1
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
2
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
3
|
Abstract
Mitochondria actively participate in oxygenic metabolism and are one of the major sources of reactive oxygen species (ROS) production in plant cells. However, instead of measuring ROS concentrations in organelles it is more worthwhile to observe active ROS generation or downstream oxidation products, because the steady state level of ROS is easily buffered. Here, we describe how to measure the in vitro production of superoxide anion radicals (O2·-) by mitochondria and the release of O2·- into the cytosol. A method to determine glutathione, which is the most abundant mitochondrial low-mass antioxidant, is presented since changes in the redox state of glutathione can be indicative of the oxidative action of ROS. The identification of oxidative damage to mitochondrial components is the ultimate symptom that ROS homeostasis is not under control. We present how to determine the extent of oxidation of membrane lipids and the carbonylation of mitochondrial proteins. In summary, oxidative stress symptoms have to be analyzed at different levels, including ROS production, scavenging capacity, and signs of destruction, which only together can be considered markers of mitochondrial ROS status.
Collapse
Affiliation(s)
- Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Hu Y, Feng L, Jiang W, Wu P, Liu Y, Kuang S, Tang L, Zhou X. Lysine deficiency impaired growth performance and immune response and aggravated inflammatory response of the skin, spleen and head kidney in grown-up grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:556-568. [PMID: 34258445 PMCID: PMC8245797 DOI: 10.1016/j.aninu.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This dissertation was primarily focused on the immune response, inflammatory response and molecular mechanisms in the skin, head kidney and spleen of grown-up grass carp (Ctenopharyngodon idella). Six iso-nitrogen diets differing in lysine concentrations (5.6, 8.5, 11.6, 14.4, 17.5 and 20.7 g/kg) were fed to 540 grass carp (164.85 ± 0.79 g) for 60 d. After that, grass carp were challenged by Aeromonas hydrophila for 6 d. This study revealed that lysine deficiency (1) suppressed the growth performance of the fish and decreased their ability to resist skin lesion morbidity, (2) impaired the immune organ's immune response by decreasing the gene expressions of mucin, liver-expressed antimicrobial peptide (LEAP)-2B, β-defensin-1 and LEAP-2A and the production of antibacterial compounds of grown-up grass carp, and (3) aggravated the inflammatory response of immune organs in the fish by increasing the gene expressions of pro-inflammatory cytokines (interferon γ2 [IFN-γ2], tumor necrosis factor α [TNF-α], interleukin [IL]-15, IL-17D, IL-12p40, IL-6 and IL-8) and down-regulating anti-inflammatory cytokines (IL-11, transforming growth factor β1 [TGF-β1], IL-10 and IL-4/13A), which were tightly correlated with signal transducer and activator of transcription (STAT)1 and STAT3 signaling pathway, respectively. The different phenomenon in the skin, spleen and head kidney of fish may be correlated with the difference in gene subtype. In addition, using quadratic regression analysis of percent weight gain (PWG), skin lesion morbidity, and the lysozyme activities in the spleen and head kidney, the dietary lysine requirements for grown-up grass carp were estimated to be 13.58, 13.51, 14.56 and 14.18 g/kg, respectively.
Collapse
Affiliation(s)
- Yangyang Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Shengyao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
- Corresponding author.
