1
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Cai Y, Li D, He J, Feng Z, Xu Q. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119521. [PMID: 37307924 DOI: 10.1016/j.bbamcr.2023.119521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic osteolytic inflammatory disease resulting from complex dynamic interactions among bacterial pathogens and the host immune response. Macrophages play a vital role in the pathogenesis of periodontitis by triggering periodontal inflammation and inducing periodontium destruction. N-Acetyltransferase 10 (NAT10) is an acetyltransferase that has been shown to catalyse N4-acetylcytidine (ac4C) mRNA modification and is related to cellular pathophysiological processes, including the inflammatory immune response. Nevertheless, whether NAT10 regulates the inflammatory response of macrophages in periodontitis remains unclear. In this study, the expression of NAT10 in macrophages was found to decrease during LPS-induced inflammation. NAT10 knockdown significantly reduced the generation of inflammatory factors, while NAT10 overexpression had the opposite effect. RNA sequencing revealed that the differentially expressed genes were enriched in the NF-κB signalling pathway and oxidative stress. Both the NF-κB inhibitor Bay11-7082 and the ROS scavenger N-acetyl-L-cysteine (NAC) could reverse the upregulation of inflammatory factors. NAC inhibited the phosphorylation of NF-κB, but Bay11-7082 had no effect on the production of ROS in NAT10-overexpressing cells, suggesting that NAT10 activated the LPS-induced NF-κB signalling pathway by regulating ROS generation. Furthermore, the expression and stability of Nox2 was promoted after NAT10 overexpression, indicating that Nox2 may be a potential target of NAT10. In vivo, the NAT10 inhibitor Remodelin reduced macrophage infiltration and bone resorption in ligature-induced periodontitis mice. In summary, these results showed that NAT10 accelerated LPS-induced inflammation via the NOX2-ROS-NF-κB pathway in macrophages and that its inhibitor Remodelin might be of potential therapeutic significance in periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
3
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
4
|
Fu C, Li Y, Xi H, Niu Z, Chen N, Wang R, Yan Y, Gan X, Wang M, Zhang W, Zhang Y, Lv P. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front Nutr 2022; 9:978475. [PMID: 35990352 PMCID: PMC9386258 DOI: 10.3389/fnut.2022.978475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the vessel-wall cells have been recognized. Many lines of evidence suggest that tobacco smoking and foodborne BaP exposure play a pivotal role in the dysfunctions of vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle cells, which contribute to the formation and worsening of cardiovascular diseases (CVDs). To clarify the underlying molecular mechanism of BaP-evoked CVDs, the present study mainly focused on both cellular and animal reports whose keywords include BaP and atherosclerosis, abdominal aortic aneurysm, hypertension, or myocardial injury. This review demonstrated the aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway exert a dominant role in the oxidative stress, inflammation response, and genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists of BaP are also discussed to better understand its mechanism of action on toxic pathways.
