1
|
Goud PT, Goud AP, Camp OG, Bai D, Gonik B, Diamond MP, Abu-Soud HM. Chronological age enhances aging phenomena and protein nitration in oocyte. Front Endocrinol (Lausanne) 2023; 14:1251102. [PMID: 38149097 PMCID: PMC10749940 DOI: 10.3389/fendo.2023.1251102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background The average age of childbearing has increased over the years contributing to infertility, miscarriages, and chromosomal abnormalities largely invoked by an age-related decline in oocyte quality. In this study, we investigate the role of nitric oxide (NO) insufficiency and protein nitration in oocyte chronological aging. Methods Mouse oocytes were retrieved from young breeders (YB, 8-14 weeks [w]), retired breeders (RB, 48-52w) and old animals (OA, 80-84w) at 13.5 and 17 hours after ovulation trigger. They were assessed for zona pellucida dissolution time (ZPDT); ooplasmic microtubule dynamics (OMD); cortical granule (CG) status and spindle morphology (SM), as markers of oocyte quality. Sibling oocytes from RB were exposed to NO supplementation and assessed for aging phenomena (AP). All oocyte cumulus complexes were subjected to fluorescence nitrotyrosine (NT) immunocytochemistry and confocal microscopy to assess morphology and protein nitration. Results At 13.5 h from hCG trigger, oocytes from RB compared to YB had significantly increased ZPDT (37.8 ± 11.9 vs 22.1 ± 4.1 seconds [s]), OMD (46.9 vs 0%), CG loss (39.4 vs 0%), and decreased normal SM (30.3 vs 81.3%), indicating premature AP that worsened among oocytes from RB at 17 hours post-hCG trigger. When exposed to SNAP, RB AP significantly decreased (ZPDT: 35.1 ± 5.5 vs 46.3 ± 8.9s, OMD: 13.3 vs 75.0% and CG loss: 50.0 vs 93.3%) and SM improved (80.0 vs 14.3%). The incidence of NT positivity was significantly higher in cumulus cells (13.5 h, 46.7 ± 4.5 vs 3.4 ± 0.7%; 17 h, 82.2 ± 2.9 vs 23.3 ± 3.6%) and oocytes (13.5 h, 57.1 vs 0%; 17 h, 100.0 vs 55.5%) from RB compared to YB. Oocytes retrieved decreased with advancing age (29.8 ± 4.1 per animal in the YB group compared to 10.2 ± 2.1 in RB and 4.0 ± 1.6 in OA). Oocytes from OA displayed increased ZPDT, major CG loss, increased OMD and spindle abnormalities, as well as pronuclear formation, confirming spontaneous meiosis to interphase transition. Conclusions Oocytes undergo zona pellucida hardening, altered spindle and ooplasmic microtubules, and premature cortical granule release, indicative of spontaneous meiosis-interphase transition, as a function of chronological aging. These changes are also associated with NO insufficiency and protein nitration and may be alleviated through supplementation with an NO-donor.
Collapse
Affiliation(s)
- Pravin T. Goud
- Laurel Fertility Center, San Francisco, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis Medical School, Sacramento, CA, United States
- Department of Obstetrics and Gynecology, University of California Davis Medical School, Sacramento, CA, United States
| | - Anuradha P. Goud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Olivia G. Camp
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bernard Gonik
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael P. Diamond
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Cecchini Gualandi S, Giangaspero B, Di Palma T, Macchia G, Carluccio A, Boni R. Oxidative profile and protease regulator potential to predict sperm functionality in donkey (Equus asinus). Sci Rep 2021; 11:20551. [PMID: 34654898 PMCID: PMC8521582 DOI: 10.1038/s41598-021-99972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Seminal plasma (SP) of donkey stallions was evaluated using various oxidative stress parameters as well as protease and protease inhibitor activities. SP was obtained by nine donkey stallions. In addition, one donkey stallion with non-obstructive azoospermia was enrolled in this study. Free radical scavenging activity (FRSA), the ferric reducing ability of plasma (FRAP), total antioxidant capacity (TAC), and total thiol level (TTL) were highly correlated with each other and with the protease inhibitor activity. However, only FRAP, TAC, and the nitrate/nitrite concentration (NOx) were significantly correlated with sperm concentration, production, and kinetics. Protease inhibitor activity was highly correlated with sperm concentration and production; however, it did not correlate with sperm kinetics. The azoospermic stallion produced a lower amount of semen than the normospermic stallions and its SP showed a lower antioxidant activity when evaluated with FRAP, TAC, and TTL as well as a higher NOx and a lower protease inhibitor activity. In conclusion, the evaluation of SP oxidative profile by FRAP, TAC, and NOx may provide reliable information on donkey sperm quality whereas protease inhibitor activity may play a role as a marker of the sperm concentration in this species.
