1
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
3
|
Guo Y, Chen X, Gong P, Wang R, Qi Z, Deng Z, Han A, Long H, Wang J, Yao W, Yang W, Wang J, Li N. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023; 12:foods12051046. [PMID: 36900561 PMCID: PMC10000407 DOI: 10.3390/foods12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The king oyster mushroom (Pleurotus eryngii) is a delicious edible mushroom that is highly prized for its unique flavor and excellent medicinal properties. Its enzymes, phenolic compounds and reactive oxygen species are the keys to its browning and aging and result in its loss of nutrition and flavor. However, there is a lack of reviews on the preservation of Pl. eryngii to summarize and compare different storage and preservation methods. This paper reviews postharvest preservation techniques, including physical and chemical methods, to better understand the mechanisms of browning and the storage effects of different preservation methods, extend the storage life of mushrooms and present future perspectives on technical aspects in the storage and preservation of Pl. eryngii. This will provide important research directions for the processing and product development of this mushroom.
Collapse
Affiliation(s)
| | | | - Pin Gong
- Correspondence: ; Tel.: +86-13772196479
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
5
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
6
|
Hovan A, Sedláková D, Berta M, Bánó G, Sedlák E. Singlet oxygen quenching as a probe for cytochrome c molten globule state formation. Phys Chem Chem Phys 2022; 24:13317-13324. [PMID: 35608043 DOI: 10.1039/d2cp01281b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet oxygen refers to the nonradical metastable excited state of molecular oxygen that readily oxidizes various cellular components. Its behavior in different biological systems has been studied for many years. Recently, we analyzed the effect of singlet oxygen quenching by heme cofactor in cytochrome c (cyt c). Here, we have exploited this effect in the investigation of conformational differences in the molten globule states of cyt c induced by different sodium anions, namely sulfate, chloride and perchlorate. The high efficiency of heme toward quenching singlet oxygen enabled us to use this property for the analysis of the otherwise experimentally difficult-to-determine parameter of heme upon exposure to solvents as highly similar conformational states of cyt c in the molten globule states are induced by different salts at acidic pH. Our results from singlet oxygen quenching experiments correlate well with other spectroscopic methods, such as circular dichroism and fluorescence measurements, and suggest increasing availability of heme in the order: perchlorate < chloride < sulfate. Based on our findings we propose that singlet oxygen phosphorescence measurements are useful in determining the differences in the protein conformation of their heme regions, particularly regarding the relative heme exposure to the solvent.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| |
Collapse
|
7
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
8
|
Tomášková N, Novák P, Kožár T, Petrenčáková M, Jancura D, Yassaghi G, Man P, Sedlák E. Early modification of cytochrome c by hydrogen peroxide triggers its fast degradation. Int J Biol Macromol 2021; 174:413-423. [PMID: 33529629 DOI: 10.1016/j.ijbiomac.2021.01.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Cytochrome c (cyt c), in addition to its function as an electron shuttle in respiratory chain, is able to perform as a pseudo-peroxidase with a critical role during apoptosis. Incubation of cyt c with an excess of hydrogen peroxide leads to a suicide inactivation of the protein, which is accompanied by heme destruction and covalent modification of numerous amino acid residues. Although steady-state reactions of cyt c with an excess of hydrogen peroxide represent non-physiological conditions, they might be used for analysis of the first-modified amino acid in in vivo. Here, we observed oxidation of tyrosine residues 67 and 74 and heme as the first modifications found upon incubation with hydrogen peroxide. The positions of the oxidized tyrosines suggest a possible migration pathway of hydrogen peroxide-induced radicals from the site of heme localization to the protein surface. Analysis of a size of folded fraction of cyt c upon limited incubation with hydrogen peroxide indicates that the early oxidation of amino acids triggers an accelerated destruction of cyt c. Position of channels from molecular dynamics simulation structures of cyt c points to a location of amino acid residues exposed to reactive oxidants that are thus more prone to covalent modification.