Collapse
Affiliation(s)
- Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao Xi
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Eco-Environmental Monitoring Center of Hebei Province, Shijiazhuang, China
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Novel Diagnostic Biomarkers Related to Oxidative Stress and Macrophage Ferroptosis in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8917947. [PMID: 36035208 PMCID: PMC9410850 DOI: 10.1155/2022/8917947] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which has a complex interplay between altered immune metabolism and oxidative stress. Therefore, we aimed to determine the oxidative stress and immune-related biomarkers in AS. Differential gene expression analyses are based on the GSE100927 dataset in the Gene Expression Omnibus (GEO), and 389 oxidative stress (OS) genes are identified based on gene set enrichment analysis (GSEA). We identified 74 differentially expressed genes related to oxidative stress (DEOSGs). “CIBERSORT” and “WGCNA” R Packages were used to compare the differences in immune infiltration levels between AS and control samples. The DEOSGs (N = 74) were intersected with the key module's genes of WGCNA (N = 972), and 27 differentially expressed immune-related oxidative stress genes (DEIOSGs) were obtained. To identify the pivotal genes, a protein-protein interaction (PPI) network was constructed using the STRING database and the Cytoscape software. MMP9, ALOX5, NCF2, NCF, and NCF4 were identified as diagnostic markers of AS, and we validated them in the GSE57691 dataset. The expression levels of the five diagnostic genes were significantly highly expressed in the AS group. Correlation analysis and single-cell analysis revealed that five diagnostic genes were mainly correlated with macrophages M1. We, respectively, intersected differentially expressed genes (DEGs) with ferroptosis gene set, necroptosis gene set, and pyroptosis gene set. The findings suggested that ALOX5 and NCF2 were differentially expressed genes of ferroptosis. High expression of five hub genes in RAW264.7 macrophages were confirmed by PCR. High ALOX5 and NCF2 expression levels in plaque tissues were confirmed by immunohistochemistry (IHC) and western blotting. Our study identified that MMP9, ALOX5, NCF2, NCF1, and NCF4 were diagnostic genes of AS and associated with oxidative stress. ALOX5 and NCF2 may be involved in the formation of the necrotic core in AS by regulating macrophage ferroptosis.
Collapse
|
6
|
Marques-da-Silva D, Videira PA, Lagoa R. Registered human trials addressing environmental and occupational toxicant exposures: Scoping review of immunological markers and protective strategies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103886. [PMID: 35598754 DOI: 10.1016/j.etap.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pollution is a worldwide societal challenge participating in the etiology and progression of different diseases. However, the scarce information hinders our understanding of the actual level of human exposure and its specific effects. Inadequate and excessive immune responses underlie diverse chronic diseases. Yet, it is unclear which and how toxicant exposures affect the immune system functions. There is a multiplicity of immunological outcomes and biomarkers being studied in human trials related to exposure to different toxicants but still without clear evidence of their value as biomarkers of exposure or effect. The main aim of this study was to collect scientific evidence and identify relevant immunological biomarkers used at the clinical level for toxicant exposures. We used the platform clinical trials.gov as a database tool. First, we performed a search combining research items related to toxicants and immunological parameters. The resulting117 clinical trials were examined for immune-related outcomes and specific biomarkers evaluated in subjects exposed to occupational and environmental toxicants. After categorization, relevant immunological outcomes and biomarkers were identified related to systemic and airway inflammation, modulation of immune cells, allergy and autoimmunity. In general, the immune markers related to inflammation are more frequently investigated for exposure to pollutants, namely IL-6, C-reactive protein (CRP) and nitric oxide (NO). Nevertheless, the data also indicated that prospective biomarkers of effect are gaining ground and a guiding representation of the established and novel biomarkers is suggested for upcoming trials. Finally, potential protective strategies to mitigate the adverse effects of specific toxicants are underlined for future studies.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901 Leiria, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Paula Alexandra Videira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
