/2008] [Indexed: 12/13/2022]
Abstract
Background Portacaval shunting in rats produces a reduction of hepatic oxidant scavenging ability. Since this imbalance in hepatic oxidant/antioxidant homeostasis could coexist with systemic changes of oxidant stress/antioxidant status, plasma oxidants and antioxidant redox status in plasma of portacaval shunted-rats were determined. Results Male Wistar male: Control (n = 11) and with portacaval shunt (PCS; n = 11) were used. Plasma levels of the oxidant serum advanced oxidation protein products (AOPP), lipid hydroperoxides (LOOH), the antioxidant total thiol (GSH) and total antioxidant status (TAX) were measured. Albumin, ammonia, Aspartate-aminotransferase (AST), Alanine-aminotransferase (ALT), thiostatin and alpha-1-acid glycoprotein (α1-AGP) were also assayed 4 weeks after the operation. AOPPs were significantly higher (50.51 ± 17.87 vs. 36.25 ± 7.21 μM; p = 0.02) and TAX was significantly lower (0.65 ± 0.03 vs. 0.73 ± 0.06 mM; p = 0.007) in PCS compared to control rats. Also, there was hypoalbuminemia (2.54 ± 0.08 vs. 2.89 ± 0.18 g/dl; p = 0.0001) and hyperammonemia (274.00 ± 92.25 vs. 104.00 ± 48.05 μM; p = 0.0001) and an increase of thiostatin (0.23 ± 0.04 vs. 0.09 ± 0.01 mg/ml; p = 0.001) in rats with a portacaval shunt. The serum concentration of ammonia is correlated with albumin levels (r = 0.624; p = 0.04) and TAX correlates with liver weight (r = 0.729; p = 0.017) and albumin levels (r = 0.79; p = 0.007) Conclusion These findings suggest that in rats with a portacaval shunt a systemic reduction of oxidant scavenging ability, correlated with hyperammonemia, is principally produced. It could be hypothesized, therefore, that the reduced antioxidant defences would mediate a systemic inflammation.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fernández V, Reyes S, Bravo S, Sepúlveda R, Romanque P, Santander G, Castillo I, Varela P, Tapia G, Videla LA. Involvement of Kupffer cell-dependent signaling in T3-induced hepatocyte proliferation in vivo. Biol Chem 2007; 388:831-7. [PMID: 17655502 DOI: 10.1515/bc.2007.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid hormone-induced calorigenesis triggers liver oxidative stress with concomitant TNF-alpha production by Kupffer cells and up-regulation of gene expression. Considering that cyclin-dependent kinase-2 (CDK-2) performs essential functions for cellular proliferation, our aim was to test the hypothesis that l-3,3',5-triiodothyronine (T(3)) stimulates liver cell proliferation by upstream mechanisms involving CDK-2 expression dependent on Kupffer cell signaling. T(3) administration induced a calorigenic response at 60-70 h after treatment, with increased TNF-alpha generation and hepatic oxidative stress status, as shown by enhanced protein carbonyls and decreased glutathione content compared to controls. In this time interval, liver c-jun N-terminal kinase (JNK) phosphorylation, activator protein-1 (AP-1) DNA binding, and CDK-2 expression were enhanced, with concomitantly higher levels of the proliferation markers Ki-67 and proliferating cell nuclear antigen. These changes are abolished by administration of the Kupffer cell inactivator gadolinium chloride prior to T(3) treatment. We conclude that T(3) administration triggers liver CDK-2 expression and cellular proliferation through a cascade associated with Kupffer cell-dependent TNF-alpha generation, JNK phosphorylation, and AP-1 activation. Since CDK-2 promotes phase S progression within the cell cycle, this response may constitute a major mechanism involved in T(3)-induced liver preconditioning to ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Virginia Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chattopadhyay S, Sahoo DK, Subudhi U, Chainy GBN. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:383-91. [PMID: 17561443 DOI: 10.1016/j.cbpc.2007.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 11/23/2022]
Abstract
Our objective was to elucidate a temporal profile of expression of antioxidant enzymes (AOEs) and glutathione redox status in rat liver under the influence of thyroid hormone (T3). The key AOEs, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx-1) and glutathione reductase (GR) were characterized at transcriptional, translational and biochemical levels after 24 h, 72 h and 120 h of treatment. In general, catalase and GPx-1 showed opposite responses in both transcription and translation. T3 treatment caused tightly coordinated downregulation of catalase. However, transcriptional changes of other AOEs over the different durations of treatment were not always reflected in their respective protein and/or activity levels. Discordance among transcripts, proteins and biological activities of AOEs suggested differential regulation by T3 at multiple levels. Reduced and oxidized glutathione were depleted in hyperthyroid rats. Though T3 exerted a positive stimulatory effect on glucose-6-phosphate dehydrogenase, it was not sufficient to compensate for massive glutathione depletion and impaired activities of GPx-1, GR and GST, disturbing the cellular redox status in the process. Apparently, while transcriptional induction of AOEs might be adaptive responses in conditions of oxidative stress, yet post-transcriptional regulation appeared to be the predominant mechanism of regulation of AOE expression.