Collapse
Affiliation(s)
| | - Brunella Giangaspero
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Tommaso Di Palma
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Giuseppe Macchia
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy.
| |
Collapse
|
4
|
Arginine Regulates TOR Signaling Pathway through SLC38A9 in Abalone Haliotis discus hannai. Cells 2021; 10:cells10102552. [PMID: 34685533 PMCID: PMC8534056 DOI: 10.3390/cells10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5–4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.
Collapse
|
5
|
Abstract
A positive relationship between mitochondrial functionality and gamete quality, ultimately contributing to fertilization success and normal embryo development has been established for some years now. Both mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production are major indicators of mitochondrial function, and the need for accurate biomarkers mirroring gamete quality highlights the importance of a precise assessment of mitochondrial quality and function. In this chapter, we discuss the use of some mitochondrial fluorescent probes coupled to flow cytometry and/or fluorescence microscopy to specifically assess mitochondrial ROS production and MMP in both sperm and oocytes. Furthermore, as the distribution/aggregation of mitochondria in the oocyte is of interest to determine its quality, a detailed protocol is also given. These methodologies are easy, accurate and can be safely applied in research- and/or clinical-based contexts.
Collapse
|
6
|
Sethuram R, Bai D, Abu-Soud HM. Potential Role of Zinc in the COVID-19 Disease Process and its Probable Impact on Reproduction. Reprod Sci 2021; 29:1-6. [PMID: 33415646 PMCID: PMC7790357 DOI: 10.1007/s43032-020-00400-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
COVID-19 (coronavirus disease 2019) is the current world health crisis, producing extensive morbidity and mortality across all age groups. Given the established roles of zinc in combating oxidative damage and viral infections, zinc is being trialed as a treatment modality against COVID-19. Zinc also has confirmed roles in both male and female reproduction. The possible depletion of zinc with the oxidative events of COVID-19 is especially relevant to the fertility of affected couples. This review aims to present the pathophysiology of COVID-19, especially in relation to reproductive function; the role of zinc in the COVID-19 disease process; and how zinc depletion in concert with cytokine storm and reactive oxygen species production could affect reproduction. It also highlights research areas to better the understanding of COVID-19 and its impact on fertility and potential ways to mitigate the impact.
Collapse
Affiliation(s)
- Ramya Sethuram
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Romero-Aguirregomezcorta J, Soriano-Úbeda C, Matás C. Involvement of nitric oxide during in vitro oocyte maturation, sperm capacitation and in vitro fertilization in pig. Res Vet Sci 2020; 134:150-158. [PMID: 33387755 DOI: 10.1016/j.rvsc.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
The importance of porcine species for meat production is undeniable. Due to the genetic, anatomical, and physiological similarities with humans, from a biomedical point of view, pig is considered an ideal animal model for the study and development of new therapies for human diseases. The in vitro production (IVP) of porcine embryos has become widespread as a result of these qualities and there is significant demand for these embryos for research purposes. However, the efficiency of porcine embryo IVP remains very low, which hinders its use as a model for research. The high degree of polyspermic fertilization is the main problem that affects in vitro fertilization (IVF) in porcine species. Furthermore, oocyte in vitro maturation (IVM) is another important step that could be related to polyspermic fertilization and low embryo production. The presence of nitric oxide synthase (NOS), the enzyme that produces nitric oxide (NO), has been detected in the oviduct, the ovary, the oocyte and the sperm cell of porcine species. Its functions include regulating oviductal activity, ovulation, acquisition of meiotic competence, oocyte activation, sperm capacitation, and gamete interaction. Therefore, in this review, we summarize the current knowledge on the role of NO/NOS system in each of the steps that lead to the production of porcine embryos in an in vitro environment, i.e. IVM, sperm capacitation, IVF, and embryo culture. We also discuss the possible ways in which the NO/NOS system could be used to enhance IVP of porcine embryos.
