1
|
Dántola ML, Neyra Recky JR, Lorente C, Thomas AH. Photosensitized Dimerization of Tyrosine: The Oxygen Paradox †. Photochem Photobiol 2021; 98:687-695. [PMID: 34738644 DOI: 10.1111/php.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023]
Abstract
In electron-transfer initiated photosensitization processes, molecular oxygen (O2 ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O2 does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr2 ). In the pterin (Ptr) photosensitized oxidation of Tyr, O2 does not directly participate in the formation of Tyr2 and quenches the triplet excited state of Ptr, the reactive species that initiates the process. However, O2 is necessary for the dimerization, phenomenon that we have named as the oxygen paradox. Here, we review the literature on the photosensitized formation of Tyr2 and present results of steady-state and time resolved experiments, in search of a mechanistic model to explain the contradictory role of O2 in this photochemical reaction system.
Collapse
Affiliation(s)
- M Laura Dántola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Jael R Neyra Recky
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
2
|
3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem 2020; 64:111-133. [PMID: 32016371 DOI: 10.1042/ebc20190052] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Oxidative post-translational modification of proteins by molecular oxygen (O2)- and nitric oxide (•NO)-derived reactive species is a usual process that occurs in mammalian tissues under both physiological and pathological conditions and can exert either regulatory or cytotoxic effects. Although the side chain of several amino acids is prone to experience oxidative modifications, tyrosine residues are one of the preferred targets of one-electron oxidants, given the ability of their phenolic side chain to undergo reversible one-electron oxidation to the relatively stable tyrosyl radical. Naturally occurring as reversible catalytic intermediates at the active site of a variety of enzymes, tyrosyl radicals can also lead to the formation of several stable oxidative products through radical-radical reactions, as is the case of 3-nitrotyrosine (NO2Tyr). The formation of NO2Tyr mainly occurs through the fast reaction between the tyrosyl radical and nitrogen dioxide (•NO2). One of the key endogenous nitrating agents is peroxynitrite (ONOO-), the product of the reaction of superoxide radical (O2•-) with •NO, but ONOO--independent mechanisms of nitration have been also disclosed. This chemical modification notably affects the physicochemical properties of tyrosine residues and because of this, it can have a remarkable impact on protein structure and function, both in vitro and in vivo. Although low amounts of NO2Tyr are detected under basal conditions, significantly increased levels are found at pathological states related with an overproduction of reactive species, such as cardiovascular and neurodegenerative diseases, inflammation and aging. While NO2Tyr is a well-established stable oxidative stress biomarker and a good predictor of disease progression, its role as a pathogenic mediator has been laboriously defined for just a small number of nitrated proteins and awaits further studies.
Collapse
|
3
|
Muñoz-Rugeles L, Galano A, Alvarez-Idaboy JR. Chemical repair mechanisms of damaged tyrosyl and tryptophanyl residues in proteins by the superoxide radical anion. NEW J CHEM 2020. [DOI: 10.1039/c9nj04998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Even though reaction of the superoxide anion radical/hydroperoxide radical could lead to oxidation of biomolecules, it can repair oxidized tyrosyl and tryptophanyl residues in proteins at diffusion-controlled rates.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- San Rafael Atlixco 186
- Col. Vicentina. Iztapalapa. C. P. 09340
- México DF
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| |
Collapse
|
4
|
Ludwig N, Kusumoto T, Galindo C, Peaupardin P, Pin S, Renault JP, Muller D, Yamauchi T, Kodaira S, Barillon R, Raffy Q. Radiolysis of phenylalanine in solution with Bragg-Peak energy protons. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Rodacka A. The effect of radiation-induced reactive oxygen species (ROS) on the structural and functional properties of yeast alcohol dehydrogenase (YADH). Int J Radiat Biol 2015; 92:11-23. [DOI: 10.3109/09553002.2015.1106022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Bergès J, Kamar A, de Oliveira P, Pilmé J, Luppi E, Houée-Levin C. Toward an Understanding of the Oxidation Process of Methionine Enkephalin: A Combined Electrochemistry, Quantum Chemistry and Quantum Chemical Topology Analysis. J Phys Chem B 2015; 119:6885-93. [DOI: 10.1021/acs.jpcb.5b01207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacqueline Bergès
- Laboratoire