7
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
8
|
Nakagawa K, Kobayashi F, Kamei Y, Tawa M, Ohkita M. Acute Kynurenine Exposure of Rat Thoracic Aorta Induces Vascular Dysfunction <i>via</i> Superoxide Anion Production. Biol Pharm Bull 2022; 45:522-527. [DOI: 10.1248/bpb.b21-01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Fumika Kobayashi
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yoshiki Kamei
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
9
|
Shin KO, Kim S, Kim B, Park HY, Jung E, Kim G, Kim D, Cho HE, Uchida Y, Park K. Euphorbia supina Extracts Block NADPH Oxidase-Mediated, Ceramide-Induced Apoptosis Initiated by Diesel Particulate Matter. Pharmaceuticals (Basel) 2022; 15:ph15040431. [PMID: 35455428 PMCID: PMC9026628 DOI: 10.3390/ph15040431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Air pollutants contribute to the development of diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary cancer, cardiovascular problems, and some skin diseases. We recently found that a major air pollutant, diesel particulate matter (DPM), induces apoptosis in human keratinocytes by increasing a proapoptotic lipid mediator, ceramide. DPM activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), which stimulates sphingomyelinase, leading to an increased conversion of sphingomyelin to ceramide. Interestingly, we characterized that although NOX is a reactive oxygen species (ROS) generator, the activation of sphingomyelinases by NOX is an ROS-independent mechanism. A Korean weed, prostrate spurge Euphorbia supina Rafin (ESR), has been used for centuries as a folk medicine to treat bronchitis, hepatitis, hemorrhage, and skin inflammation. Flavonoids, terpenes and tannins are enriched in ESR, and although ESR has proven antioxidative activity, its biological activities are largely unknown. Here, we investigate whether and how ESR protects keratinocytes against DPM-mediated apoptosis. We found that ESR-extracts (ESR-Ex) protect keratinocytes from DPM-induced apoptosis by inhibiting NOX activation in keratinocytes in response to DPM. We also demonstrated that ESR-Ex suppresses NOX activation via a blockage of the aryl hydrocarbon receptor (AhR) activation-mediated transcription of neutrophil cytosolic factor 1 (NCF1)/p47phox, a subunit of NOX. Our study reveals previously uncharacterized biological activity of ESR-Ex; i.e., its inhibition of Ahr and NOX activation. Thus, because the inhibition of NOX has already been developed to treat NOX-mediated diseases, including various types of cardiovascular diseases and cancers, initiated by air pollutants and because AhR activation contributes to the development of chronic inflammatory diseases, our study provides further advantages for the medical use of ESR.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (S.K.); (B.K.)
- The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- LaSS Lipid Institute (LLI), LaSS Inc., Chuncheon 24252, Korea
| | - Sungeun Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (S.K.); (B.K.)
- The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Bokyung Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (S.K.); (B.K.)
- The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Hye-Yoon Park
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea; (H.-Y.P.); (E.J.); (G.K.)
| | - Eunhee Jung
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea; (H.-Y.P.); (E.J.); (G.K.)
| | - Garyun Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea; (H.-Y.P.); (E.J.); (G.K.)
| | - Donghee Kim
- College of Pharmacy, Chonbuk National University, Jeonju 54896, Korea; (D.K.); (H.E.C.)
| | - Hwang Eui Cho
- College of Pharmacy, Chonbuk National University, Jeonju 54896, Korea; (D.K.); (H.E.C.)
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (S.K.); (B.K.)
- The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (S.K.); (B.K.)
- The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| |
Collapse
|
10
|
Ghaffarian-Bahraman A, Arabnezhad MR, Keshavarzi M, Davani-Davari D, Jamshidzadeh A, Mohammadi-Bardbori A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol In Vitro 2021; 79:105282. [PMID: 34856342 DOI: 10.1016/j.tiv.2021.