Collapse
Affiliation(s)
- Jon Romero-Aguirregomezcorta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
8
|
Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode. Methods Mol Biol 2018. [PMID: 29600447 DOI: 10.1007/978-1-4939-7695-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Precise information about the intracell nitric oxide (NO) concentration [NO] of a single cell are necessary in designing accurate experiments to further knowledge and develop treatment plans in certain disorders. The direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. In this work, we describe the direct, real-time, and quantitative intracellular [NO] measurement utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu.
Collapse
|
9
|
Jeelani R, Khan SN, Shaeib F, Kohan-Ghadr HR, Aldhaheri SR, Najafi T, Thakur M, Morris R, Abu-Soud HM. Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radic Biol Med 2017; 110:11-18. [PMID: 28499912 PMCID: PMC6854673 DOI: 10.1016/j.freeradbiomed.2017.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Cyclophosphamide (CTX) is a chemotherapeutic agent widely used to treat ovarian, breast, and hematological cancers as well as autoimmune disorders. Such chemotherapy is associated with reproductive failure and premature ovarian insufficiency. The mechanism by which CTX and/or its main metabolite, acrolein, affect female fertility remains unclear, but it is thought to be caused by an overproduction of reactive oxygen species (ROS). Here, we investigated the effect of CTX on metaphase II mouse oocytes obtained from treated animals (120mg/kg, 24h of single treatment), and oocytes directly exposed to increasing concentrations of CTX and acrolein (n=480; 0, 5, 10, 25, 50, and 100μM) with and without cumulus cells (CCs) for 45min which correlates to the time of maximum peak plasma concentrations after administration. Oocytes were fixed and subjected to indirect immunofluorescence and were scored based on microtubule spindle structure (MT) and chromosomal alignment (CH). Generation of ROS was evaluated using the Cellular Reactive Oxygen Species Detection Assay Kit. Deterioration of oocyte quality was noted when oocytes were obtained from CTX treated mice along with CTX and acrolein treated oocytes in a dose-dependent manner as shown by an increase in poor scores. Acrolein had an impact at a significantly lower level as compared to CTX, plateau at 10μM versus 50μM, respectively. These variation is are associated with the higher amount of ROS generated with acrolein exposure as compared to CTX (p<0.05). Utilization of antioxidant therapy and acrolein scavengers may mitigate the damaging effects of these compounds and help women undergoing such treatment.
Collapse
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sarah R Aldhaheri
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tohid Najafi
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mili Thakur
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Morris
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Galactose and its Metabolites Deteriorate Metaphase II Mouse Oocyte Quality and Subsequent Embryo Development by Disrupting the Spindle Structure. Sci Rep 2017; 7:231. [PMID: 28331195 PMCID: PMC5427935 DOI: 10.1038/s41598-017-00159-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a frequent long-term complication of classic galactosemia. The majority of women with this disorder develop POI, however rare spontaneous pregnancies have been reported. Here, we evaluate the effect of D-galactose and its metabolites, galactitol and galactose 1-phosphate, on oocyte quality as well as embryo development to elucidate the mechanism through which these compounds mediate oocyte deterioration. Metaphase II mouse oocytes (n = 240), with and without cumulus cells (CCs), were exposed for 4 hours to D-galactose (2 μM), galactitol (11 μM) and galactose 1-phosphate (0.1 mM), (corresponding to plasma concentrations in patients on galactose-restricted diet) and compared to controls. The treated oocytes showed decreased quality as a function of significant enhancement in production of reactive oxygen species (ROS) when compared to controls. The presence of CCs offered no protection, as elevated ROS was accompanied by increased apoptosis of CCs. Our results suggested that D-galactose and its metabolites disturbed the spindle structure and chromosomal alignment, which was associated with significant decline in oocyte cleavage and blastocyst development after in-vitro fertilization. The results provide insight into prevention and treatment strategies that may be used to extend the window of fertility in these patients.