de Chimie Théorique, Sorbonne Universités, UPMC Université Paris 06, UMR 7616 , F-75005 Paris, France
- CNRS UMR 7616, 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Amanda Kamar
- Laboratoire
de Chimie Physique, Université Paris-Sud, F-91405 Orsay, France
- CNRS, UMR 8000, F-91405 Orsay, France
| | - Pedro de Oliveira
- Laboratoire
de Chimie Physique, Université Paris-Sud, F-91405 Orsay, France
- CNRS, UMR 8000, F-91405 Orsay, France
| | - Julien Pilmé
- Laboratoire
de Chimie Théorique, Sorbonne Universités, UPMC Université Paris 06, UMR 7616 , F-75005 Paris, France
- CNRS UMR 7616, 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Eleonora Luppi
- Laboratoire
de Chimie Théorique, Sorbonne Universités, UPMC Université Paris 06, UMR 7616 , F-75005 Paris, France
- CNRS UMR 7616, 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Chantal Houée-Levin
- Laboratoire
de Chimie Physique, Université Paris-Sud, F-91405 Orsay, France
- CNRS, UMR 8000, F-91405 Orsay, France
| |
Collapse
|
8
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Pilmé J, Luppi E, Bergès J, Houée-Lévin C, de la Lande A. Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin. J Mol Model 2014; 20:2368. [PMID: 25060148 DOI: 10.1007/s00894-014-2368-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
We have studied electron transfers (ET) between electron donors and acceptors, taking as illustrative example the case of ET in methionine enkephalin. Recent pulse and gamma radiolysis experiments suggested that an ultrafast ET takes place from the C-terminal tyrosine residue to the N-terminal, oxidized, methionine residue. According to standard theoretical frameworks like the Marcus theory, ET can be decomposed into two successive steps: i) the achievement through thermal fluctuations, of a set of nuclear coordinates associated with degeneracy of the two electronic states, ii) the electron tunneling from the donor molecular orbital to the acceptor molecular orbital. Here, we focus on the analysis of the time-dependent electronic dynamics during the tunneling event. This is done by extending the approaches based on the topological analyses of stationary electronic density and of the electron localization function (ELF) to the time-dependent domain. Furthermore, we analyzed isosurfaces of the divergence of the current density, showing the paths that are followed by the tunneling electron from the donor to the acceptor. We show how these functions can be calculated with constrained density functional theory. Beyond this work, the topological tools used here can open up new opportunities for the electronic description in the time-dependent domain.
Collapse
Affiliation(s)
- Julien Pilmé
- Laboratoire de Chimie Théorique, UPMC Université Paris 06, UMR 7616, F-75005, Paris, France,
| | | | | | | | | |
Collapse
|
10
|
Berthelot V, Steinmetz V, Alvarez LA, Houée-Levin C, Merola F, Rusconi F, Erard M. An analytical workflow for the molecular dissection of irreversibly modified fluorescent proteins. Anal Bioanal Chem 2013; 405:8789-98. [PMID: 24026516 DOI: 10.1007/s00216-013-7326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/01/2022]
Abstract
Owing to their ability to be genetically expressed in live cells, fluorescent proteins have become indispensable markers in cellular and biochemical studies. These proteins can undergo a number of covalent chemical modifications that may affect their photophysical properties. Among other mechanisms, such covalent modifications may be induced by reactive oxygen species (ROS), as generated along a variety of biological pathways or through the action of ionizing radiations. In a previous report [1], we showed that the exposure of cyan fluorescent protein (ECFP) to amounts of (•)OH that mimic the conditions of intracellular oxidative bursts (associated with intense ROS production) leads to observable changes in its photophysical properties in the absence of any direct oxidation of the ECFP chromophore. In the present work, we analyzed the associated structural modifications of the protein in depth. Following the quantified production of (•)OH, we devised a complete analytical workflow based on chromatography and mass spectrometry that allowed us to fully characterize the oxidation events. While methionine, tyrosine, and phenylalanine were the only amino acids that were found to be oxidized, semi-quantitative assessment of their oxidation levels showed that the protein is preferentially oxidized at eight residue positions. To account for the preferred oxidation of a few, poorly accessible methionine residues, we propose a multi-step reaction pathway supported by data from pulsed radiolysis experiments. The described experimental workflow is widely generalizable to other fluorescent proteins, and opens the door to the identification of crucial covalent modifications that affect their photophysics.
