1
|
Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan W, Wang Y, Liu K, Guo Z, Tang H, Fan K, Jiang W. A Cardiac-Targeting and Anchoring Bimetallic Cluster Nanozyme Alleviates Chemotherapy-Induced Cardiac Ferroptosis and PANoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405597. [PMID: 39467094 DOI: 10.1002/advs.202405597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Doxorubicin (DOX), a potent antineoplastic agent, is commonly associated with cardiotoxicity, necessitating the development of strategies to reduce its adverse effects on cardiac function. Previous research has demonstrated a strong correlation between DOX-induced cardiotoxicity and the activation of oxidative stress pathways. This work introduces a novel antioxidant therapeutic approach, utilizing libraries of tannic acid and N-acetyl-L-cysteine-protected bimetallic cluster nanozymes. Through extensive screening for antioxidative enzyme-like activity, an optimal bimetallic nanozyme (AuRu) is identified that possess remarkable antioxidant characteristics, mimicking catalase-like enzymes. Theoretical calculations reveal the surface interactions of the prepared nanozymes that simulate the hydrogen peroxide decomposition process, showing that these bimetallic nanozymes readily undergo OH⁻ adsorption and O₂ desorption. To enhance cardiac targeting, the atrial natriuretic peptide is conjugated to the AuRu nanozyme. These cardiac-targeted bimetallic cluster nanozymes, with their anchoring capability, effectively reduce DOX-induced cardiomyocyte ferroptosis and PANoptosis without compromising tumor treatment efficacy. Thus, the therapeutic approach demonstrates significant reductions in chemotherapy-induced cardiac cell death and improvements in cardiac function, accompanied by exceptional in vivo biocompatibility and stability. This study presents a promising avenue for preventing chemotherapy-induced cardiotoxicity, offering potential clinical benefits for cancer patients.
Collapse
Affiliation(s)
- Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Xiaohan Ma
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Yanan Yu
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Yangfan Xiao
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Lu Chen
- Department of Cardiovascular Diseases the First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weining Yuan
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Keyu Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Wei Jiang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhang S, Zhang G, Wang P, Wang L, Fang B, Huang J. Effect of Selenium and Selenoproteins on Radiation Resistance. Nutrients 2024; 16:2902. [PMID: 39275218 PMCID: PMC11396913 DOI: 10.3390/nu16172902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
With the advancement of radiological medicine and nuclear industry technology, radiation is increasingly used to diagnose human health disorders. However, large-scale nuclear leakage has heightened concerns about the impact on human organs and tissues. Selenium is an essential trace element that functions in the body mainly in the form of selenoproteins. Selenium and selenoproteins can protect against radiation by stimulating antioxidant actions, DNA repair functions, and immune enhancement. While studies on reducing radiation through antioxidants have been conducted for many years, the underlying mechanisms of selenium and selenoproteins as significant antioxidants in radiation damage mitigation remain incompletely understood. Therefore, this paper aims to provide new insights into developing safe and effective radiation protection agents by summarizing the anti-radiation mechanism of selenium and selenoproteins.
Collapse
Affiliation(s)
- Shidi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guowei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Limited Liability Company of Hongda Salt Industry, Hoboksar Mongol Autonomous County, Tacheng 834700, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Qianqian R, Peng Z, Licai Z, Ruizhi Z, Tianhe Y, Xiangwen X, Chuansheng Z, Fan Y. A longitudinal evaluation of oxidative stress - mitochondrial dysfunction - ferroptosis genes in anthracycline-induced cardiotoxicity. BMC Cardiovasc Disord 2024; 24:350. [PMID: 38987722 PMCID: PMC11234563 DOI: 10.1186/s12872-024-03967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Antineoplastic medications, including doxorubicin, idarubicin, and epirubicin, have been found to adversely affect the heart due to oxidative stress - mitochondrial dysfunction - ferroptosis (ORMFs), which act as contributing attributes to anthracycline-induced cardiotoxicity. To better understand this phenomenon, the time-resolved measurements of ORMFS genes were analyzed in this study. METHODS The effect of three anthracycline drugs on ORMFs genes was studied using a human 3D cardiac microtissue cell model. Transcriptome data was collected over 14 days at two doses (therapeutic and toxic). WGCNA identified key module-related genes, and functional enrichment analysis investigated the biological processes quantified by ssGSEA, such as immune cell infiltration and angiogenesis. Biopsies were collected from heart failure patients and control subjects. GSE59672 and GSE2965 were collected for validation. Molecular docking was used to identify anthracyclines's interaction with key genes. RESULTS The ORMFs genes were screened in vivo or in vitro. Using WGCNA, six co-expressed gene modules were grouped, with MEblue emerging as the most significant module. Eight key genes intersecting the blue module with the dynamic response genes were obtained: CD36, CDH5, CHI3L1, HBA2, HSD11B1, OGN, RPL8, and VWF. Compared with control samples, all key genes except RPL8 were down-regulated in vitro ANT treatment settings, and their expression levels varied over time. According to functional analyses, the key module-related genes were engaged in angiogenesis and the immune system pathways. In all ANT-treated settings, ssGSEA demonstrated a significant down-regulation of angiogenesis score and immune cell activity, including Activated CD4 T cell, Immature B cell, Memory B cell, Natural killer cell, Type 1 T helper cell, and Type 2 T helper cell. Molecular docking revealed that RPL8 and CHI3L1 show significant binding affinity for anthracyclines. CONCLUSION This study focuses on the dynamic characteristics of ORMFs genes in both human cardiac microtissues and cardiac biopsies from ANT-treated patients. It has been highlighted that ORMFs genes may contribute to immune infiltration and angiogenesis in cases of anthracycline-induced cardiotoxicity. A thorough understanding of these genes could potentially lead to improved diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Ren Qianqian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhu Peng
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhang Licai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhang Ruizhi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ye Tianhe
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xia Xiangwen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zheng Chuansheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Yang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
4
|
Reis-Mendes A, Ferreira M, Padrão AI, Duarte JA, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. The Role of Nrf2 and Inflammation on the Dissimilar Cardiotoxicity of Doxorubicin in Two-Time Points: a Cardio-Oncology In Vivo Study Through Time. Inflammation 2024; 47:264-284. [PMID: 37833616 PMCID: PMC10799157 DOI: 10.1007/s10753-023-01908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model. Adult CD-1 male mice received a cumulative dose of 9.0 mg/kg of DOX (2 biweekly intraperitoneal injections (ip), for 3 weeks). One week (1W) or 5 months (5M) after the last DOX administration, the heart was collected. One week after DOX, a significant increase in p62, tumor necrosis factor receptor (TNFR) 2, glutathione peroxidase 1, catalase, inducible nitric oxide synthase (iNOS) cardiac expression, and a trend towards an increase in interleukin (IL)-6, TNFR1, and B-cell lymphoma 2 associated X (Bax) expression was observed. Moreover, DOX induced a decrease on nuclear factor erythroid-2 related factor 2 (Nrf2) cardiac expression. In both 1W and 5M, DOX led to a high density of infiltrating M1 macrophages, but only the 1W-DOX group had a significantly higher number of nuclear factor κB (NF-κB) p65 immunopositive cells. As late effects (5M), an increase in Nrf2, myeloperoxidase, IL-33, tumor necrosis factor-α (TNF-α), superoxide dismutase 2 (SOD2) expression, and a trend towards increased catalase expression were observed. Moreover, B-cell lymphoma 2 (Bcl-2), cyclooxygenase-2 (COX-2), and carbonylated proteins expression decreased, and a trend towards decreased p38 mitogen-activated protein kinase (MAPK) expression were seen. Our study demonstrated that DOX induces adverse outcome pathways related to inflammation and oxidative stress, although activating different time-dependent response mechanisms.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - José Alberto Duarte