Collapse
|
11
|
Lowe JL, Bartolac LK, Bathgate R, Grupen CG. Cryotolerance of porcine blastocysts is improved by treating in vitro matured oocytes with L-carnitine prior to fertilization. J Reprod Dev 2017; 63:263-270. [PMID: 28302936 PMCID: PMC5481628 DOI: 10.1262/jrd.2016-141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sufficient generation of adenosine triphosphate (ATP) by oocytes is critical for fertilization and embryo development. The objective of this study was to determine the effects of supplementing media with L-carnitine, a co-factor
required for the metabolism of fatty acids, during the peri-fertilization period on embryo development and energy generation. Firstly, in vitro matured (IVM) porcine oocytes were co-incubated with sperm in IVF
medium supplemented with 0‒24 mM L-carnitine. The blastocyst formation rate of the control group was greater than those of the L-carnitine groups (P < 0.05), except for the 3 mM L-carnitine group. Subsequently, oocytes and/or
sperm were treated without or with 3 mM L-carnitine for either the 1 h pre-IVF oocyte incubation; the pre-IVF sperm preparation; the first 30 min of IVF; or the entire 5.5 h of IVF. Despite similar fertilization rates among the
groups, the cleavage rate of the pre-IVF oocyte group was significantly greater than those of the other groups, except for the pre-IVF sperm group. Additionally, the oocyte ATP content and the cryotolerance of the resulting
blastocysts were examined following the pre-IVF oocyte treatment. Oocyte ATP content was also similar among the groups (P > 0.05). Following vitrification, the post-warming survival rate of blastocysts derived from
L-carnitine-treated oocytes was greater than that of blastocysts derived from untreated oocytes (42.4% vs. 24.9%; P < 0.05). In conclusion, a 1 h oocyte exposure to 3 mM L-carnitine immediately prior to
insemination enhanced cleavage and improved the cryotolerance of resulting blastocysts. While the findings are suggestive of a lipolytic action, further studies are required to clarify the contributions of lipid metabolism and
oxidative mechanisms to the observed effects of the L-carnitine treatment.
Collapse
Affiliation(s)
- Jenna L Lowe
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2570, Australia
| | - Louise K Bartolac
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2570, Australia
| | - Roslyn Bathgate
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2570, Australia
| | - Christopher G Grupen
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2570, Australia
| |
Collapse
|
12
|
Comparative blood and seminal plasma oxidant/antioxidant status of Arab stallions with different ages and their relation to semen quality. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Gasotransmitters in Gametogenesis and Early Development: Holy Trinity for Assisted Reproductive Technology-A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1730750. [PMID: 27579148 PMCID: PMC4992752 DOI: 10.1155/2016/1730750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/03/2016] [Indexed: 11/23/2022]
Abstract
Creation of both gametes, sperm and oocyte, and their fusion during fertilization are essential step for beginning of life. Although molecular mechanisms regulating gametogenesis, fertilization, and early embryonic development are still subjected to intensive study, a lot of phenomena remain unclear. Based on our best knowledge and own results, we consider gasotransmitters to be essential for various signalisation in oocytes and embryos. In accordance with nitric oxide (NO) and hydrogen sulfide (H2S) physiological necessity, their involvement during oocyte maturation and regulative role in fertilization followed by embryonic development have been described. During these processes, NO- and H2S-derived posttranslational modifications represent the main mode of their regulative effect. While NO represent the most understood gasotransmitter and H2S is still intensively studied gasotransmitter, appreciation of carbon monoxide (CO) role in reproduction is still missing. Overall understanding of gasotransmitters including their interaction is promising for reproductive medicine and assisted reproductive technologies (ART), because these approaches contend with failure of in vitro assisted reproduction.
Collapse
|
14
|
Khan SN, Shaeib F, Najafi T, Kavdia M, Gonik B, Saed GM, Goud PT, Abu-Soud HM. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality. PLoS One 2015; 10:e0132388. [PMID: 26197395 PMCID: PMC4511228 DOI: 10.1371/journal.pone.0132388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/12/2015] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction) in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO), and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl) facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions.