| |
Collapse
|
5
|
Chen L, Xia YF, Shen SF, Tang J, Chen JL, Qian K, Chen Z, Qin ZH, Sheng R. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radic Biol Med 2020; 160:319-333. [PMID: 32828953 DOI: 10.1016/j.freeradbiomed.2020.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that syntaxin 17 (STX17) is involved in mediating the fusion of autophagosomes and lysosomes. This study aimed to investigate the role and mechanism of STX17 in neuronal injury following cerebral ischemia/reperfusion. The ischemia/reperfusion (I/R) models were established by transient middle cerebral artery occlusion (tMCAO) in mice and oxygen glucose deprivation/reperfusion (O/R) in primary cultured cortical neurons and HT22 cells. Cerebral ischemia/reperfusion significantly up-regulated the expression of STX17 in neurons. Lentivirus mediated knockdown of STX17 in neurons reduced neuronal viability and increased LDH leakage. Injection of AAV9-shSTX17 into the brain of mice then subjected to tMCAO also significantly augmented the infarct area and exacerbated neurobehavioral deficits and mortality. Depletion of STX17 caused accumulation of autophagic marker/substrate LC3 II and p62, blockade of the autophagic flux, and the accumulation of dysfunctional lysosomes. Knockdown of STX17 also aggravated endoplasmic reticulum (ER) stress-dependent neuronal apoptosis induced by ischemia/reperfusion. Importantly, induction of autophagy-lysosomal pathway and alleviation of ER stress partially rescued STX17 knockdown-induced neuronal damage. These results suggest that STX17 may ameliorate ischemia/reperfusion-induced neuronal damage by enhancing autophagy flux and reducing ER stress-dependent neuronal apoptosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Yun-Fei Xia
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Shu-Fang Shen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Li Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, Fushimura Y, Hato D, Iwai-Kanai E, Matoba S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H1087-H1096. [PMID: 32946259 DOI: 10.1152/ajpheart.00314.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, Fushimura Y, Hato D, Iwai-Kanai E, Matoba S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol 319: H1087-H1096, 2020. First published September 18, 2020; doi:10.1152/ajpheart.00314.2020.-Pulmonary arterial hypertension (PAH) is a refractory disease. Its prognosis remains poor; hence, establishment of novel therapeutic targets is urgent. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). Recently, p53 was shown to suppress PAH progression. Because inhibition of autophagy and ROS is known to improve PAH, we examined the effect of TIGAR on PAH progression. We compared pulmonary hypertension (PH) development between TIGAR-deficient knockout (KO) and wild-type (WT) mice using a hypoxia-induced PH model. Human pulmonary artery smooth muscle cells (PASMCs) were used for in vitro experiments with small interfering RNA (siRNA) to investigate the possible molecular mechanisms. From the analysis of right ventricular pressure, right ventricular weight, and mortality rate, we concluded that the hypoxia-induced PH development was remarkably higher in TIGAR KO than in WT mice. Pathological investigation revealed that medial thickening of the pulmonary arterioles and cell proliferation were increased in TIGAR KO mice. Autophagy and ROS activity were also increased in TIGAR KO mice. TIGAR knockdown by siRNA increased cell proliferation and migration, exacerbated autophagy, and increased ROS generation during hypoxia. Autophagy inhibition by chloroquine and ROS inhibition by N-acetylcysteine attenuated the proliferation and migration of PASMCs caused by TIGAR knockdown and hypoxia exposure. TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. Thus, TIGAR might be a promising therapeutic target for PAH.NEW & NOTEWORTHY Pulmonary arterial hypertension is a refractory disease. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). By using TIGAR-deficient knockout mice and human pulmonary artery smooth muscle cells, we found that TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. TIGAR will be a promising therapeutic target for PAH.
Collapse
Affiliation(s)
- Ryoetsu Yamanaka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Kuniyoshi Fukai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Ryota Urata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Yoshito Minami
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Sakiko Honda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Yohei Fushimura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Daichi Hato