- Research Center in Physical Activity, Faculty of Sport, University of Porto, Porto, Portugal
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
6
|
Reis-Mendes A, Ferreira M, Duarte JA, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. The role of inflammation and antioxidant defenses in the cardiotoxicity of doxorubicin in elderly CD-1 male mice. Arch Toxicol 2023; 97:3163-3177. [PMID: 37676301 PMCID: PMC10567829 DOI: 10.1007/s00204-023-03586-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent used against several cancer types. However, due to its cardiotoxic adverse effects, the use of this drug may be also life-threatening. Although most cancer patients are elderly, they are poorly represented and evaluated in pre-clinical and clinical studies. Considering this, the present work aims to evaluate inflammation and oxidative stress as the main mechanisms of DOX-induced cardiotoxicity, in an innovative approach using an experimental model constituted of elderly animals treated with a clinically relevant human cumulative dose of DOX. Elderly (18-20 months) CD-1 male mice received biweekly DOX administrations, for 3 weeks, to reach a cumulative dose of 9.0 mg/kg. One week (1W) or two months (2 M) after the last DOX administration, the heart was collected to determine both drug's short and longer cardiac adverse effects. The obtained results showed that DOX causes cardiac histological damage and fibrosis at both time points. In the 1W-DOX group, the number of nuclear factor kappa B (NF-κB) p65 immunopositive cells increased and a trend toward increased NF-κB p65 expression was seen. An increase of inducible nitric oxide synthase (iNOS) and interleukin (IL)-33 and a trend toward increased IL-6 and B-cell lymphoma-2-associated X (Bax) expression were seen after DOX. In the same group, a decrease in IL-1β, p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3)-I, p38 mitogen-activated protein kinase (MAPK) expression was observed. Contrariwise, the animals sacrificed 2 M after DOX showed a significant increase in glutathione peroxidase 1 and Bax expression with persistent cardiac damage and fibrosis, while carbonylated proteins, erythroid-2-related factor 2 (Nrf2), NF-κB p65, myeloperoxidase, LC3-I, and LC3-II expression decreased. In conclusion, our study demonstrated that in an elderly mouse population, DOX induces cardiac inflammation, autophagy, and apoptosis in the heart in the short term. When kept for a longer period, oxidative-stress-linked pathways remained altered, as well as autophagy markers and tissue damage after DOX treatment, emphasizing the need for continuous post-treatment cardiac monitoring.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Mariana Ferreira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José Alberto Duarte
- Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, 4200-450, Porto, Portugal
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, 4050-313, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Ilhan I, Asci H, Tepebasi MY, Imeci OB, Sevuk MA, Temel EN, Ozmen O. Selenium exerts protective effects on inflammatory cardiovascular damage: molecular aspects via SIRT1/p53 and Cyt-c/Cas-3 pathways. Mol Biol Rep 2023; 50:1627-1637. [PMID: 36562934 DOI: 10.1007/s11033-022-08192-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Systemic inflammatory response could affect many systems. Cardiac dysfunction develops due to cardiovascular system damage and could be mortal. Selenium is a trace element that can be used as a dietary supplement and has antioxidant, anti-inflammatory, and anti-apoptotic properties. This study aims to evaluate the protective effects of selenium on cardiovascular damage via silenced information regulator 1 (SIRT1)/p53 and cytochrome C (Cyt-c)/ caspase-3 (Cas-3) pathways. METHODS AND RESULTS Thirty-two rats were randomly divided into 4 groups as control, LPS (0.1 mg/kg, intraperitoneally(i.p.), 2-7 days) and LPS + Selenium (LPS-0.1 mg/kg, i.p., 2-7 days, selenium - 100 µg/kg, i.p., 1-7 days) and selenium (100 µg/kg, i.p., 1-7 days) group. On the 8th day of the experiment, rats were sacrificed. Blood samples and half of the left ventricles were collected for biochemical and genetic analysis. The remaining left ventricles and aorta were taken for histological and immunohistochemical analysis. In the LPS group myocardial hemorrhages, hyperemia, and endothelial cell loss were observed. Also, Cas-3 and vascular endothelial growth factor (VEGF) expressions; creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), ischemia modified albumin (IMA), total oxidant status (TOS), oxidative stress index (OSI) levels; p53, Cyt-c, Cas-3 mRNA expressions increased while total antioxidant status (TAS) levels, glutathione peroxidase (GPx) activity, SIRT1 mRNA expression decreased. Selenium treatment reversed all these changes. CONCLUSION Selenium showed protective effects on cardiovascular injury via regulating SIRT1/p53 and Cyt-c/Cas-3 pathways. This study enlightened the possible usage of selenium on cardiotoxicity.
Collapse
Affiliation(s)
- Ilter Ilhan
- Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, 32300, Isparta, Turkey.
| | - Halil Asci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Muhammet Yusuf Tepebasi
- Faculty of Medicine, Department of Medical Genetic, Suleyman Demirel University, Isparta, Turkey
| | - Orhan Berk Imeci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Abdulkadir Sevuk
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Esra Nurlu Temel
- Faculty of Medicine, Department of Infectious Disease, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Faculty of Veterinary, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
8
|
Metformin Alleviates Epirubicin-Induced Endothelial Impairment by Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010343. [PMID: 36613786 PMCID: PMC9820471 DOI: 10.3390/ijms24010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.
Collapse
|
9
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Mulberrin Confers Protection against Doxorubicin-Induced Cardiotoxicity via Regulating AKT Signaling Pathways in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2967142. [PMID: 35847586 PMCID: PMC9283020 DOI: 10.1155/2022/2967142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
Doxorubicin (DOX) is an antitumor anthracycline, but its clinical use was largely limited by its cardiac toxicity. DOX-induced oxidative damage and cardiomyocyte loss have been recognized as the potential causative mechanisms of this cardiac toxicity. Growing interests are raised on mulberrin (Mul) for its wide spectrum of biological activities, including antioxidative and anti-inflammatory properties. The aim of this study was to investigate the effect of Mul on DOX-induced heart injury and to clarify the underlying mechanism. Mice were given daily 60 mg/kg of Mul via gavage for 10 days. Mice received an intraperitoneal injection of DOX to mimic the model of DOX-related acute cardiac injury at the seventh day of Mul treatment. Mul-treated mice had an attenuated cardiac injured response and improved cardiac function after DOX injection. DOX-induced oxidative damage, inflammation accumulation, and myocardial apoptosis were largely attenuated by the treatment of Mul. Activated protein kinase B (AKT) activation was essential for the protective effects of Mul against DOX-induced cardiac toxicity, and AKT inactivation abolished Mul-mediated protective effects against DOX cardiotoxicity. In conclusion, Mul treatment attenuated DOX-induced cardiac toxicity via activation of the AKT signaling pathway. Mul might be a promising therapeutic agent against DOX-induced cardiac toxicity.