Collapse
Affiliation(s)
- Sana N. Khan
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
| | - Tohid Najafi
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
| | - Pravin T. Goud
- Department of Obstetrics and gynecology, Division of Reproductive Endocrinology and Infertility, University of California Davis, Sacramento, California, United States of America, and California IVF Fertility Center, Davis and Sacramento, California, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C, S, Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
15
|
Romero-Aguirregomezcorta J, Santa ÁP, García-Vázquez FA, Coy P, Matás C. Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization. PLoS One 2014; 9:e115044. [PMID: 25542028 PMCID: PMC4277276 DOI: 10.1371/journal.pone.0115044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.
Collapse
Affiliation(s)
- Jon Romero-Aguirregomezcorta
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Ángela Patricia Santa
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
16
|
Goud PT, Goud AP, Najafi T, Gonik B, Diamond MP, Saed GM, Zhang X, Abu-Soud HM. Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo. PLoS One 2014; 9:e98720. [PMID: 24887331 PMCID: PMC4041775 DOI: 10.1371/journal.pone.0098720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is reported to play significant a role in oocyte activation and maturation, implantation, and early embryonic development. Previously we have shown that NO forms an important component of the oocyte microenvironment, and functions effectively to delay oocyte aging. Thus, precise information about intra-oocyte NO concentrations [NO] will result in designing more accurate treatment plans in assisted reproduction. In this work, the direct, real-time and quantitative intra-oocyte [NO] was measured utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments, but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu. This experiment suggests that the NO levels of oocytes obtained from young animals are significantly higher than those of oocytes obtained from old animals. Additionally the NO levels stay constant during the measurements; however, the intra-oocyte [NO] is reduced significantly (70-75% reduction) in response to L-NAME incubation, suggesting that NO measurements are truly NOS based rather than caused by an unknown interfering substance in our system. We believe this first demonstration of the direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. Moreover, this finding confirms and extends our previous work showing that supplementation with NO delays the oocyte aging process.
Collapse
Affiliation(s)
- Pravin T. Goud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, California, United States of America
- California IVF Fertility Center, Davis and Sacramento, California, United States of America
| | - Anuradha P. Goud
- California National Primate Research Center, University California Davis, Davis, California, United States of America
| | - Tohid Najafi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
| | - Bernard Gonik
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics & Gynecology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ghassan M. Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
| | - Xueji Zhang
- World Precision Instruments, Sarasota, Florida, United States of America
- Research Center for Bioengineering & Sensing Technology, University of Science & Technology, Beijing, P.R. China
| | - Husam M. Abu-Soud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
17
|
Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil Steril 2014; 102:151-159.e5. [PMID: 24825428 DOI: 10.1016/j.fertnstert.2014.03.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To study follicular microenvironment in terms of free radical dynamics, oocyte quality, and assisted reproductive technology (ART) outcomes among women with (group A) and without (group B) endometriosis. DESIGN Prospective cohort study. SETTING University ART center. PATIENT(S) Women with and without endometriosis undergoing ART (n=28). INTERVENTION(S) Follicular fluid (FF), granulosa cells (GCs), immature oocytes (IOs), and ART data on sibling cohort oocytes in groups A and B were compared. MAIN OUTCOME MEASURE(S) ART live birth outcomes, maturation, and aging among in vitro matured (IVM) oocytes, nitrate levels in FF, and nitrotyrosine (NT) footprints and apoptosis in the GCs. RESULT(S) Clinical characteristics and ART live birth outcomes were no different between groups A and B. Women from group A had significantly lower peak serum E2 (2,068.8±244.6 pg/mL vs. 2,756.2±205.0 pg/mL) and higher apoptosis (80.0% vs. 22.2%) and NT staining (70.0% vs. 22.2%) in GCs compared with group B. Fewer IOs underwent IVM to MII (0.6±0.3) in group A compared with group B (1.4±0.2). IVM oocytes had significantly higher incidence of cortical granule loss (83.3% vs. 24.0%) and spindle disruption (66.7% vs. 16.0%) and higher zona pellucida dissolution timing (133.8±9.4 s vs. 90.5±5.8 s) in group A compared with group B. FF nitrate levels were significantly higher in women who failed to conceive in group A (478.2±43.1 nmol/L) compared with those that did conceive (173.3±19.0 nmol/L). CONCLUSION(S) Increased protein nitration, GC apoptosis, resistance to IVM, and oocyte aging indicate the involvement of oxidative dysregulation of NO in the pathophysiology of altered follicular milieu and poor oocyte quality in women with endometriosis.