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Eri Iwai-Kanai
- Faculty of Health Care, Tenri Health Care University, Tenri, Nara, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| |
Collapse
|
7
|
Zhao Y, Zhang TR, Li Q, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Zhou XQ, Jiang J. Effect of dietary L-glutamate levels on growth, digestive and absorptive capability, and intestinal physical barrier function in Jian carp ( Cyprinus carpio var. Jian). ACTA ACUST UNITED AC 2020; 6:198-209. [PMID: 32542201 PMCID: PMC7283372 DOI: 10.1016/j.aninu.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
The present study explored effects of L-glutamate (Glu) levels on growth, digestive and absorptive capability, and intestinal physical barrier functions of Jian carp (Cyprinus carpio). A total of 600 Jian carp (126.40 ± 0.21 g) were randomly distributed into 5 groups with 3 replicates each, fed diets containing graded levels of Glu (53.4 [control], 57.2, 60.6, 68.4, and 83.4 g/kg) for 63 d. Results showed compared with control diet, feed intake and percent weight gain (PWG) in fish fed 83.4 g of Glu/kg diet were increased and feed conversion ratio in fish fed 68.4 g of Glu/kg diet was decreased (P < 0.05). Similarly, body crude protein and lipid contents in fish fed 68.4 g of Glu/kg diet were higher (P < 0.05). The activities of trypsin and chymotrypsin in the hepatopancreas and intestine, and amylase, alkaline phosphatase (AKP), Na+, K+-ATPase (NKA), and creatine kinase (CK) in intestine were higher in fish fed 68.4 g of Glu/kg diet (P < 0.05). Dietary Glu (57.2 to 83.4 g/kg diet) decreased malondialdehyde (MDA) and protein carbonyl (PCO) contents in the intestine (P < 0.05). The activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) in the hepatopancreas and intestine were higher in fish fed 60.6 and 68.4 g of Glu/kg diets (P < 0.05). Intestinal the glutathione reductase (GR) activity and glutathione (GSH) content in fish fed 60.6, 68.4, and 83.4 g of Glu/kg diet were increased (P < 0.05). The GPx1a, GST, and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expressions in the intestine were up-regulated in fish fed 60.6 and 68.4 g of Glu/kg diet (P < 0.05). The zonula occludens protein-1 (ZO-1), occludin1, and claudin3 mRNA expressions were also up-regulated in fish fed 83.4 g of Glu/kg diet (P < 0.05). Fish fed 68.4 g of Glu/kg diet had higher levels of claudin 2, claudin7, and protein kinase C (PKC) mRNA (P < 0.05). These results indicated that Glu improved fish growth, digestive and absorptive ability, and intestinal physical barrier functions. Based on the quadratic regression analysis of PWG, and MDA of the hepatopancreas and intestine, the optimal dietary Glu levels were estimated to be 81.97, 71.06, and 71.36 g/kg diet, respectively.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tian-Ran Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qian Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| |
Collapse
|
8
|
Receno CN, Liang C, Korol DL, Atalay M, Heffernan KS, Brutsaert TD, DeRuisseau KC. Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats. Int J Mol Sci 2019; 20:E1178. [PMID: 30866573 PMCID: PMC6429120 DOI: 10.3390/ijms20051178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress resulting from decreased antioxidant protection and increased reactive oxygen and nitrogen species (RONS) production may contribute to muscle mass loss and dysfunction during aging. Curcumin is a phenolic compound shown to upregulate antioxidant defenses and directly quench RONS in vivo. This study determined the impact of prolonged dietary curcumin exposure on muscle mass and function of aged rats. Thirty-two-month-old male F344xBN rats were provided a diet with or without 0.2% curcumin for 4 months. The groups included: ad libitum control (CON; n = 18); 0.2% curcumin (CUR; n = 18); and pair-fed (PAIR; n = 18) rats. CUR rats showed lower food intake compared to CON, making PAIR a suitable comparison group. CUR rats displayed larger plantaris mass and force production (vs. PAIR). Nuclear fraction levels of nuclear factor erythroid-2 related-factor-2 were greater, and oxidative macromolecule damage was lower in CUR (vs. PAIR). There were no significant differences in measures of antioxidant status between any of the groups. No difference in any measure was observed between CUR and CON rats. Thus, consumption of curcumin coupled with reduced food intake imparted beneficial effects on aged skeletal muscle. The benefit of curcumin on aging skeletal muscle should be explored further.