Collapse
Affiliation(s)
- Vivien Berthelot
- Laboratoire de Chimie Physique, UMR CNRS 8000, Building 350, 91405, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Houée-Levin C, Bobrowski K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J Proteomics 2013; 92:51-62. [PMID: 23454334 DOI: 10.1016/j.jprot.2013.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
The method of radiolysis is based upon the interaction of ionising radiation with the solvent (water). One can form the same free radicals as in conditions of oxidative stress ((•)OH, O2(•)(-), NO2(•)…). Moreover, the quantity of reactive oxygen (ROS) or nitrogen (RNS) species formed in the irradiated medium can be calculated knowing the dose and the radiation chemical yield, G, thus this method is quantitative. The use of the method of radiolysis has provided a wealth of data, especially about the kinetics of the oxidation by various free radicals and their mechanisms, the identification of transients formed, their lifetimes and the possibility to repair them by the so-called antioxidants. In this review we have collected the most recent data about protein oxidation that might be useful to a proteomic approach. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR 8000, Université Paris Sud, (France), also at CNRS, France
| | | |
Collapse
|
12
|
Lampre I, Marignier JL, Mirdamadi-Esfahani M, Pernot P, Archirel P, Mostafavi M. Oxidation of Bromide Ions by Hydroxyl Radicals: Spectral Characterization of the Intermediate BrOH•–. J Phys Chem A 2013; 117:877-87. [DOI: 10.1021/jp310759u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Isabelle Lampre
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| | - Jean-Louis Marignier
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| | - Malaknaz Mirdamadi-Esfahani
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| | - Pascal Pernot
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| | - Pierre Archirel
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| | - Mehran Mostafavi
- Laboratoire
de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Faculté des
Sciences d’Orsay, Bât. 349, 91405 Orsay Cedex, France
| |
Collapse
|
13
|
Mozziconacci O, Mirkowski J, Rusconi F, Kciuk G, Wisniowski PB, Bobrowski K, Houée-Levin C. Methionine Residue Acts as a Prooxidant in the •OH-Induced Oxidation of Enkephalins. J Phys Chem B 2012; 116:12460-72. [DOI: 10.1021/jp307043q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Mozziconacci
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
- Department
of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Jacek Mirkowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Filippo Rusconi
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Muséum National d’Histoire
Naturelle, CNRS, UMR7196 - INSERM, U565 - MNHN USM0503, 57 rue Cuvier, F-75231 Paris Cedex-05, France
| | - Gabriel Kciuk
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Pawel B. Wisniowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Chantal Houée-Levin
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
| |
Collapse
|
14
|
Möller MN, Hatch DM, Kim HYH, Porter NA. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine. J Am Chem Soc 2012; 134:16773-80. [PMID: 22989205 DOI: 10.1021/ja307215z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.