Collapse
Affiliation(s)
- Pravin T Goud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan; Division of Reproductive Endocrinology and Infertility, University of California Davis Medical Center, Sacramento, California; Californa IVF Fertility Center, Davis and Sacramento, California.
| | - Anuradha P Goud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan; California National Primate Research Center, University of California, Davis, California
| | - Narendra Joshi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Elizabeth Puscheck
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Michael P Diamond
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, Georgia
| | - Husam M Abu-Soud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
18
|
Abstract
With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
Collapse
|
19
|
Abstract
With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
Collapse
|
20
|
Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med 2013; 58:154-9. [PMID: 23261938 PMCID: PMC4482232 DOI: 10.1016/j.freeradbiomed.2012.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
Here we show that hydroxyl radical ((•)OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7-10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ(2) test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70-80% demonstrated poor scores in both MT and CH when pretreated with 5 μM H2O2, and this increased up to 90-100% when treated with 10-20 μM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the (•)OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.
Collapse
Affiliation(s)
| | | | | | | | - Husam M. Abu-Soud
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Address correspondence to: Husam M Abu-Soud, Ph.D Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock Detroit, MI 48201, Tel. 313 577-6178, Fax. 313 577-8554,
| |
Collapse
|
21
|
Barman A, Kumar P, Mariahabib, Lal K, Lal B. Role of nitric oxide in motility and fertilizing ability of sperm of Heteropneustes fossilis (Bloch.). Anim Reprod Sci 2013; 137:119-27. [DOI: 10.1016/j.anireprosci.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
22
|
Abstract
Reproductive biotechnology such as in vitro fertilization, the creation of transgenic animals or cloning by nuclear transfer depends on the use of fully grown, meiotically competent oocytes capable of completing meiotic maturation by reaching the stage of metaphase II. However, there exists only a limited quantity of these oocytes in the ovaries of females. In view of their limited number, growing oocytes without meiotic competence represent a possible source. The mechanisms controlling the acquisition of meiotic competence, however, are still not completely clear. A gas with a short half-life, nitric oxide (NO), produced by NO-synthase (NOS) enzyme can fulfill a regulatory role in this period. The objective of this study was to ascertain the role of NO in the growth phase of pig oocytes and its influence on the acquisition of meiotic competence with the help of NOS inhibitors, NO donors and their combinations. We demonstrated that the selective competitive iNOS inhibitor aminoguanidine and also the non-selective NOS inhibitor l-NAME block meiotic maturation of oocytes with partial or even full meiotic competence at the very beginning. NOS inhibitors influence even competent oocytes in the first stage of meiotic metaphase. However, blockage is less effective than at the beginning of meiotic maturation. The number of parthenogenetically activated competent oocytes greatly increased in a pure medium after inhibitor reversion. A large quantity of NO externally added to the in vitro cultivation environment disrupts the viability of oocytes. The effectiveness of the inhibitor can be reversed in oocytes by an NO donor in a very low concentration. However, the donor is not capable of pushing the oocytes farther than beyond the first stage of meiotic metaphase. The experiments confirmed the connection of NO with the growth period and the acquisition of meiotic competence. However, it is evident from the experiments that NO is not the only stimulus controlling the growth period.