Collapse
|
11
|
Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer. Eur J Pharm Sci 2022; 174:106207. [DOI: 10.1016/j.ejps.2022.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
12
|
Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int J Biol Sci 2022; 18:760-770. [PMID: 35002523 PMCID: PMC8741835 DOI: 10.7150/ijbs.65258] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
13
|
Zhang L, Jia R, Li H, Yu H, Ren K, Jia S, Li Y, Wang Q. Insight into the Double-Edged Role of Ferroptosis in Disease. Biomolecules 2021; 11:1790. [PMID: 34944434 PMCID: PMC8699194 DOI: 10.3390/biom11121790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis, a newly described type of iron-dependent programmed cell death that is distinct from apoptosis, necroptosis, and other types of cell death, is involved in lipid peroxidation (LP), reactive oxygen species (ROS) production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury, cancer, hepatic fibrosis, Parkinson's disease, and Alzheimer's disease. Therefore, ferroptosis has become one of the research hotspots for disease treatment and attracted extensive attention in recent years. This review mainly summarizes the relationship between ferroptosis and various diseases classified by the system, including the urinary system, digestive system, respiratory system, nervous system. In addition, the role and molecular mechanism of multiple inhibitors and inducers for ferroptosis are further elucidated. A deeper understanding of the relationship between ferroptosis and multiple diseases may provide new strategies for researching diseases and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Ruohan Jia
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huizhen Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huarun Yu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Keke Ren
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Shuangshuang Jia
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
14
|
Handy DE, Joseph J, Loscalzo J. Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology. Nutrients 2021; 13:nu13093238. [PMID: 34579115 PMCID: PMC8471878 DOI: 10.3390/nu13093238] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Selenium (Se) is a trace nutrient that promotes human health through its incorporation into selenoproteins in the form of the redox-active amino acid selenocysteine (Sec). There are 25 selenoproteins in humans, and many of them play essential roles in the protection against oxidative stress. Selenoproteins, such as glutathione peroxidase and thioredoxin reductase, play an important role in the reduction of hydrogen and lipid hydroperoxides, and regulate the redox status of Cys in proteins. Emerging evidence suggests a role for endoplasmic reticulum selenoproteins, such as selenoproteins K, S, and T, in mediating redox homeostasis, protein modifications, and endoplasmic reticulum stress. Selenoprotein P, which functions as a carrier of Se to tissues, also participates in regulating cellular reactive oxygen species. Cellular reactive oxygen species are essential for regulating cell growth and proliferation, protein folding, and normal mitochondrial function, but their excess causes cell damage and mitochondrial dysfunction, and promotes inflammatory responses. Experimental evidence indicates a role for individual selenoproteins in cardiovascular diseases, primarily by modulating the damaging effects of reactive oxygen species. This review examines the roles that selenoproteins play in regulating vascular and cardiac function in health and disease, highlighting their antioxidant and redox actions in these processes.
Collapse
Affiliation(s)
- Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Correspondence: ; Tel.: +1-617-525-4845
| | - Jacob Joseph
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
| |
Collapse
|
15
|
Mureşan M, Olteanu D, Filip GA, Clichici S, Baldea I, Jurca T, Pallag A, Marian E, Frum A, Gligor FG, Svera P, Stancu B, Vicaș L. Comparative Study of the Pharmacological Properties and Biological Effects of Polygonum aviculare L. herba Extract-Entrapped Liposomes versus Quercetin-Entrapped Liposomes on Doxorubicin-Induced Toxicity on HUVECs. Pharmaceutics 2021; 13:pharmaceutics13091418. [PMID: 34575493 PMCID: PMC8467102 DOI: 10.3390/pharmaceutics13091418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the comparative biological effects of Polygonum aviculare L. herba (PAH) extract and quercetin-entrapped liposomes on doxorubicin (Doxo)-induced toxicity in HUVECs. HUVECs were treated with two formulations of liposomes loaded with PAH extract (L5 and L6) and two formulations of liposomes loaded with quercetin (L3 prepared with phosphatidylcholine and L4 prepared with phosphatidylserine). The results obtained with atomic force microscopy, zeta potential and entrapment liposome efficiency confirmed the interactions of the liposomes with PAH or free quercetin and a controlled release of flavonoids entrapped in all the liposomes. Doxo decreased the cell viability and induced oxidative stress, inflammation, DNA lesions and apoptosis in parallel with the activation of Nrf2 and NF-kB. Free quercetin, L3 and L4 inhibited the oxidative stress and inflammation and reduced apoptosis, particularly L3. Additionally, these compounds diminished the Nrf2 and NF-kB expressions and DNA lesions, principally L4. PAH extract, L5 and L6 exerted antioxidant and anti-inflammatory activities, reduced γH2AX formation and inhibited extrinsic apoptosis and transcription factors activation but to a lesser extent. The loading of quercetin in liposomes increased the cell viability and exerted better endothelial protection compared to free quercetin, especially L3. The liposomes with PAH extract had moderate efficiency, mainly due to the antioxidant and anti-inflammatory effects and the inhibition of extrinsic apoptosis.
Collapse
Affiliation(s)
- Mariana Mureşan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
- Correspondence: or
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (D.O.); (S.C.); (I.B.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| | - Adina Frum
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No. 2A, 550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Paula Svera
- INCEMC-National Institute for Research and Development in Electrochemistry and Condensed Matter-Timisoara, No. 144 Dr. A. Paunescu Podeanu Street, 300569 Timisoara, Romania;
| | - Bogdan Stancu
- 2nd Department of General Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (T.J.); (A.P.); (E.M.); (L.V.)
| |
Collapse
|
16
|
Hadi NA, Mahmood RI, Al-Saffar AZ. Evaluation of antioxidant enzyme activity in doxorubicin treated breast cancer patients in Iraq: A molecular and cytotoxic study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
N-Alkylation of Anthracycline Antibiotics by Natural Sesquiterpene Lactones as a Way to Obtain Antitumor Agents with Reduced Side Effects. Biomedicines 2021; 9:biomedicines9050547. [PMID: 34068225 PMCID: PMC8153121 DOI: 10.3390/biomedicines9050547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Anthracycline antitumor antibiotics are one of the promising classes of chemotherapeutic agents for cancer treatment. The main deterrent to their use is high toxicity to a healthy environment, including cumulative cardiotoxicity. In our work, bipharmacophore molecules containing in their structure a fragment of the known anthracycline antibiotics daunorubicin and doxorubicin and natural sesquiterpene lactones were obtained for the first time. When studying the biological activity of the synthesized compounds, it was found that with equal and, in some cases, higher cytotoxicity and glycolysis inhibition by anthracycline antibiotics conjugates with sesquiterpene lactones in comparison with doxo- and daunorubicin, a reduced damaging effect on the functioning of rat heart mitochondria was observed. The results obtained allow us to confirm the assumption that the chemical modification of the anthracycline antibiotics molecules doxo- and daunorubicin by natural sesquiterpene lactones can be a promising strategy for creating potential antitumor chemotherapeutic drugs with a pronounced cytotoxic effect on tumor cells and a reduced damaging effect on healthy cells of the human organism.