Collapse
Affiliation(s)
- Matías N Möller
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
15
|
Bergès J, de Oliveira P, Fourré I, Houée-Levin C. The one-electron reduction potential of methionine-containing peptides depends on the sequence. J Phys Chem B 2012; 116:9352-62. [PMID: 22747412 DOI: 10.1021/jp304741e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protein residue methionine (Met) is one of the main targets of oxidizing free radicals produced in oxidative stress. Despite its biological importance, the mechanism of the oxidation of this residue is still partly unknown. In particular the one-electron redox potentials of the couple Met(•+)/Met have not been measured. In this work, two approaches, experimental as well as theoretical, were applied for three dipeptides L-Met L-Gly, L-Gly L-Met and L-Met L-Met. Measurements by electrochemistry indicated differences in the ease of oxidation. Two DFT methods (BH&HLYP and PBE0) with two basis sets (6-31G(d) and 6-311+G(2d,2p)) were used to determine the redox potentials of Met in these peptides present in different conformations. In agreement with experimental results, we show that they vary with the sequence and the spatial structure of the peptide, most of the values being higher than 1 V (up to 2 V) vs NHE.
Collapse
Affiliation(s)
- Jacqueline Bergès
- Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 5, France.
| | | | | | | |
Collapse
|
16
|
Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R. Comprehensive data analysis of femtosecond transient absorption spectra: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2011.10.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Mozziconacci O, Haywood J, Gorman EM, Munson E, Schöneich C. Photolysis of recombinant human insulin in the solid state: formation of a dithiohemiacetal product at the C-terminal disulfide bond. Pharm Res 2011; 29:121-33. [PMID: 21748537 DOI: 10.1007/s11095-011-0519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Exposure of protein pharmaceuticals to light can result in chemical and physical modifications, potentially leading to loss of potency, aggregation, and/or immunogenicity. To correlate these potential consequences with molecular changes, the nature of photoproducts and their mechanisms of formation must be characterized. The present study focuses on the photochemical degradation of insulin in the solid state. METHODS Solid insulin was characterized by solid-state NMR, polarized optical microscopy and scanning electron microscopy; various insulin preparations were exposed to UV light prior to product analysis by mass spectrometry. RESULTS UV-exposure of solid human insulin results in photodissociation of the C-terminal intrachain disulfide bond, leading to formation of a CysS(•) thiyl radical pair which ultimately disproportionates into thiol and thioaldehyde species. The high reactivity of the thioaldehyde and proximity to the thiol allow the formation of a dithiohemiacetal structure. Dithiohemiacetal is formed during the UV-exposure of both crystalline and amorphous insulin. CONCLUSIONS Dithiohemiacetals represent novel structures generated through the photochemical modification of disulfide bonds. This is the first time that such structure is identified during the photolysis of a protein in the solid state.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
18
|
Bokiej M, Livermore AT, Harris AW, Onishi AC, Sandwick RK. Ribose sugars generate internal glycation cross-links in horse heart myoglobin. Biochem Biophys Res Commun 2011; 407:191-6. [PMID: 21376016 DOI: 10.1016/j.bbrc.2011.02.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 11/25/2022]
Abstract
Glycation of horse heart metmyoglobin with d-ribose 5-phosphate (R5P), d-2-deoxyribose 5-phosphate (dR5P), and d-ribose with inorganic phosphate at 37°C generates an altered protein (Myo-X) with increased SDS-PAGE mobility. The novel protein product has been observed only for reactions with the protein myoglobin and it is not evident with other common sugars reacted over a 1 week period. Myo-X is first observed at 1-2 days at 37°C along with a second form that is consistent in mass with that of myoglobin attached to several sugars. MALDI mass spectrometry and other techniques show no evidence of the cleavage of a peptide from the myoglobin chain. Apomyoglobin in reaction with R5P also exhibited this protein form suggesting its occurrence was not heme-related. While significant amounts of O(2)(-) and H(2)O(2) are generated during the R5P glycation reaction, they do not appear to play roles in the formation of the new form. The modification is likely due to an internal cross-link formed during a glycation reaction involving the N-terminus and an internal amine group; most likely the neighboring Lys133. The study shows the unique nature of these common pentose sugars in spontaneous glycation reactions with proteins.