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Many environmental pollutants, natural compounds, as well as endogenous chemicals exert their biological/toxicological effects by reacting with the aryl hydrocarbon receptor (AhR). Previous evidence shed new light on the role of AhR in skin physiology by regulating melanin production. In this study, we investigated the effect of oxidative imbalance induced by AhR ligands on the melanogenesis process in B16 murine melanoma cells. Exposure to 6-formylindolo[3,2-b] carbazole (FICZ) or benzo-α-pyrene (BαP) led to enhanced expression of CTNNB1, MITF, and TYR genes following increased tyrosinase enzyme activity and melanin content in an AhR-dependent manner. Analysis of the presence of reactive oxygen species (ROS) as well as reduced glutathione (GSH) / oxidized glutathione (GSSG) ratio revealed that treatment with AhR ligands is associated with oxidative stress which can be ameliorated with NAC (N-acetyl cysteine) or diphenyleneiodonium chloride (DPI). On the other hand, NAC and DPI enhanced melanogenesis induced by AhR ligands by reducing the level of ROS. We have shown for the first time that a cellular redox status is a critical event during AhR ligand-induced melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Dorna Davani-Davari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
11
|
Ung TT, Nguyen TT, Li S, Han JY, Jung YD. Nicotine stimulates CYP1A1 expression in human hepatocellular carcinoma cells via AP-1, NF-κB, and AhR. Toxicol Lett 2021; 349:155-164. [PMID: 34171359 DOI: 10.1016/j.toxlet.2021.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is a member of a subfamily of enzymes involved in the metabolism of both endogenous and exogenous substrates and the chemical activation of xenobiotics to carcinogenic derivatives. Here, the effects of nicotine, a major psychoactive compound present in cigarette smoke, on CYP1A1 expression and human hepatocellular carcinoma (HepG2) cell proliferation were investigated. Nicotine stimulated CYP1A1 expression via the transcription factors, activator protein 1, nuclear factor-kappa B, and the aryl hydrocarbon receptor (AhR) signaling pathway. Pharmacological inhibition and mutagenesis studies indicated that p38 mitogen-activated protein kinase, as well as RelA (or p65), mediated the upregulation of CYP1A1 of nicotine in HepG2 cells. The antioxidant compound, N-acetyl-cysteine, abrogated nicotine-activated production of reactive oxygen species and inhibited CYP1A1 expression by nicotine. Furthermore, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was inhibited by diphenyleneiodonium (an NADPH oxidase inhibitor). Thus, these results demonstrated that AhR played an important role in nicotine-induced CYP1A1 expression. Additionally, liver hepatocellular carcinoma HepG2 cells treated with nicotine exhibited markedly enhanced proliferation via CYP1A1 expression and Akt activation.
Collapse
Affiliation(s)
- Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Nanogen Biopharmaceutical Company, Lot I - 5C Saigon Hitech Park, Tang Nhon Phu A Ward, District 9, Ho Chi Minh City, Viet Nam
| | - Thi Thinh Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Nanogen Biopharmaceutical Company, Lot I - 5C Saigon Hitech Park, Tang Nhon Phu A Ward, District 9, Ho Chi Minh City, Viet Nam
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jae-Young Han
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School and Hospital, Gwangju, 61469, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
12
|
Tanaka M, Fujikawa M, Oguro A, Itoh K, Vogel CFA, Ishihara Y. Involvement of the Microglial Aryl Hydrocarbon Receptor in Neuroinflammation and Vasogenic Edema after Ischemic Stroke. Cells 2021; 10:718. [PMID: 33804845 PMCID: PMC8063823 DOI: 10.3390/cells10040718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Microglia are activated after ischemic stroke and induce neuroinflammation. The expression of the aryl hydrocarbon receptor (AhR) has recently been reported to elicit cytokine expression. We previously reported that microglial activation mediates ischemic edema progression. Thus, the purpose of this study was to examine the role of AhR in inflammation and edema after ischemia using a mouse middle cerebral artery occlusion (MCAO) model. MCAO upregulated AhR expression in microglia during ischemia. MCAO increased the expression of tumor necrosis factor α (TNFα) and then induced edema progression, and worsened the modified neurological severity scores, with these being suppressed by administration of an AhR antagonist, CH223191. In THP-1 macrophages, the NADPH oxidase (NOX) subunit p47phox was significantly increased by AhR ligands, especially under inflammatory conditions. Suppression of NOX activity by apocynin or elimination of superoxide by superoxide dismutase decreased TNFα expression, which was induced by the AhR ligand. AhR ligands also elicited p47phox expression in mouse primary microglia. Thus, p47phox may be important in oxidative stress and subsequent inflammation. In MCAO model mice, P47phox expression was upregulated in microglia by ischemia. Lipid peroxidation induced by MCAO was suppressed by CH223191. Taken together, these findings suggest that AhR in the microglia is involved in neuroinflammation and subsequent edema, after MCAO via p47phox expression upregulation and oxidative stress.