Collapse
|
18
|
Dominic A, Hamilton D, Abe JI. Mitochondria and chronic effects of cancer therapeutics: The clinical implications. J Thromb Thrombolysis 2020; 51:884-889. [PMID: 33079380 DOI: 10.1007/s11239-020-02313-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
One of the major mechanisms of action of chemo-radiation is to induce cellular senescence, which exerts crucial roles in age-related pathology. The concept of senescence is evolved, and the novel understanding of senescence-associated reprogramming/stemness has emerged. This new concept emphasizes senescence as not only cell cycle arrest but describes that subsets of senescent cells induced by chemotherapy can re-enter cell cycles, proliferate rapidly, and acquire "stemness" status. Cancer therapeutics, including chemo-radiation triggers toxicity effects through damaging mitochondria, primarily through the upregulation of mtROS production leading to subsequent mtDNA and telomeric DNA damage elicitng DNA damage responses (DDR). The ultimate goal of this review is to highlight the new concept of senescence-associated stemness that is induced by cancer treatment and its adverse effects on the vascular system. We will describe how chemo-radiation exerts toxicity effects by simultaneously producing reactive oxygen species in mitochondria and promoting DDR in the nucleus. We discuss the potential of clinical targeting poly (ADP-ribose) polymerase which might prevent downstream mitochondrial dysfunction and confer protection to cancer survivors. Overall we emphasize the importance of recognizing the consequences of cardio-toxic effects of several cancer treatments and therefore developing personalized therapeutic approaches to screen for inflammatory and cardiac testing for better patient survival.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Dale Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Upadhyay S, Gupta KB, Mantha AK, Dhiman M. A short review: Doxorubicin and its effect on cardiac proteins. J Cell Biochem 2020; 122:153-165. [PMID: 32924182 DOI: 10.1002/jcb.29840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a boon for cancer-suffering patients. However, the undesirable effect on health on vital organs, especially the heart, is a limiting factor, resulting in an increased number of patients with cardiac dysfunction. The present review focuses on the contractile machinery and associated factors, which get affected due to DOX toxicity in chemo-patients for which they are kept under life-long investigation for cardiac function. DOX-induced oxidative stress disrupts the integrity of cardiac contractile muscle proteins that alter the rhythmic mechanism and oxygen consumption rate of the heart. DOX is an oxidant and it is further discussed that oxidative stress prompts the damage of contractile components and associated factors, which include Ca2+ load through Ca2+ ATPase, SERCA, ryanodine receptor-2, phospholamban, and calsequestrin, which ultimately results in left ventricular ejection and dilation. Based on data and evidence, the associated proteins can be considered as clinical markers to develop medications for patients. Even with the advancement of various diagnosing tools and modified drugs to mitigate DOX-induced cardiotoxicity, the risk could not be surmounted with survivors of cancer.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
20
|
The role of metabolic diseases in cardiotoxicity associated with cancer therapy: What we know, what we would know. Life Sci 2020; 255:117843. [PMID: 32464123 DOI: 10.1016/j.lfs.2020.117843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are known risk factors for cardiovascular (CV) diseases. Thus, patients with those comorbidities could be at increased risk of experiencing cardiotoxicity related to treatment with Anthracyclines and the other new generation targeted anticancer drugs. However, investigations addressing the mechanisms underlying the development of CV complications and poor outcome in such cohort of patients are still few and controversial. Given the importance of a personalized approach against chemotherapy-induced cardiomyopathy, this review summarizes our current knowledge on the pathophysiology of chemotherapy-induced cardiomyopathy and its association with obesity and type 2 diabetes. Along with clinical evidences, future perspectives of preclinical research around this field and its role in addressing important open questions, including the development of more proactive strategies for prevention, and treatment of cardiotoxicity during and after chemotherapy in the presence of metabolic diseases, is also presented.
Collapse
|
21
|
Rocca C, Pasqua T, Cerra MC, Angelone T. Cardiac Damage in Anthracyclines Therapy: Focus on Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 32:1081-1097. [PMID: 31928066 DOI: 10.1089/ars.2020.8016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their serious side effects, anthracyclines (ANTs) are the most prescribed chemotherapeutic drugs because of their strong efficacy in both solid and hematological tumors. A major limitation to ANTs clinical application is the severe cardiotoxicity observed both acutely and chronically. The mechanism underlying cardiac dysfunction under chemotherapy is mainly dependent on the generation of oxidative stress and systemic inflammation, both of which lead to progressive cardiomyopathy and heart failure. Recent Advances: Over the years, the iatrogenic ANTs-induced cardiotoxicity was believed to be simply given by iron metabolism and reactive oxygen species production; however, several experimental data indicate that ANTs may use alternative damaging mechanisms, such as topoisomerase 2β inhibition, inflammation, pyroptosis, immunometabolism, and autophagy. Critical Issues: In this review, we aimed at discussing ANTs-induced cardiac injury from different points of view, updating and focusing on oxidative stress and inflammation, since these pathways are not exclusive or independent from each other but they together importantly contribute to the complexity of ANTs-induced multifactorial cardiotoxicity. Future Directions: A deeper understanding of the mechanistic signaling leading to ANTs side effects could reveal crucial targeting molecules, thus representing strategic knowledge to promote better therapeutic efficacy and lower cardiotoxicity during clinical application.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
22
|
Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020; 5:132747. [PMID: 32376803 PMCID: PMC7253028 DOI: 10.1172/jci.insight.132747] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX), a chemotherapeutic agent, induces a cardiotoxicity referred to as doxorubicin-induced cardiomyopathy (DIC). This cardiotoxicity often limits chemotherapy for malignancies and is associated with poor prognosis. However, the molecular mechanism underlying this cardiotoxicity is yet to be fully elucidated. Here, we show that DOX downregulated glutathione peroxidase 4 (GPx4) and induced excessive lipid peroxidation through DOX-Fe2+ complex in mitochondria, leading to mitochondria-dependent ferroptosis; we also show that mitochondria-dependent ferroptosis is a major cause of DOX cardiotoxicity. In DIC mice, the left ventricular ejection fraction was significantly impaired, and fibrosis and TUNEL+ cells were induced at day 14. Additionally, GPx4, an endogenous regulator of ferroptosis, was downregulated, accompanied by the accumulation of lipid peroxides, especially in mitochondria. These cardiac impairments were ameliorated in GPx4 Tg mice and exacerbated in GPx4 heterodeletion mice. In cultured cardiomyocytes, GPx4 overexpression or iron chelation targeting Fe2+ in mitochondria prevented DOX-induced ferroptosis, demonstrating that DOX triggered ferroptosis in mitochondria. Furthermore, concomitant inhibition of ferroptosis and apoptosis with ferrostatin-1 and zVAD-FMK fully prevented DOX-induced cardiomyocyte death. Our findings suggest that mitochondria-dependent ferroptosis plays a key role in progression of DIC and that ferroptosis is the major form of regulated cell death in DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | - Shouji Matsushima
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Tomoko Koumura
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | |
Collapse
|
23
|
Doerr V, Montalvo RN, Kwon OS, Talbert EE, Hain BA, Houston FE, Smuder AJ. Prevention of Doxorubicin-Induced Autophagy Attenuates Oxidative Stress and Skeletal Muscle Dysfunction. Antioxidants (Basel) 2020; 9:antiox9030263. [PMID: 32210013 PMCID: PMC7139604 DOI: 10.3390/antiox9030263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Clinical use of the chemotherapeutic doxorubicin (DOX) promotes skeletal muscle atrophy and weakness, adversely affecting patient mobility and strength. Although the mechanisms responsible for DOX-induced skeletal muscle dysfunction remain unclear, studies implicate the significant production of reactive oxygen species (ROS) in this pathology. Supraphysiological ROS levels can enhance protein degradation via autophagy, and it is established that DOX upregulates autophagic signaling in skeletal muscle. To determine the precise contribution of accelerated autophagy to DOX-induced skeletal muscle dysfunction, we inhibited autophagy in the soleus via transduction of a dominant negative mutation of the autophagy related 5 (ATG5) protein. Targeted inhibition of autophagy prevented soleus muscle atrophy and contractile dysfunction acutely following DOX administration, which was associated with a reduction in mitochondrial ROS and maintenance of mitochondrial respiratory capacity. These beneficial modifications were potentially the result of enhanced transcription of antioxidant response element-related genes and increased antioxidant capacity. Specifically, our results showed significant upregulation of peroxisome proliferator-activated receptor gamma co-activator 1-alpha, nuclear respiratory factor-1, nuclear factor erythroid-2-related factor-2, nicotinamide-adenine dinucleotide phosphate quinone dehydrogenase-1, and catalase in the soleus with DOX treatment when autophagy was inhibited. These findings establish a significant role of autophagy in the development of oxidative stress and skeletal muscle weakness following DOX administration.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA;
| | - Erin E. Talbert
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Brian A. Hain
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fraser E. Houston
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL 33606, USA;
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (V.D.); (R.N.M.)