Collapse
Affiliation(s)
- Magdalena Bokiej
- Department of Chemistry and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA
| | | | | | | | | |
Collapse
|
19
|
Characterization by mass spectrometry and IRMPD spectroscopy of the sulfoxide group in oxidized methionine and related compounds. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Alvarez L, Levin CH, Merola F, Bizouarn T, Pasquier HÃ, Baciou L, Rusconi F, Erard M. Are the Fluorescent Properties of the Cyan Fluorescent Protein Sensitive to Conditions of Oxidative Stress? Photochem Photobiol 2010; 86:55-61. [DOI: 10.1111/j.1751-1097.2009.00617.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Nagy P, Kettle AJ, Winterbourn CC. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem 2009; 284:14723-33. [PMID: 19297319 PMCID: PMC2685654 DOI: 10.1074/jbc.m809396200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/02/2009] [Indexed: 11/06/2022] Open
Abstract
The chemistry underlying superoxide toxicity is not fully understood. A potential mechanism for superoxide-mediated injury involves addition to tyrosyl radicals, to give peptide or protein hydroperoxides. The rate constant for the reaction of tyrosyl radicals with superoxide is higher than for dimerization, but the efficiency of superoxide addition to peptides depends on the position of the Tyr residue. We have examined the requirements for superoxide addition and structurally characterized the products for a range of tyrosyl peptides exposed to a peroxidase/O(2)(.) system. These included enkephalins as examples of the numerous proteins and physiological peptides with N-terminal tyrosines. The importance of amino groups in promoting hydroperoxide formation and effect of methionine residues on the reaction were investigated. When tyrosine was N-terminal, the major products were hydroperoxides that had undergone cyclization through conjugate addition of the terminal amine. With non-N-terminal tyrosine, electron transfer from O(2)(.) to the peptide radical prevailed. Peptides containing methionine revealed a novel and efficient intramolecular oxygen transfer mechanism from an initial tyrosine hydroperoxide to give a dioxygenated derivative with one oxygen on the tyrosine and the other forming methionine sulfoxide. Exogenous amines promoted hydroperoxide formation on tyrosyl peptides lacking a terminal amine, without forming an adduct. These findings, plus the high hydroperoxide yields with N-terminal tyrosine, can be explained by a mechanism in which hydrogen bonding of O(2)(.) to the amine increases is oxidizing potential and alters its reactivity. If this amine effect occurred more generally, it could increase the biological reactivity of O(2)(.) and have major implications.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Pathology, University of Otago Christchurch, P. O. Box 4345, Christchurch, New Zealand 8140
| | | | | |
Collapse
|
22
|
Alvarez LA, Merola F, Erard M, Rusconi F. Mass Spectrometry-Based Structural Dissection of Fluorescent Proteins. Biochemistry 2009; 48:3810-2. [DOI: 10.1021/bi900327f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis A. Alvarez
- Laboratoire de Chimie Physique,
Université Paris-Sud 11, UMR 8000 CNRS, F-91405 Orsay Cedex,
France
| | - Fabienne Merola
- Laboratoire de Chimie Physique,
Université Paris-Sud 11, UMR 8000 CNRS, F-91405 Orsay Cedex,
France
| | - Marie Erard
- Laboratoire de Chimie Physique,
Université Paris-Sud 11, UMR 8000 CNRS, F-91405 Orsay Cedex,
France
| | - Filippo Rusconi
- Laboratoire de biophysique, Muséum national d’Histoire naturelle, CNRS UMR5153-INSERM U565-MNHN USM0503, 57 rue Cuvier, Case postale 26, F-75231 Paris Cedex 05, France
| |
Collapse
|
23
|
Competitive photosensitized oxidation of tyrosine and methionine residues in enkephalins and their model peptides. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2008.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|