Collapse
Affiliation(s)
- S Chattopadhyay
- Department of Zoology, Utkal University, Bhubaneswar 751 004, India
| | | | | | | |
Collapse
|
25
|
Beigel J, Fella K, Kramer PJ, Kroeger M, Hewitt P. Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol In Vitro 2007; 22:171-81. [PMID: 17768030 DOI: 10.1016/j.tiv.2007.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/02/2007] [Accepted: 06/27/2007] [Indexed: 11/27/2022]
Abstract
The use of animal models in pharmaceutical research is a costly and sometimes misleading method of generating toxicity data and hence predicting human safety. Therefore, in vitro test systems, such as primary rat hepatocytes, and the developing genomics and proteomics technologies, are playing an increasingly important role in toxicological research. Gene and protein expression analysis were investigated in a time series (up to 5 days) of primary rat hepatocytes cultured on collagen coated dishes. Especially after 24h, a significant down-regulation of many important Phase I and Phase II enzymes (e.g., cytochrome P450's, glutathione-S-transferases, sulfotransferases) involved in xenobiotic metabolism, and antioxidative enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase) was observed. Acute-phase-response enzymes were frequently up-regulated (e.g., LPS binding protein, alpha-2-macro-globulin, ferritin, serine proteinase inhibitor B, haptoglobin), which is likely to be a result of cellular stress caused by the cell isolation procedure (perfusion) itself. A parallel observation was the increased expression of several structural genes (e.g., beta-actin, alpha-tubulin, vimentin), possibly caused by other proliferating cell types in the culture, such as fibroblasts or alternatively by hepatocyte dedifferentiation. In conclusion, the careful interpretation of data derived from this in vitro system indicates that primary hepatocytes can be successfully used for short-term toxicity studies up to 24h. However, culturing conditions need to be further optimized to reduce the massive changes of gene and protein expression of long-term cultured hepatocytes to allow practical applications as a long-term toxicity test system.
Collapse
Affiliation(s)
- Juergen Beigel
- Molecular Toxicology, Institute of Toxicology, Merck KGaA, 64271 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
26
|
Fernández V, Castillo I, Tapia G, Romanque P, Uribe-Echevarría S, Uribe M, Cartier-Ugarte D, Santander G, Vial MT, Videla LA. Thyroid hormone preconditioning: protection against ischemia-reperfusion liver injury in the rat. Hepatology 2007; 45:170-7. [PMID: 17187421 DOI: 10.1002/hep.21476] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Recently, we reported that oxidative stress due to 3,3',5-triiodothyronine (T(3))-induced calorigenesis up-regulates the hepatic expression of mediators promoting cell protection. In this study, T(3) administration in rats (single dose of 0.1 mg/kg intraperitoneally) induced significant depletion of reduced liver glutathione (GSH), with higher protein oxidation, O(2) consumption, and Kupffer cell function (carbon phagocytosis and carbon-induced O(2) uptake). These changes occurred within a period of 36 hours of T(3) treatment in animals showing normal liver histology and lack of alteration in serum AST and ALT levels. Partial hepatic ischemia-reperfusion (IR) (1 h of ischemia via vascular clamping and 20 h reperfusion) led to 11-fold and 42-fold increases in serum AST and ALT levels, respectively, and significant changes in liver histology, with a 36% decrease in liver GSH content and a 133% increase in that of protein carbonyls. T(3) administration in a time window of 48 hours was substantially protective against hepatic IR injury, with a net 60% and 90% reduction in liver GSH depletion and protein oxidation induced by IR, respectively. Liver IR led to decreased DNA binding of nuclear factor-kappaB (NF-kappaB) (54%) and signal transducer and activator of transcription 3 (STAT3) (53%) (electromobility shift assay), with 50% diminution in the protein expression of haptoglobin (Western blot), changes that were normalized by T(3) preconditioning. CONCLUSION T(3) administration involving transient oxidative stress in the liver exerts significant protection against IR injury, a novel preconditioning maneuver that is associated with NF-kappaB and STAT3 activation and acute-phase response.
Collapse
Affiliation(s)
- Virginia Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|