Collapse
Affiliation(s)
- Candace N Receno
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Chen Liang
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Donna L Korol
- 107 College Place, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| | - Mustafa Atalay
- Yliopistonranta 1 E, Institute of Biomedicine, Physiology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kevin S Heffernan
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Tom D Brutsaert
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Keith C DeRuisseau
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
9
|
Salloum Z, Lehoux EA, Harper ME, Catelas I. Effects of cobalt and chromium ions on oxidative stress and energy metabolism in macrophages in vitro. J Orthop Res 2018; 36:3178-3187. [PMID: 30144138 DOI: 10.1002/jor.24130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 07/21/2018] [Indexed: 02/04/2023]
Abstract
Cobalt and chromium ions released from cobalt-chromium-molybdenum (CoCrMo)-based implants are a potential health concern, especially since both ions have been shown to induce oxidative stress in macrophages, the predominant immune cells in periprosthetic tissues. Ions of other transition metals (Cd, Ni) have been reported to inhibit the activity of mitochondrial enzymes in the electron transport chain. However, the effects of Co and Cr ions on the energy metabolism of macrophages remain largely unknown. The objective of the present study was to analyze the effects of Co2+ and Cr3+ on oxidative stress and energy metabolism in macrophages in vitro. RAW 264.7 murine macrophages were exposed to 6-18 ppm Co2+ or 50-150 ppm Cr3+ . Results showed a significant increase in two markers of oxidative stress, reactive oxygen species level and protein carbonyl content, with increasing concentrations of Co2+ , but not with Cr3+ . In addition, oxygen consumption rates (OCR; measured using an extracellular flux analyzer) showed significant decreases in both mitochondrial respiration and non-mitochondrial oxygen consumption with increasing concentrations of Co2+ , but not with Cr3+ . OCR results further showed that Co2+ , but not Cr3+ , induced mitochondrial dysfunction, including a decrease in oxidative phosphorylation capacity. Overall, this study suggests that mitochondrial dysfunction may contribute to Co2+ -induced oxidative stress in macrophages, and thereby to the inflammatory response observed in periprosthetic tissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3178-3187, 2018.
Collapse
Affiliation(s)
- Zeina Salloum
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | - Eric A Lehoux
- Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | - Isabelle Catelas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.,Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5.,Department of Surgery, University of Ottawa, The Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, Ontario, Canada, K1H 8L6
| |
Collapse
|
10
|
Jiang J, Xu S, Feng L, Liu Y, Jiang W, Wu P, Wang Y, Zhao Y, Zhou X. Lysine and methionine supplementation ameliorates high inclusion of soybean meal inducing intestinal oxidative injury and digestive and antioxidant capacity decrease of yellow catfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:319-328. [PMID: 29098470 DOI: 10.1007/s10695-017-0437-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The yellow catfish Pelteobagrus fulvidraco with initial average weight 16.6 ± 0.17 g were fed three extruded diets for 56 days. Fish meal (FM) diet was formulated as the normal control with 380 g FM and 200 g soybean meal (SBM) kg-1 diet. The SBM diet was prepared with 220 g FM and 360 g SBM kg-1 diet without Lys or Met supplementation. The SBM supplement (SBMS) diet was similar to SBM diet and supplemented with Lys and Met to ensure their levels similar to FM diet. The results showed fish fed SBM diet had lower percent weight gain and specific growth rate than the other two groups (P < 0.05). Whole body protein content of fish fed FM and SBMS diets were higher than that of fish fed SBM diet (P < 0.05). The hepatosomatic and intestosomatic indexes of fish fed SBM diet were significantly lower than that of fish fed FM and SBMS diets (P < 0.05). The activities of pepsin in stomach, trypsin, and chymotrypsin in intestine, alkaline phosphatase and creatine kinase in proximal intestine, Na+, K+-ATPase, and gamma-glutamyl transpeptidase in distal intestine were significantly higher in fish fed FM and SBMS diets compared to SBM diet. The activities of catalase, glutathione-S-transferase, reduced glutathione, superoxide anion scavenging, and hydroxyl radical scavenging in the intestine showed the same changes (P < 0.05). Malondialdehyde and protein carbonyl contents in intestine were significantly decreased in fish fed SBMS diet compared to SBM diet. These results indicated high inclusion of SBM induced intestinal oxidative injury and digestive and antioxidant capacity decrease. The Lys and Met supplementation could ameliorate these adverse effects on yellow catfish.