- Correspondence:
| |
Collapse
|
24
|
Tedesco L, Rossi F, Ragni M, Ruocco C, Brunetti D, Carruba MO, Torrente Y, Valerio A, Nisoli E. A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes. Nutrients 2020; 12:nu12020282. [PMID: 31973180 PMCID: PMC7071384 DOI: 10.3390/nu12020282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named α5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the α5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients.
Collapse
Affiliation(s)
- Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Dario Brunetti
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Michele O. Carruba
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Yvan Torrente
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
- Correspondence: (A.V.); (E.N.); Tel.: +39-030-3717504 (A.V.); +39-02-50316956 (E.N.); Fax: +39-030-3717529 (A.V.); +39-02-50317118 (E.N.)
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
- Correspondence: (A.V.); (E.N.); Tel.: +39-030-3717504 (A.V.); +39-02-50316956 (E.N.); Fax: +39-030-3717529 (A.V.); +39-02-50317118 (E.N.)
| |
Collapse
|
25
|
Phoenix dactylifera Protects against Doxorubicin-Induced Cardiotoxicity and Nephrotoxicity. Cardiol Res Pract 2019; 2019:7395239. [PMID: 31929900 PMCID: PMC6942801 DOI: 10.1155/2019/7395239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Doxorubicin (DOX) is an important anticancer drug used widely in the treatment of leukemia and lymphoma. The suitability of DOX is enhanced by its high therapeutic index, but its potential to cause cardiotoxicity and nephrotoxicity remains a prime concern in anticancer therapeutics. This study is designed to determine the effect of Phoenix dactylifera extract (PDE) on DOX-induced cardiotoxicity and nephrotoxicity. Experimental rats were divided into four groups, receiving normal saline 4 ml/kg, DOX alone, and crude extract of PDE at doses of 1 g/kg and 1.5 g/kg in the presence of DOX, respectively, for 21 days. Cardiac enzymes and serum and urinary sodium and potassium levels were evaluated which were analyzed statistically by using one-way ANOVA. Subsequently, DOX initiated changes in the level of cardiac markers CK-MB, LDH, and troponin I, which were notably reversed by PDE. PDE was also effective against serum and urinary sodium and urinary potassium and protected against DOX-induced nephrotoxicity. Groups treated with different doses of PDE showed marked decrease in levels of cardiac and renal markers. The study concluded that the PDE extract possesses protective effects against DOX-induced cardiotoxicity and nephrotoxicity.
Collapse
|
26
|
Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9474823. [PMID: 31885826 PMCID: PMC6914999 DOI: 10.1155/2019/9474823] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this investigation, we examined the effect of anthracycline antibiotics on oxygen radical metabolism in Ehrlich tumor cells. In tumor microsomes and nuclei, doxorubicin increased superoxide anion production in a dose-dependent fashion that appeared to follow saturation kinetics; the apparent K m and V max for superoxide formation by these organelles was 124.9 μM and 22.6 nmol/min/mg, and 103.4 μM and 4.8 nmol/min/mg, respectively. In both tumor microsomes and nuclei, superoxide formation required NADPH as a cofactor, was accompanied by the formation of hydrogen peroxide, and resulted from the transfer of electrons from NADPH to the doxorubicin quinone by NADPH:cytochrome P-450 reductase (NADPH:ferricytochrome oxidoreductase, EC 1.6.2.4). Anthracycline antibiotics also significantly enhanced superoxide anion production by tumor mitochondria with an apparent K m and V max for doxorubicin of 123.2 μM and 14.7 nmol/min/mg. However, drug-stimulated superoxide production by mitochondria required NADH and was increased by rotenone, suggesting that the proximal portion of the electron transport chain in tumor cells was responsible for reduction of the doxorubicin quinone at this site. The net rate of drug-related oxygen radical production was also determined for intact Ehrlich tumor cells; in this system, treatment with doxorubicin produced a dose-related increase in cyanide-resistant respiration that was enhanced by changes in intracellular reducing equivalents. Finally, we found that in the presence of iron, treatment with doxorubicin significantly increased the production of formaldehyde from dimethyl sulfoxide, an indication that the hydroxyl radical could be produced by intact tumor cells following anthracycline exposure. These experiments suggest that the anthracycline antibiotics are capable of significantly enhancing oxygen radical metabolism in Ehrlich tumor cells at multiple intracellular sites by reactions that could contribute to the cytotoxicity of this class of drugs.
Collapse
|
27
|
Control of doxorubicin-induced, reactive oxygen-related apoptosis by glutathione peroxidase 1 in cardiac fibroblasts. Biochem Biophys Rep 2019; 21:100709. [PMID: 31799454 PMCID: PMC6881695 DOI: 10.1016/j.bbrep.2019.100709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen formation plays a mechanistic role in the cardiotoxicity of doxorubicin, a chemotherapeutic agent that remains an important component of treatment programs for breast cancer and hematopoietic malignancies. To examine the role of doxorubicin-induced reactive oxygen species (ROS) in drug-related cardiac apoptosis, murine embryonic fibroblast cell lines were derived from the hearts of glutathione peroxidase 1 (Gpx-1) knockout mice. Cells from homozygous Gpx-1 knockout mice and parental animals were propagated with (Se+) and without (Se-) 100 nM sodium selenite. Activity levels of the peroxide detoxifying selenoprotein glutathione peroxidase (GSHPx) were marginally detectable (<1.6 nmol/min/mg) in fibroblasts from homozygous knockout animals whether or not cells were supplemented with selenium. GSHPx activity in Se- cells from parental murine fibroblasts was also <1.6 nmol/min/mg, whereas GSHPx levels in Se+ parental murine fibroblasts were 12.9 ± 2.7 nmol/min/mg (mean ± SE; P < 0.05). Catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase, glucose 6-phosphate dehydrogenase, and reduced glutathione activities did not differ amongst the four cell lines. Reactive oxygen production increased from 908 ± 122 (arbitrary units) for untreated control cells to 1668 ± 54 following exposure to 1 μM doxorubicin for 24 h in parental fibroblasts not supplemented with selenium (P < 0.03); reactive oxygen formation in doxorubicin-treated parental fibroblasts propagated in selenium was 996 ± 69 (P = not significant compared to untreated control cells). Reactive oxygen levels in homozygous Gpx-1 knockout fibroblasts, irrespective of selenium supplementation status, were increased and equivalent to that in selenium deficient wild type fibroblasts. When cardiac fibroblasts were exposed to doxorubicin (0.05 μM) for 96 h and examined for cell cycle alterations by flow cytometry, and apoptosis by TUNEL assay, marked G2 arrest and TUNEL positivity were observed in knockout fibroblasts in the presence or absence of supplemental selenium, and in parental fibroblasts propagated without selenium. Parental fibroblasts propagated with selenium and exposed to the same concentration of doxorubicin demonstrated modest TUNEL positivity and substantially diminished amounts of low molecular weight DNA. These results were replicated in cardiac fibroblasts exposed to doxorubicin (1–2 μM) for 2 h (to mimic clinical drug dosing schedules) and examined 96 h following initiation of drug exposure. Doxorubicin uptake in cardiac fibroblasts was similar irrespective of the mRNA expression level or activity of GSHPx. These experiments suggest that the intracellular levels of doxorubicin-induced reactive oxygen species (ROS) are modulated by GSHPx and play an important role in doxorubicin-related apoptosis and altered cell cycle progression in murine cardiac fibroblasts.