Collapse
Affiliation(s)
- Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Masaho Fujikawa
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan;
| | - Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA;
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan; (M.T.); (M.F.); (A.O.)
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
14
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
15
|
Liang W, Zhang Y, Song L, Li Z. 2,3'4,4',5-Pentachlorobiphenyl induces hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent glycolysis. Toxicol Lett 2019; 313:108-119. [PMID: 31251971 DOI: 10.1016/j.toxlet.2019.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs) and are associated with the progression of many cancers, including liver cancer. The present study investigated the effect of 2,3'4,4',5-pentachlorobiphenyl (PCB118) on hepatocellular carcinoma cell proliferation and its underlying mechanisms. The results indicated that PCB118 exposure promotes the proliferation and glycolysis of hepatocellular carcinoma SMMC-7721 cells. Moreover, PCB118 exposure increased the expression level of pyruvate kinase M2 (PKM2) and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the induction of cell proliferation and glycolysis by PCB118. PCB118 stimulated reactive oxygen species (ROS) production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Treatment with the antioxidants N-acetyl-L-cysteine (NAC) and superoxide dismutase (SOD) prevented PCB118-induced effects on PKM2, cell proliferation and glycolysis. Furthermore, we found that PCB118 activated NADPH oxidase through the aryl hydrocarbon receptor (AhR) in SMMC-7721 cells. Consistently, treatment with AhR shRNA suppressed PCB118-induced effects on PKM2, cell proliferation and glycolysis. Overall, these results indicated that PCB118 promotes HCC cell proliferation via PKM2-dependent upregulation of glycolysis, which is mediated by AhR/NADPH oxidase-induced ROS production.
Collapse
Affiliation(s)
- Wenli Liang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yuting Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Busso IT, Silva GB, Carreras HA. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16653-16660. [PMID: 27180836 DOI: 10.1007/s11356-016-6833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation.
Collapse
Affiliation(s)
- Iván Tavera Busso
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Química, FCEFyN, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Guillermo Benjamín Silva
- Gabinete de Tecnología Médica, Facultad de Ingeniería, Universidad Nacional de San Juan and CONICET, San Juan, Argentina
| | - Hebe Alejandra Carreras
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Química, FCEFyN, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.
| |
Collapse
|
17
|
Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation. Toxicol Appl Pharmacol 2015; 285:170-8. [PMID: 25896968 DOI: 10.1016/j.taap.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France.
| |
Collapse
|
18
|
Zaccaria KJ, McClure PR. Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures. Int J Toxicol 2013; 32:236-50. [DOI: 10.1177/1091581813492829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estimating cancer risk from environmental mixtures containing polycyclic aromatic hydrocarbons (PAHs) is challenging. Ideally, each mixture would undergo toxicity testing to derive a cancer slope factor (CSF) for use in site-specific cancer risk assessments. However, this whole mixture approach is extremely costly in terms of finances, time, and animal usage. Alternatively, if an untested mixture is “sufficiently similar” to a well-characterized mixture with a CSF, the “surrogate” CSF can be used in risk assessments. We propose that similarity between 2 mixtures could be established using an in vitro battery of genotoxic and nongenotoxic tests. An observed association between carcinogenicity and immunosuppression of PAHs suggests that the addition of immune suppression assays may improve this battery. First, using published studies of benzo[a]pyrene (BaP) and other PAHs, we demonstrated a correlation between the derived immune suppression relative potency factors (RPFs) for 9 PAHs and their respective cancer RPFs, confirming observations published previously. Second, we constructed an integrated knowledge map for immune suppression by BaP based on the available mechanistic information. The map illustrates the mechanistic complexities involved in BaP immunosuppression, suggesting that multiple in vitro tests of immune suppression involving different processes, cell types, and tissues will have greater predictive value for immune suppression in vivo than a single test. Based on these observations, research strategies are recommended to validate a battery of in vitro immune suppression tests that, along with tests for genotoxic and other nongenotoxic modes of cancer action, could be used to establish “sufficient similarity” of 2 mixtures for site-specific cancer risk assessments.