Collapse
Affiliation(s)
- Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangxiao Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Jang S, Lewis TS, Powers C, Khuchua Z, Baines CP, Wipf P, Javadov S. Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia-Reperfusion. Antioxid Redox Signal 2017; 27:57-69. [PMID: 27604998 PMCID: PMC5488255 DOI: 10.1089/ars.2016.6635] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS Mitochondrial supercomplexes (SCs) are the large supramolecular assembly of individual electron transport chain (ETC) complexes that apparently provide highly efficient ATP synthesis and reduce electron leakage and reactive oxygen species (ROS) production. Oxidative stress during cardiac ischemia-reperfusion (IR) can result in degradation of SCs through oxidation of cardiolipin (CL). Also, IR induces calcium overload and enhances reactive oxygen species (mitROS) in mitochondria that result in the opening of the nonselective permeability transition pores (PTP). The opening of the PTP further compromises cellular energetics and increases mitROS ultimately leading to cell death. Here, we examined the role of PTP-induced mitROS in disintegration of SCs during cardiac IR. The relationship between mitochondrial PTP, ROS, and SCs was investigated using Langendorff-perfused rat hearts subjected to global ischemia (25 min) followed by short-time (5 min) or long-time (60 min) reperfusion in the presence or absence of the PTP inhibitor, sanglifehrin A (SfA), and the mitochondrial targeted ROS and electron scavenger, XJB-5-131. Also, the effects of CL deficiency on SC degradation, PTP, and mitROS were investigated in tafazzin knockdown (TazKD) mice. RESULTS Cardiac IR induced PTP opening and mitROS generation, inhibited by SfA. Percent distributions of SCs were significantly affected by IR, and the effects were dependent on the reperfusion time and reversed by SfA and XJB-5-131. TazKD mice demonstrated a 40% lower SC I + III+IV with reduced basal mitochondrial PTP, ROS, and ETC complex activity. Innovation and Conclusion: Sustained reperfusion after cardiac ischemia induces disintegration of mitochondrial SCs, and PTP-induced ROS presumably play a causal role in SC disassembly. Antioxid. Redox Signal. 27, 57-69.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Taber S. Lewis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corey Powers
- The Heart Institute, Cincinnati Children's Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Christopher P. Baines
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
12
|
Pyr Dit Ruys S, Bonzom JM, Frelon S. Benchmarking of protein carbonylation analysis in Caenorhabditis elegans: specific considerations and general advice. Free Radic Biol Med 2016; 99:364-373. [PMID: 27521457 DOI: 10.1016/j.freeradbiomed.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress has been extensively studied due to its correlation with cellular disorders and aging. In proteins, one biomarker of oxidative stress is the presence of carbonyl groups, such as aldehyde and ketone, in specific amino acid side chains such as lysine, proline, arginine and threonine, so-called protein carbonylation (PC). PC study is now a growing field in general and medical science since PC accumulation is associated with various pathologies and disorders. At present, enzyme-linked immunosorbent assays (ELISA) seem to be the most robust method of quantifying the presence of carbonyl groups in proteins, despite having some recognised caveats. In parallel, gel-based approaches present cross-comparison difficulties, along with other technical problems. As generic PC analyses still suffer from poor homogeneity, leading to cross-data analysis difficulties and poor results overlap, the need for harmonisation in the field of carbonyl detection is now widely accepted. This study aims to highlight some of the technical challenges in proteomic gel-based multiplexing experiments when dealing with PC in difficult samples like those from Caenorhabditis elegans, from protein extraction to carbonyl detection. We demonstrate that some critical technical parameters, such as labelling time, probe concentration, and total and carbonylated protein recovery rates, should be re-addressed in a sample-specific way. We also defined a procedure to cost-effectively adapt CyDye™-hydrazide-based protocols to specific samples, especially when the experimental interest is focused on studying differences between stimulating conditions with a maximised signal-to-noise ratio. Moreover, we have improved an already-existing powerful solubilisation buffer, making it potentially useful for hard-to-solubilise protein pellets. Lastly, the depicted methodology exemplifies a simple way of normalising carbonyl-related signal to total protein in SDS-PAGE multiplexing experiments. Within that scope, we also proposed a simple way to quantify carbonyl groups by on-gel spotting diluted dye-containing labelling buffer. Proof of the robustness of the procedure was also highlighted by the high linear correlation between the level of carbonyls and the ultraviolet exposure duration of whole worms (R2=0.993). Altogether, these results will help to standardise existing protocols in the growing field of proteomic carbonylation studies.