Collapse
|
28
|
Abstract
Doxorubicin-induced cardiotoxicity in childhood cancer survivors is a growing problem. The population of patients at risk for cardiovascular disease is steadily increasing, as five-year survival rates for all types of childhood cancers continue to improve. Doxorubicin affects the developing heart differently from the adult heart and in a subset of exposed patients, childhood exposure leads to late, irreversible cardiomyopathy. Notably, the prevalence of late-onset toxicity is increasing in parallel with improved survival. By the year 2020, it is estimated that there will be 500,000 childhood cancer survivors and over 50,000 of them will suffer from doxorubicin-induced cardiotoxicity. The majority of the research to-date, concentrated on childhood cancer survivors, has focused mostly on clinical outcomes through well-designed epidemiological and retrospective cohort studies. Preclinical studies have elucidated many of the cellular mechanisms that elicit acute toxicity in cardiomyocytes. However, more research is needed in the areas of early- and late-onset cardiotoxicity and more importantly improving the scientific understanding of how other cells present in the cardiac milieu are impacted by doxorubicin exposure. The overall goal of this review is to succinctly summarize the major clinical and preclinical studies focused on doxorubicin-induced cardiotoxicity. As the prevalence of patients affected by doxorubicin exposure continues to increase, it is imperative that the major gaps in existing research are identified and subsequently utilized to develop appropriate research priorities for the coming years. Well-designed preclinical research models will enhance our understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and directly lead to better diagnosis, treatment, and prevention. © 2019 American Physiological Society. Compr Physiol 9:905-931, 2019.
Collapse
Affiliation(s)
- Trevi R. Mancilla
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Brian Iskra
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Gregory J. Aune
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
29
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
30
|
Maurea N, Coppola C, Piscopo G, Galletta F, Riccio G, Esposito E, De Lorenzo C, De Laurentiis M, Spallarossa P, Mercuro G. Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors. J Cardiovasc Med (Hagerstown) 2018; 17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e19-e26. [PMID: 27183521 DOI: 10.2459/jcm.0000000000000377] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progress in cancer therapy and the increase in number of long-term survivors reveal the issue of cardiovascular side-effects of anticancer drugs. Cardiotoxicity has become a significant problem, and the risks of adverse cardiac events induced by systemic drugs need to be seriously considered. Potential cardiovascular toxicities linked to anticancer agents include arrhythmias, myocardial ischemia and infarction, hypertension, thromboembolism, left ventricular dysfunction, and heart failure. It has been shown that several anticancer drugs seriously affect the cardiovascular system, such as ErbB2 inhibitors, vascular endothelial growth factor (VEGF) inhibitors, multitargeted kinase inhibitors, Abelson murine leukemia viral oncogene homolog inhibitors, and others. Each of these agents has a different mechanism through which it affects the cardiovascular system. ErbB2 inhibitors block the ErbB4/ErbB2 heterodimerization pathway triggered by Neuregulin-1, which is essential for cardiomyocyte survival. VEGF signaling is crucial for vascular growth, but it also has a major impact on myocardial function, and the VEGF pathway is also essential for maintenance of cardiovascular homeostasis. Drugs that inhibit the VEGF signaling pathway lead to a net reduction in capillary density and loss of contractile function. Here, we review the mechanisms and pathophysiology of the most significant cardiotoxic effects of ErbB2 inhibitors and antiangiogenic drugs. Moreover, we highlight the role of cardioncology in recognizing these toxicities, developing strategies to prevent or minimize cardiovascular toxicity, and reducing long-term cardiotoxic effects.
Collapse
Affiliation(s)
- Nicola Maurea
- aDivision of Cardiology, Istituto Nazionale per lo Studio e la Cura dei Tumor 'Fondazione Giovanni Pascale' - IRCCS bCEINGE Biotecnologie Avanzate S.C.A.R.L cDepartment of Breast Surgery and Cancer Prevention, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS dDepartment of Molecular Medicine and Medical Biotechnology, University 'Federico II' eDepartment of Senology, Division of Breast Oncology Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Naples fClinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa gDepartment of Medical Sciences 'Mario Aresu', University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baghbani F, Chegeni M, Moztarzadeh F, Mohandesi JA, Mokhtari-Dizaji M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:698-707. [DOI: 10.1016/j.msec.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/04/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023]
|
32
|
Handy DE, Loscalzo J. Responses to reductive stress in the cardiovascular system. Free Radic Biol Med 2017; 109:114-124. [PMID: 27940350 PMCID: PMC5462861 DOI: 10.1016/j.freeradbiomed.2016.12.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
Abstract
There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA.
| |
Collapse
|
33
|
Wang J, Wu HJ, Zhou CZ, Wang H. Sulfated polysaccharide-protein complex sensitizes doxorubicin-induced apoptosis of breast cancer cells in vitro and in vivo. Exp Ther Med 2016; 12:2169-2176. [PMID: 27698706 PMCID: PMC5038368 DOI: 10.3892/etm.2016.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the effect of sulfated polysaccharide-protein complex (SPPC) on the antitumor effect of doxorubicin (Dox) on MDA-MB-231 breast cancer cells in vitro and in vivo. MTT and Annexin V/propidium iodide staining assays demonstrated that SPPC selectively sensitized MDA-MB-231 cells to Dox-induced cytotoxicity. The half maximal inhibitory concentration of Dox against MDA-MB-231 cells was decreased from 5.3 to 1.5 µM when it was used concomitantly with 5 µM SPPC. SPPC potentiated Dox-induced apoptosis in breast cancer cells via the mitochondrial apoptosis signaling pathway by activating caspase-3 and caspase-9. Notably, the caspase inhibitor Z-VAD-fmk diminished the effect of SPPC on Dox-mediated apoptosis. Furthermore, combination treatment with SPPC and Dox markedly reduced the growth of breast cancer xenografts in mice. The present study demonstrated that SPPC was able to enhance the antitumor effect of Dox on breast cancer cells, thus suggesting that SPCC may be used to reduce the cumulative dose of Dox and its associated toxicities in the chemotherapy of breast cancer and other types of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hua Jian Wu
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chao Zhu Zhou
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hao Wang
- Fudan University Experimental Teaching Center of Basic Medicine, Fudan University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
34
|
Chen H, Wang J, Liu Z, Yang H, Zhu Y, Zhao M, Liu Y, Yan M. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis. Int J Mol Med 2016; 38:1039-46. [PMID: 27499009 PMCID: PMC5029958 DOI: 10.3892/ijmm.2016.2697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA‑depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA‑deficient (Rho˚ or ρ˚) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho˚206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho˚206 cells. Thus, we concluded that Rho˚206 cells exhibit more resistance to solar‑simulated UV radiation‑induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production.