Collapse
Affiliation(s)
| | - Peter R. McClure
- SRC, Inc, Defense and Environmental Solutions, North Syracuse, NY, USA
| |
Collapse
|
19
|
Bunaciu RP, Yen A. 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells. Mol Cancer 2013; 12:39. [PMID: 23656719 PMCID: PMC3693992 DOI: 10.1186/1476-4598-12-39] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/07/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) ligand 6-Formylindolo(3,2-b)carbazole (FICZ) has received increasing attention since its identification as an endogenous AhR ligand and a photoproduct of tryptophan. FICZ and its metabolites have been detected in human fluids. We recently reported that AhR promotes retinoic acid (RA)-induced granulocytic differentiation of HL-60 myeloblastic leukemia cells by restricting the nuclear abundance of the stem cell associated transcription factor Oct4. The standard clinical management of acute promyelocytic leukemia (APL) is differentiation induction therapy using RA. But RA is not effective for other myeloid leukemias, making the mechanism of RA-induced differentiation observed in a non-APL myeloid leukemia of interest. To our knowledge, this is the first study regarding the influence of FICZ on RA-induced differentiation in any type of leukemic blasts. METHODS Using flow cytometry and Western blotting assays, we determined the effects of FICZ on RA-induced differentiation of HL-60 human leukemia cells. All experiments were performed in triplicate. The groups RA and FICZ + RA were compared using the Paired-Samples T-Test. Western blot figures present the typical blots. RESULTS We demonstrate that FICZ enhances RA-induced differentiation, assessed by the expression of the membrane differentiation marker CD11b; cell cycle arrest; and the functional differentiation marker, inducible-oxidative metabolism. FICZ causes changes in signaling events that are known to drive differentiation, and notably augments the RA-induced sustained activation of the RAF/MEK/ERK axis of the mitogen-activated protein kinase (MAPK) cascade. FICZ also augments expression of the known MAPK signaling regulatory molecules c-Cbl, VAV1, pY458 p85 PI3K, Src-family kinases (SFKs), and IRF-1, a transcription factor associated with this putative signalsome that promotes RA-induced differentiation. Moreover, FICZ in combination with RA also increases expression of AhR and even more so of both Cyp1A2 and p47phox, which are known to be transcriptionally regulated by AhR. pY1021 PDGFRβ, a marker associated with retinoic acid syndrome was also increased. CONCLUSIONS Our data suggest that FICZ modulates intracellular signaling pathways and enhances RA-induced differentiation.
Collapse
Affiliation(s)
- Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
20
|
Wada T, Sunaga H, Ohkawara R, Shimba S. Aryl hydrocarbon receptor modulates NADPH oxidase activity via direct transcriptional regulation of p40phox expression. Mol Pharmacol 2013; 83:1133-40. [PMID: 23478803 DOI: 10.1124/mol.112.083303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A member of the NADPH oxidase subunits, p40(phox) plays an important role in the regulation of NADPH oxidase activity and the subsequent production of reactive oxygen species (ROS). In this study, we show that mouse p40(phox) is a novel transcriptional target of the aryl hydrocarbon receptor (AhR), known as a dioxin receptor or xenobiotic receptor, in the liver. Treatment of mice with 3-methylcholanthrene (3MC) increased p40(phox) gene expression in the liver, but this induction of p40(phox) gene expression was diminished by the deletion of the AhR gene in the liver. Consistent with the in vivo results, the expression of the p40(phox) gene was increased in 3MC-treated Hepa1c1c7 cells in an AhR-dependent manner. In addition, promoter analysis established p40(phox) as a transcriptional target of AhR. Studies using the RNA-interference technique revealed that p40(phox) is involved in the increase of NADPH oxidase activity and the subsequent ROS production in AhR-activated Hepa1c1c7 cells. Consequently, the results obtained here may provide a novel molecular mechanism for ROS production after exposure to dioxins.