Collapse
Affiliation(s)
- S Pyr Dit Ruys
- IRSN - Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire d'Ecotoxicologie des Radionucléides (IRSN/PRP-ENV/SERIS/LECO), Bât 183, BP 3, 13115 St-Paul-lez-Durance Cedex, France
| | - J-M Bonzom
- IRSN - Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire d'Ecotoxicologie des Radionucléides (IRSN/PRP-ENV/SERIS/LECO), Bât 183, BP 3, 13115 St-Paul-lez-Durance Cedex, France
| | - S Frelon
- IRSN - Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire d'Ecotoxicologie des Radionucléides (IRSN/PRP-ENV/SERIS/LECO), Bât 183, BP 3, 13115 St-Paul-lez-Durance Cedex, France.
| |
Collapse
|
13
|
Colombo G, Clerici M, Garavaglia ME, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:178-90. [DOI: 10.1016/j.jchromb.2015.11.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 01/05/2023]
|
14
|
Jiang J, Shi D, Zhou XQ, Yin L, Feng L, Liu Y, Jiang WD, Zhao Y. Effects of glutamate on growth, antioxidant capacity, and antioxidant-related signaling molecule expression in primary cultures of fish enterocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1143-53. [PMID: 25999304 DOI: 10.1007/s10695-015-0076-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/15/2015] [Indexed: 05/24/2023]
Abstract
The present study explored the effects of glutamate (Glu) on the growth, antioxidant capacity, and gene expression of NF-E2-related nuclear factor 2 (Nrf2) signaling molecule in enterocytes of Jian carp (Cyprinus carpio var. Jian). The enterocytes were incubated in media containing 0, 2, 4, 6, 8, and 10 mM/L Glu for 96 h. The results showed that Glu could promote fish enterocytes proliferation and differentiation. Additionally, activities of alkaline phosphatase, Na(+), K(+)-ATPase, γ-glutamyl transpeptidase, and creatine kinase were significantly improved with the increase in Glu level up to 6 mM/L. Lactic acid dehydrogenase activity and malondialdehyde content in the medium and cellular protein carbonyls were depressed by Glu. Moreover, optimum Glu significantly enhanced glutathione content and the activities and gene expression of catalase, glutathione reductase, and glutathione peroxidase in enterocytes. Finally, the expression level of Nrf2 in enterocytes was significantly elevated by appropriate Glu content in the medium. Furthermore, optimum Glu significantly decreased Kelch-like ECH-associated protein 1 mRNA level in enterocytes. In conclusion, Glu improved the proliferation, function, and antioxidant capacity and regulated antioxidant-related signaling molecule expression of fish enterocytes.
Collapse
Affiliation(s)
- Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Dan Shi
- College of Animal Science and Technology, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
15
|
The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos. Differentiation 2015; 89:51-69. [PMID: 25771346 DOI: 10.1016/j.diff.2015.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 12/18/2022]
Abstract
The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease.
Collapse
|
16
|
Fukai K, Nakamura A, Hoshino A, Nakanishi N, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Ono K, Tateishi S, Ikeda K, Ogata T, Ueyama T, Matoba S. Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1α. Am J Physiol Heart Circ Physiol 2015; 308:H951-9. [PMID: 25659487 DOI: 10.1152/ajpheart.00770.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/01/2015] [Indexed: 01/27/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a refractory disease characterized by uncontrolled vascular remodeling and elevated pulmonary arterial pressure. Although synthetic inhibitors of some tyrosine kinases have been used to treat PAH, their therapeutic efficacies and safeties remain controversial. Thus, the establishment of novel therapeutic targets based on the molecular pathogenesis underlying PAH is a clinically urgent issue. In the present study, we demonstrated that proline-rich tyrosine kinase 2 (Pyk2), a nonreceptor type protein tyrosine kinase, plays a crucial role in the pathogenesis of pulmonary hypertension (PH) using an animal model of hypoxia-induced PH. Resistance to hypoxia-induced PH was markedly higher in Pyk2-deficient mice than in wild-type mice. Pathological investigations revealed that medial thickening of the pulmonary arterioles, which is a characteristic of hypoxia-induced PH, was absent in Pyk2-deficient mice, suggesting that Pyk2 is involved in the hypoxia-induced aberrant proliferation of vascular smooth muscle cells in hypoxia-induced PH. In vitro experiments using human pulmonary smooth muscle cells showed that hypoxic stress increased the proliferation and migration of cells in a Pyk2-dependent manner. We also demonstrated that Pyk2 plays a crucial role in ROS generation during hypoxic stress and that this Pyk2-dependent generation of ROS is necessary for the activation of hypoxia-inducible factor-1α, a key molecule in the pathogenesis of hypoxia-induced PH. In summary, the results of the present study reveal that Pyk2 plays an important role in the pathogenesis of hypoxia-induced PH. Therefore, Pyk2 may represent a promising therapeutic target for PAH in a clinical setting.