Collapse
Affiliation(s)
- Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Junling Wang
- Gynecologic Department of Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | - Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command (Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
35
|
Yan M, Liu Z, Yang H, Li C, Chen H, Liu Y, Zhao M, Zhu Y. Luteolin decreases the UVA‑induced autophagy of human skin fibroblasts by scavenging ROS. Mol Med Rep 2016; 14:1986-92. [PMID: 27430964 PMCID: PMC4991762 DOI: 10.3892/mmr.2016.5517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
Luteolin (LUT) is a flavone, which is universally present as a constituent of traditional Chinese herbs, and certain vegetables and spices, and has been demonstrated to exhibit potent radical scavenging and cytoprotective properties. Although LUT has various beneficial effects on health, the effects of LUT on the protection of skin remain to be fully elucidated. The present study investigated whether LUT can protect human skin fibroblasts (HSFs) from ultraviolet (UV) A irradiation. It was found that, following exposure to different doses of UVA irradiation, the HSFs exhibited autophagy, as observed by fluorescence and transmission electron microscopy, and reactive oxygen species (ROS) bursts, analyzed by flow cytometry, to differing degrees. Following incubation with micromolar concentrations of LUT, ROS production decreased and autophagy gradually declined. In addition, the expression of hypoxia-inducible factor-1α and the classical autophagy-associated proteins, LC3 and Beclin 1 were observed by western blotting. Western blot analysis showed that the expression levels of HIF-1α, LC3-II and Beclin 1 gradually decreased in the UVA-irradiated HSFs following treatment with LUT. These data indicated that UVA-induced autophagy was mediated by ROS, suggesting the possibility of resistance against UV by certain natural antioxidants, including LUT.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Cuihua Li
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hulin Chen
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yan Liu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Minling Zhao
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yingjie Zhu
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
36
|
Giampieri F, Alvarez-Suarez JM, Gasparrini M, Forbes-Hernandez TY, Afrin S, Bompadre S, Rubini C, Zizzi A, Astolfi P, Santos-Buelga C, González-Paramás AM, Quiles JL, Mezzetti B, Battino M. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food Chem Toxicol 2016; 94:128-37. [PMID: 27286747 DOI: 10.1016/j.fct.2016.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/01/2023]
Abstract
Doxorubicin (Dox), one of the most used chemotherapeutic agents, is known to generate oxidative stress and block DNA synthesis, which result in severe dose-limiting toxicity. A strategy to protect against Dox toxic effects could be to use dietary antioxidants of which fruits and vegetable are a rich source. In this context, strawberry consumption is associated with the maintenance of good health and the prevention of several diseases, thanks to the antioxidant capacities of its bioactive compounds. The aim of the present study was to evaluate the protective effects of strawberry consumption against oxidative stress induced by Dox in rats. Animals were fed with strawberry enriched diet (15% of the total calories) for two months and Dox (10 mg/kg; i.p.) was injected at the end of the experimental period. Strawberry consumption significantly inhibited ROS production and oxidative damage biomarkers accumulation in plasma and liver tissue and alleviated histopathological changes in rat livers treated with Dox. The reduction of antioxidant enzyme activities was significantly mitigated after strawberry consumption. In addition, strawberry enriched diet ameliorated liver mitochondrial antioxidant levels and functionality. In conclusion, strawberry intake protects against Dox-induced toxicity, at plasma, liver and mitochondrial levels thanks to its high contents of bioactive compounds.
Collapse
Affiliation(s)
- Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Jose M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias de la Salud. Universidad de Las Américas, Campus Queri, Quito, Ecuador
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Bompadre
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Corrado Rubini
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Zizzi
- Dipartimento Scienze Biomediche e Sanita' Pubblica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Astolfi
- Dipartimento Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, Italy
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Faculty of Pharmacy, Salamanca University, Campus Miguel de Unamuno, E37007, Salamanca, Spain
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Faculty of Pharmacy, Salamanca University, Campus Miguel de Unamuno, E37007, Salamanca, Spain
| | - Josè L Quiles
- Departamento de Fisiologia, Instituto de Nutrición y Tecnología de los Alimentos ''José Mataix", Centro de Investigaciones Biomedicas, Universidad de Granada, Granada, Spain
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain.
| |
Collapse
|
37
|
Prylutska S, Grynyuk I, Matyshevska O, Prylutskyy Y, Evstigneev M, Scharff P, Ritter U. C60 fullerene as synergistic agent in tumor-inhibitory Doxorubicin treatment. Drugs R D 2016; 14:333-40. [PMID: 25504158 PMCID: PMC4269825 DOI: 10.1007/s40268-014-0074-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Doxorubicin (Dox) is one of the most potent anticancer drugs, but its successful use is hampered by high toxicity caused mainly by generation of reactive oxygen species. One approach to protect against Dox-dependent chemical insult is combined use of the cytostatic drug with antioxidants. C60 fullerene has a nanostructure with both antioxidant and antitumor potential and may be useful in modulating cell responses to Dox. Objective The aim of this study was to estimate the antitumor effect and antioxidant enzyme activity of combined C60 fullerene and Dox (C60 + Dox) in the liver and heart of mice with Lewis lung carcinoma compared with Dox treatment alone. Methods Highly stable pristine C60 fullerene aqueous colloid solution (concentration 1.0 mg/ml, average hydrodynamic diameter of nanoparticles 50 nm) was used in the study and characterized by means of atomic force microscopy (AFM). The in vivo investigation of C60-Dox action was performed via the standard methods of histological and enzyme activity analyses. Results Dox (total dose 2.5 mg/kg) combined with C60 fullerene (total dose 25 mg/kg) in tumor-bearing animals resulted in tumor growth inhibition, prolongation of life, metastasis inhibition, and increased number of apoptotic tumor cells and was more effective than the corresponding course of Dox treatment alone. C60 fullerene demonstrated a protective effect against superoxide dismutase and glutathione peroxidase inhibition induced by Dox-dependent oxidative insult in the liver and heart. Conclusion Combined treatment with C60 + Dox is considered to be a promising approach for cancer chemotherapy.