Collapse
Affiliation(s)
- Taira Wada
- Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | | | | | | |
Collapse
|
21
|
Pinel-Marie ML, Louarn L, Desmots S, Fardel O, Sparfel L. Aryl hydrocarbon receptor-dependent induction of the IgA receptor FcαRI by the environmental contaminant benzo(a)pyrene in human macrophages. Toxicology 2011; 290:89-95. [PMID: 21911031 DOI: 10.1016/j.tox.2011.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (BaP), are widely distributed toxic environmental contaminants well known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that the IgA receptor FcαRI/CD89 constitutes a molecular target for PAHs. Indeed, in vitro exposure to BaP markedly increased mRNA and protein expression of FcαRI in primary human macrophages; intratracheal instillation of BaP to rats also enhanced mRNA expression of FcαRI in alveolar macrophages. BaP concomitantly increased activity of the previously uncharacterized -1734 to -42 fragment of the FcaRI promoter that we subcloned in a luciferase reporter vector. Three-methylcholanthrene, a PAH known to activate AhR like BaP, induced FcαRI expression, in contrast to benzo(e)pyrene, a PAH known to poorly interact with AhR. Moreover, FcαRI induction in BaP-exposed human macrophages was fully prevented by down-regulating AhR expression through small interference RNA transfection. In addition, BaP increased nuclear protein binding to a consensus AhR-related xenobiotic-responsive element found in the FcαRI gene promoter, as revealed by electrophoretic mobility shift assay. Overall, these data highlight an AhR-dependent up-regulation of FcαRI in response to BaP, which may contribute to the deleterious effects of environmental PAHs toward the immune/inflammatory response and which also likely emphasizes the role played by AhR in the regulation of genes involved in immunity and inflammation.
Collapse
Affiliation(s)
- Marie-Laure Pinel-Marie
- Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), EA-4427 Signalisation et Réponses aux Agents Infectieux et Chimiques (SeRAIC), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Sparfel L, Pinel-Marie ML, Boize M, Koscielny S, Desmots S, Pery A, Fardel O. Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci 2010; 114:247-59. [PMID: 20064835 DOI: 10.1093/toxsci/kfq007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed immunotoxic and carcinogenic environmental contaminants, known to affect macrophages. In order to identify their molecular targets in such cells, we have analyzed gene expression profile of primary human macrophages treated by the prototypical PAH benzo(a)pyrene (BaP), using pangenomic oligonucleotides microarrays. Exposure of macrophages to BaP for 8 and 24 h resulted in 96 and 1100 genes, differentially expressed by at least a twofold change factor, respectively. Some of these targets, including the chemokine receptor CXCR5, the G protein-coupled receptor 35 (GPR35), and the Ras regulator RASAL1, have not been previously shown to be affected by PAHs, in contrast to others, such as interleukin-1beta and the aryl hydrocarbon receptor (AhR) repressor. These BaP-mediated gene regulations were fully validated by reverse transcription-quantitative polymerase chain reaction assays for some selected genes. Their bioinformatic analysis indicated that biological functions linked to immunity, inflammation, and cell death were among the most affected by BaP in human macrophages and that the AhR and p53 signaling pathways were the most significant canonical pathways activated by the PAH. AhR and p53 implications were moreover fully confirmed by the prevention of BaP-related upregulation of some selected target genes by AhR silencing or the use of pifithrin-alpha, an inhibitor of PAH bioactivation-related DNA damage/p53 pathways. Overall, these data, through identifying genes and signaling pathways targeted by PAHs in human macrophages, may contribute to better understand the molecular basis of the immunotoxicity of these environmental contaminants.
Collapse
Affiliation(s)
- Lydie Sparfel
- EA 4427 SeRAIC, Equipe Toxicité des hydrocarbures aromatiques polycycliques (labellisée par la Ligue Nationale contre le Cancer), Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, 35043 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|