Collapse
Affiliation(s)
- Kuniyoshi Fukai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; and
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kaimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Uchihashi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazunori Ono
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ikeda
- Clinical Pharmacy, Kobe Pharmaceutical University, Hyogo, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| |
Collapse
|
17
|
Aksentijević D, Zervou S, Faller KME, McAndrew DJ, Schneider JE, Neubauer S, Lygate CA. Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart. PLoS One 2014; 9:e109021. [PMID: 25272153 PMCID: PMC4182806 DOI: 10.1371/journal.pone.0109021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using invivo1H–MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Kiterie M. E. Faller
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Debra J. McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Jurgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Rogowska-Wrzesinska A, Wojdyla K, Nedić O, Baron CP, Griffiths HR. Analysis of protein carbonylation--pitfalls and promise in commonly used methods. Free Radic Res 2014; 48:1145-62. [PMID: 25072785 DOI: 10.3109/10715762.2014.944868] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the pathophysiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.
Collapse
Affiliation(s)
- A Rogowska-Wrzesinska
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark , Odense , Denmark
| | | | | | | | | |
Collapse
|
19
|
Wu P, Jiang WD, Liu Y, Chen GF, Jiang J, Li SH, Feng L, Zhou XQ. Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). FISH & SHELLFISH IMMUNOLOGY 2014; 38:374-382. [PMID: 24751923 DOI: 10.1016/j.fsi.2014.03.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/05/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang-Fu Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Hong Li
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
20
|
Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics 2013; 92:63-70. [DOI: 10.1016/j.jprot.2013.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/09/2013] [Accepted: 05/07/2013] [Indexed: 12/24/2022]
|
21
|
Linares E, Seixas LV, dos Prazeres JN, Ladd FVL, Ladd AABL, Coppi AA, Augusto O. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms. PLoS One 2013; 8:e55868. [PMID: 23405225 PMCID: PMC3566093 DOI: 10.1371/journal.pone.0055868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.
Collapse
Affiliation(s)
- Edlaine Linares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana V. Seixas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina N. dos Prazeres
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Aliny A. B. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio A. Coppi
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
22
|
Abstract
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is most often measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent 2,4 dinitrophenylhydrazine (DNPH). We present protocols for the derivatization and quantification of protein carbonylation with these two methods, including a newly described dot blot with greatly increased sensitivity.
Collapse
Affiliation(s)
- Nancy B Wehr
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | |
Collapse
|
23
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
24
|
Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 2011; 42:3574-9. [PMID: 21940958 DOI: 10.1161/strokeaha.111.626648] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Interleukin-6 (IL-6) has been shown to have a neuroprotective effect in brain ischemic injury. However, its molecular mechanisms are still poorly understood. In this study, we investigated the neuroprotective role of the IL-6 receptor (IL-6R) by IL-6 in the reactive oxygen species defense system after transient focal cerebral ischemia (tFCI). METHODS IL-6 was injected in mice before and after middle cerebral artery occlusion. Coimmunoprecipitation assays were performed for analysis of an IL-6R association after tFCI. Primary mouse cerebral cortical neurons were transfected with small interfering RNA probes targeted to IL-6Rα or gp130 and were used for chromatin-immunoprecipitation assay, luciferase promoter assay, and cell viability assay. Reduction in infarct volumes by IL-6 was measured after tFCI. RESULTS IL-6R was disrupted through a disassembly between IL-6Rα and gp130 associated by protein oxidation after reperfusion after tFCI. This suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and finally induced neuronal cell death through a decrease in manganese-superoxide dismutase. However, IL-6 injections prevented disruption of IL-6R against reperfusion after tFCI, consequently restoring activity of STAT3 through recovery of the binding of STAT3 to gp130. Moreover, IL-6 injections restored the transcriptional activity of the manganese-superoxide dismutase promoter through recovery of the recruitment of STAT3 to the manganese-superoxide dismutase promoter and reduced infarct volume after tFCI. CONCLUSIONS This study demonstrates that IL-6 has a neuroprotective effect against cerebral ischemic injury through IL-6R-mediated STAT3 activation and manganese-superoxide dismutase expression.