Collapse
|
23
|
Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Melatonin prevents hypochlorous acid-induced alterations in microtubule and chromosomal structure in metaphase-II mouse oocytes. J Pineal Res 2012; 53:122-8. [PMID: 22304486 DOI: 10.1111/j.1600-079x.2012.00977.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase, using chloride and hydrogen peroxide as substrates. Here we demonstrate that HOCl alters metaphase-II mouse oocyte microtubules and chromosomal (CH) alignment which can be prevented by melatonin. Metaphase-II mouse oocytes, obtained commercially, were grouped as: control, melatonin (150, 200nmol/mL), HOCl (10, 20, 50, and 100nmol/mL), and HOCl (50nmol/mL) pretreated with 150 and 200 nmol/mL of melatonin. Microtubule and CH alignment was studied utilizing an indirect immunofluorescence technique and scored by two observers. Pearson chi-square test and Fisher's exact test were used to compare outcomes between controls and treated groups and also among each group. Poor scores for the spindle and chromosomes increased significantly at 50nmol/mL of HOCl (P<0.001). Oocytes treated with melatonin only at 150 and 200 nmol/mL showed no changes; significant differences (P<0.001) were observed when oocytes exposed to 50nmol/mL of HOCl were compared to oocytes pretreated with 200 nmol/mL melatonin. Fifty percent of the oocytes demonstrated good scores, both in microtubule and CH alterations, when pretreated with melatonin at 150 nmol/mL compared to 0% in the HOCl-only group. HOCl alters the metaphase-II mouse oocyte spindle and CH alignment in a dose-dependant manner, which might be a potential cause of poor oocyte quality (e.g., in patients with endometriosis). Melatonin prevented the HOCl-mediated spindle and CH damage, and therefore, may be an attractive therapeutic option to prevent oocyte damage in endometriosis or inflammatory diseases where HOCl levels are known to be elevated.
Collapse
Affiliation(s)
- Jashoman Banerjee
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
24
|
Dubey PK, Tripathi V, Singh RP, Sharma GT. Influence of nitric oxide on in vitro growth, survival, steroidogenesis, and apoptosis of follicle stimulating hormone stimulated buffalo (Bubalus bubalis) preantral follicles. J Vet Sci 2011; 12:257-65. [PMID: 21897099 PMCID: PMC3165155 DOI: 10.4142/jvs.2011.12.3.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Effect of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on in vitro survival, growth, steroidogenesis, and apoptosis of buffalo preantral follicles (PFs) was investigated. PFs (200~250 µm) were isolated by micro-dissection and cultured in 0 (control), 10-3, 10-5, 10-7, and 10-9 M SNP. To examine the reversible effect of SNP, PFs were cultured with 10-5 M SNP + 1 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 µg hemoglobin (Hb). The results showed that greater concentrations of SNP (10-3, 10-5, 10-7 M) inhibited (p < 0.05) FSH-induced survival, growth, antrum formation, estradiol production, and oocyte apoptosis in a dose-dependent manner. However, a lower dose of SNP (10-9 M) significantly stimulated (p < 0.05) the survival, growth, antrum formation, follicular oocyte maturation, and stimulated progesterone secretion compared to the control. A combination of SNP + L-NAME promoted the inhibitor effect of SNP while a SNP + Hb combination reversed this effect. Nitrate and nitrite concentrations in the culture medium increased (p < 0.05) in a dose-dependent manner according to SNP concentration in the culture medium. At higher concentrations, SNP had a cytotoxic effect leading to follicular oocyte apoptosis whereas lower concentrations have stimulatory effects. In conclusion, NO exerts a dual effect on its development of buffalo PFs depending on the concentration in the culture medium.