Collapse
Affiliation(s)
- Svitlana Prylutska
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv, 01601 Ukraine
| | - Iryna Grynyuk
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv, 01601 Ukraine
| | - Olga Matyshevska
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv, 01601 Ukraine
| | - Yuriy Prylutskyy
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv, 01601 Ukraine
| | - Maxim Evstigneev
- Department of Biology and Chemistry, Belgorod State University, 85 Pobedy Str., Belgorod, 308015 Russia
| | - Peter Scharff
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str. 25, Ilmenau, 098693 Germany
| | - Uwe Ritter
- Joint Ukrainian-German Center on Nanobiotechnology, Kyiv, Ukraine
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str. 25, Ilmenau, 098693 Germany
| |
Collapse
|
38
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Yuan H, Zhang Q, Guo J, Zhang T, Zhao J, Li J, White A, Carmichael PL, Westmoreland C, Peng S. A PGC-1α-Mediated Transcriptional Network Maintains Mitochondrial Redox and Bioenergetic Homeostasis against Doxorubicin-Induced Toxicity in Human Cardiomyocytes: Implementation of TT21C. Toxicol Sci 2016; 150:400-17. [PMID: 26781513 DOI: 10.1093/toxsci/kfw006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-basedin vitroassays anchored on toxicity pathways according to the toxicity testing in the 21st century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Ourin vitrostudy revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-γ coactivator-1α (PGC-1α) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1α-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1α-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1α compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focusedin vitroassays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.
Collapse
Affiliation(s)
- Haitao Yuan
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; and
| | - Jiabin Guo
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tingfen Zhang
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhao
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Carl Westmoreland
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- *Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China;
| |
Collapse
|
40
|
Kang PT, Chen CL, Ohanyan V, Luther DJ, Meszaros JG, Chilian WM, Chen YR. Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. J Mol Cell Cardiol 2015; 88:14-28. [PMID: 26374996 PMCID: PMC4641048 DOI: 10.1016/j.yjmcc.2015.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/18/2015] [Accepted: 09/02/2015] [Indexed: 01/16/2023]
Abstract
During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate×MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, "spilled" over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function.
Collapse
Affiliation(s)
- Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Daniel J Luther
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - J Gary Meszaros
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
41
|
Rose AH, Hoffmann PR. Selenoproteins and cardiovascular stress. Thromb Haemost 2014; 113:494-504. [PMID: 25354851 DOI: 10.1160/th14-07-0603] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023]
Abstract
Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarise the current understanding of the roles these selenoproteins play in protecting the cardiovascular system from different types of stress including ischaemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others.
Collapse
Affiliation(s)
| | - Peter R Hoffmann
- Peter R. Hoffmann, University of Hawaii, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA, Fax: +1 808 692 1968, E-mail:
| |
Collapse
|
42
|
Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem Toxicol 2014; 70:1-8. [DOI: 10.1016/j.fct.2014.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/21/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
43
|
Lagoa R, Gañán C, López-Sánchez C, García-Martínez V, Gutierrez-Merino C. The decrease of NAD(P)H:quinone oxidoreductase 1 activity and increase of ROS production by NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity. Biomarkers 2014; 19:142-53. [PMID: 24506563 DOI: 10.3109/1354750x.2014.885084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Doxorubicin cardiotoxicity displays a complex and multifactorial progression. OBJECTIVE Identify early biochemical mechanisms leading to a sustained imbalance of cellular bioenergetics. METHODS Measurements of the temporal evolution of selected biochemical markers after treatment of rats with doxorubicin (20 mg/kg body weight). RESULTS Doxorubicin treatment increased lipid oxidation, catalase activity and production of H₂O₂ by Nox-NADPH oxidases, and down-regulated NAD(P)H quinone oxidoreductase-1 prior eliciting changes in reduced glutathione, protein carbonyls and protein nitrotyrosines. Alterations of mitochondrial and myofibrillar bioenergetics biomarkers were detected only after this oxidative imbalance was established. CONCLUSIONS NAD(P)H quinone oxidoreductase-1 activity and increase of hydrogen peroxide production by NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Ricardo Lagoa
- ESTG-Polytechnic Institute of Leiria , Leiria , Portugal
| | | | | | | | | |
Collapse
|
44
|
Corradi F, Paolini L, De Caterina R. Ranolazine in the prevention of anthracycline cardiotoxicity. Pharmacol Res 2014; 79:88-102. [DOI: 10.1016/j.phrs.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
|
45
|
Gilliam LAA, Fisher-Wellman KH, Lin CT, Maples JM, Cathey BL, Neufer PD. The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic Biol Med 2013; 65:988-996. [PMID: 24017970 PMCID: PMC3859698 DOI: 10.1016/j.freeradbiomed.2013.08.191] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/25/2022]
Abstract
The combined loss of muscle strength and constant fatigue are disabling symptoms for cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and premature fatigue along with an increase in reactive oxygen species (ROS). As mitochondria represent a primary source of oxidant generation in muscle, we hypothesized that doxorubicin could negatively affect mitochondria by inhibiting respiratory capacity, leading to an increase in H2O2-emitting potential. Here we demonstrate a biphasic response of skeletal muscle mitochondria to a single doxorubicin injection (20mg/kg). Initially at 2h doxorubicin inhibits both complex I- and II-supported respiration and increases H2O2 emission, both of which are partially restored after 24h. The relationship between oxygen consumption and membrane potential (ΔΨ) is shifted to the right at 24h, indicating elevated reducing pressure within the electron transport system (ETS). Respiratory capacity is further decreased at a later time point (72 h) along with H2O2-emitting potential and an increased sensitivity to mitochondrial permeability transition pore (mPTP) opening. These novel findings suggest a role for skeletal muscle mitochondria as a potential underlying cause of doxorubicin-induced muscle dysfunction.
Collapse
Affiliation(s)
- Laura A A Gilliam
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Physiology, East Carolina University, Greenville, NC 27858, USA.
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Physiology, East Carolina University, Greenville, NC 27858, USA
| | - Jill M Maples
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA
| | - Brook L Cathey
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Physiology, East Carolina University, Greenville, NC 27858, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA; Department of Physiology, East Carolina University, Greenville, NC 27858, USA; Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
46
|
Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med Res Rev 2013; 34:106-35. [DOI: 10.1002/med.21280] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa S. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Ana Burgeiro
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rita Garcia
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - António J. Moreno
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rui A. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| |
Collapse
|
47
|
Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 2013; 18:899-929. [PMID: 22794198 PMCID: PMC3557437 DOI: 10.1089/ars.2012.4795] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
Collapse
Affiliation(s)
- Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Olga Popelová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Anna Vávrová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Geršl
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
48
|
Doroshow JH. Dexrazoxane for the prevention of cardiac toxicity and treatment of extravasation injury from the anthracycline antibiotics. Curr Pharm Biotechnol 2013; 13:1949-56. [PMID: 22352729 DOI: 10.2174/138920112802273245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/05/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
The cumulative cardiac toxicity of the anthracycline antibiotics and their propensity to produce severe tissue injury following extravasation from a peripheral vein during intravenous administration remain significant problems in clinical oncologic practice. Understanding of the free radical metabolism of these drugs and their interactions with iron proteins led to the development of dexrazoxane, an analogue of EDTA with intrinsic antineoplastic activity as well as strong iron binding properties, as both a prospective cardioprotective therapy for patients receiving anthracyclines and as an effective treatment for anthracycline extravasations. In this review, the molecular mechanisms by which the anthracyclines generate reactive oxygen species and interact with intracellular iron are examined to understand the cardioprotective mechanism of action of dexrazoxane and its ability to protect the subcutaneous tissues from anthracycline-induced tissue necrosis.
Collapse
Affiliation(s)
- James H Doroshow
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52:1213-25. [DOI: 10.1016/j.yjmcc.2012.03.006] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
50
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|