Collapse
Affiliation(s)
- Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS #P314, Stanford, CA 94305-5487, USA
| | | | | |
Collapse
|
25
|
Bradshaw A, Salt M, Bell A, Zeitler M, Litra N, Smith AM. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs. ACTA ACUST UNITED AC 2011; 214:1699-706. [PMID: 21525316 DOI: 10.1242/jeb.051581] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (M(r)) of 165 x 10³, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20-35% decrease in the amount of soluble protein with a M(r) of 40-165 (x 10³) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a M(r) of 15 x 10³ were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue.
Collapse
Affiliation(s)
- Andrew Bradshaw
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA
| | | | | | | | | | | |
Collapse
|
26
|
Semi-automated image analysis: detecting carbonylation in subcellular regions of skeletal muscle. Anal Bioanal Chem 2011; 400:213-22. [PMID: 21327623 DOI: 10.1007/s00216-011-4725-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
The level of carbonylation in skeletal muscle is a marker of oxidative damage associated with disease and aging. While immunofluorescence microscopy is an elegant method to identify carbonylation sites in muscle cross-sections, imaging analysis is manual, tedious, and time consuming, especially when the goal is to characterize carbonyl contents in subcellular regions. In this paper, we present a semi-automated method for the analysis of carbonylation in subcellular regions of skeletal muscle cross-sections visualized with dual fluorescent immunohistochemistry. Carbonyls were visualized by their reaction with 2,4-dinitrophenylhydrazine (DNPH) followed by immunolabeling with an Alexa488-tagged anti-DNP antibody. Mitochondria were probed with an anti-COXI primary antibody followed by the labeling with an Alexa568-tagged secondary antibody. After imaging, muscle fibers were individually analyzed using a custom-designed, lab-written, computer-aided procedure to measure carbonylation levels in subsarcolemmal and interfibrillar mitochondrial regions, and in the cytoplasmic and extracellular regions. Using this procedure, we were able to decrease the time necessary for the analysis of a single muscle fiber from 45 min to about 1 min. The procedure was tested by four independent analysts and found to be independent on inter-person and intra-person variations. This procedure will help increase highly needed throughput in muscle studies related to ageing, disease, physical performance, and inactivity that use carbonyl levels as markers of oxidative damage.
Collapse
|
27
|
Yan LJ, Forster MJ. Chemical probes for analysis of carbonylated proteins: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 879:1308-15. [PMID: 20732835 DOI: 10.1016/j.jchromb.2010.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023]
Abstract
Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2,4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([(3)H]NaBH(4)), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmacology and Neuroscience, and the Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | | |
Collapse
|
28
|
Divald A, Kivity S, Wang P, Hochhauser E, Roberts B, Teichberg S, Gomes AV, Powell SR. Myocardial Ischemic Preconditioning Preserves Postischemic Function of the 26S Proteasome Through Diminished Oxidative Damage to 19S Regulatory Particle Subunits. Circ Res 2010; 106:1829-38. [DOI: 10.1161/circresaha.110.219485] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andras Divald
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Shaye Kivity
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Ping Wang
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Edith Hochhauser
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Beth Roberts
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Saul Teichberg
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Aldrin V. Gomes
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| | - Saul R. Powell
- From The Feinstein Institute for Medical Research and the Albert Einstein College of Medicine (A.D., P.W., S.R.P.), Manhasset, NY; Cardiac Research Laboratory of the Department of Cardiothoracic Surgery (S.K., E.H.), Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Department of Laboratories and Pathology (B.R., S.T.), North Shore-Long Island Jewish Health System, Manhasset, NY; and Department of Neurobiology, Physiology and Behavior (A.V.G.), University of California,
| |
Collapse
|