Collapse
Affiliation(s)
- Pawan K Dubey
- Reproductive Physiology Laboratory, Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | | | | | | |
Collapse
|
25
|
Pandey AN, Tripathi A, Premkumar KV, Shrivastav TG, Chaube SK. Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes. J Cell Biochem 2011; 111:521-8. [PMID: 20568115 DOI: 10.1002/jcb.22736] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian ovary is metabolically active organ and generates by-products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H(2)O(2)) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H(2)O(2) can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)-activated protein kinase A (PRKA)-or Ca(2+)-mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase-mediated pathway that results in the reduced production of cyclic 3',5'-guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3',5'-adenosine monophosphate (cAMP)-phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H(2)O(2) level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
26
|
Hozyasz KK, Mostowska A, Wojcicki P, Lianeri M, Jagodzinski PP. Polymorphic variants of genes related to arginine metabolism and the risk of orofacial clefts. Arch Oral Biol 2010; 55:861-6. [PMID: 20739017 DOI: 10.1016/j.archoralbio.2010.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/23/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Maternal mid-pregnancy low levels of symmetric dimethylarginine and newborn low levels of citrulline are suspected to be risk factors for orofacial clefts. This study was undertaken to investigate the involvement of polymorphic variants of genes related to arginine metabolism in the susceptibility of clefting. DESIGN PCR-RFLP and HRM analyses were used to analyze single nucleotide polymorphisms (SNPs) of ASS1, ASL, and SLC25A13 in 172 children with non-syndromic cleft lip with or without cleft palate (CL/P) and 188 controls without congenital anomalies. The differences in allele and genotype frequencies between cases and controls were determined using standard Chi-square and Fisher exact tests. The odds ratio (OR) and associated 95% confidence intervals (95% CI) for individuals with CL/P versus controls were also calculated. Associations between the investigated polymorphisms and the risk of being born with an orofacial cleft were tested using the nonparametric and genetic model-free Multifactor Dimensionality Reduction (MDR) approach. RESULTS Analysis of five SNPs of the ASS1 gene revealed that the G allele of rs7860909 is associated with increased CL/P risk. Compared to individuals with the AA genotype, the G allele carriers had an OR of 1.768 (95% CI: 1.133-2.759; p=0.012). For the remaining SNPs of all analysed genes, there was no overall evidence for cleft association considering the allele and genotype distribution. However, gene-by-gene interaction analysis conducted using the MDR approach revealed a significant interactive genetic effect of ASS1 (rs666174) and SLC25A13 (rs10252573) on the occurrence of clefting (p=0.002). CONCLUSION Our results demonstrate moderate evidence for the association of polymorphic variants of genes related to arginine metabolism with abnormal palatogenesis.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
27
|
Ortega Ferrusola C, González Fernández L, Macías García B, Salazar-Sandoval C, Morillo Rodríguez A, Rodríguez Martinez H, Tapia J, Peña F. Effect of Cryopreservation on Nitric Oxide Production by Stallion Spermatozoa1. Biol Reprod 2009; 81:1106-11. [DOI: 10.1095/biolreprod.109.078220] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
28
|
Masha A, Manieri C, Dinatale S, Bruno GA, Ghigo E, Martina V. Prolonged treatment with N-acetylcysteine and L-arginine restores gonadal function in patients with polycystic ovary syndrome. J Endocrinol Invest 2009; 32:870-2. [PMID: 19494711 DOI: 10.1007/bf03345763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitric oxide (NO) plays a wide spectrum of biological actions including a positive role in oocyte maturation and ovulation. Free radicals levels have been shown elevated in polycystic ovary syndrome (PCOS) and therefore would be responsible for quenching NO that, in turn, would play a role in determining oligo- or amenorrhea connoting PCOS. Eight patients with PCOS displaying oligo-amenorrhea from at least 1 yr underwent a combined treatment with N-acetylcysteine (NAC) (1200 mg/die) plus L-arginine (ARG) (1600 mg/die) for 6 months. Menstrual function, glucose and insulin levels, and, in turn, homeostasis model assessment (HOMA) index were monitored. Menstrual function was at some extent restored as indicated by the number of uterine bleedings under treatment (3.00, 0.18-5.83 vs 0.00, 0.00-0.83; p<0.02). Also, a well-defined biphasic pattern in the basal body temperature suggested ovulatory cycles. The HOMA index decreased under treatment (2.12, 1.46-4.42 vs 3.48, 1.62-5.95; p<0.05). In conclusion, this preliminary, open study suggests that prolonged treatment with NAC+ARG might restore gonadal function in PCOS. This effect seems associated to an improvement in insulin sensitivity.
Collapse
Affiliation(s)
- A Masha
- Division of Endocrinology, Department of Internal Medicine, University of Turin, 10126 Turin, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Tripathi A, Khatun S, Pandey A, Mishra S, Chaube R, Shrivastav T, Chaube S. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res 2009; 43:287-94. [DOI: 10.1080/10715760802695985] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2008; 37:153-68. [PMID: 19030957 DOI: 10.1007/s00726-008-0210-y] [Citation(s) in RCA: 821] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|