Collapse
Affiliation(s)
- Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
| | - Petr Novák
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Martina Petrenčáková
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Ghazaleh Yassaghi
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Man
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
9
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
10
|
Gao T, Shi Y, Xue Y, Yan F, Huang D, Wu Y, Weng Z. Polyphenol extract from superheated steam processed tea waste attenuates the oxidative damage in vivo and in vitro. J Food Biochem 2019; 44:e13096. [PMID: 31693210 DOI: 10.1111/jfbc.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
In this study, tea polyphenols (TPs) was first extracted from tea waste by superheated steam (SS) pretreated ultrasonic-assisted hydrothermal extraction (UAH). The optimized strategy presented extracts with the extraction yield up to 21.19% with a significantly higher antioxidant ability, compared with the one without SS pretreatment. Further investigation proved that the SS suppressed the polyphenol oxidase activity of the TPs extract. The ability to scavenge the free radicals were compared in mouse liver mitochondria. Mitochondrial swelling, mitochondrial membrane potential (MMP), cardiolipin peroxidation, and respiratory chain complex (RCC) I-V activities were also evaluated as the index of the mitochondrial oxidative damage. The study supports evidence that the TPs extract exhibited significant protection against oxidative damage on mitochondrial. Furthermore, the effect of TPs on antioxidant ability in zebrafish embryo was evaluated. After TPs pretreatment for 1 day, zebrafish embryos showed a significantly higher survival rate as well as heart rate when facing the oxidative stress. PRACTICAL APPLICATIONS: Polyphenols from tea leaves have been viewed as an antioxidant additive in food, mainly due to the ability of scavenging free radicals and reactive oxygen species. The results of this study suggest that the SS pretreatment could be used as an efficient method to extract TPs from the tea waste for the prevention of oxidative damage in the mouse liver mitochondria and zebrafish embryos.
Collapse
Affiliation(s)
- Tingfang Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yuhong Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ying Xue
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou, China
| | - Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
11
|
Tomášková N, Varhač R, Lysáková V, Musatov A, Sedlák E. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1073-1083. [DOI: 10.1016/j.bbapap.2018.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
12
|
Tomkova S, Misuth M, Lenkavska L, Miskovsky P, Huntosova V. In vitro identification of mitochondrial oxidative stress production by time-resolved fluorescence imaging of glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:616-628. [PMID: 29410069 DOI: 10.1016/j.bbamcr.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker™ Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells.
Collapse
Affiliation(s)
- Silvia Tomkova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Matus Misuth
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Lenka Lenkavska
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia
| | - Pavol Miskovsky
- Center for Interdisciplinary Biosciences, Technology and innovation park, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia; SAFTRA photonics Ltd., Jesenna 5, 041 54, Kosice, Slovakia
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and innovation park, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia.
| |
Collapse
|
13
|
Sedlak E, Musatov A. Inner mechanism of protection of mitochondrial electron-transfer proteins against oxidative damage. Focus on hydrogen peroxide decomposition. Biochimie 2017; 142:152-157. [DOI: 10.1016/j.biochi.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022]
|
14
|
Rehman RNU, You Y, Zhang L, Goudia BD, Khan AR, Li P, Ma F. High Temperature Induced Anthocyanin Inhibition and Active Degradation in Malus profusion. FRONTIERS IN PLANT SCIENCE 2017; 8:1401. [PMID: 28848597 PMCID: PMC5552711 DOI: 10.3389/fpls.2017.01401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/27/2017] [Indexed: 05/21/2023]
Abstract
The red fleshed fruits of Malus profusion represent gradual color loss during high temperature in summer, potentially due to active degradation of anthocyanin. The objective of this study was to examine both physiological and molecular evidence of anthocyanin degradation. Malus crabapple fruits were exposed to either room temperature (RT = 18 ± 2°C: 25 ± 2°C) or high temperature (HT = 33 ± 2°C: 25 ± 2°C) regimens (12 h: 12 h) under hypoxic (2%) or normoxic (21%) oxygen levels. The results showed that the concentration of cyanidin 3-galactoside (cy-3-gal) was dramatically reduced following HT treatments due to a significant down-regulation of anthocyanin biosynthetic genes (MpCHS, MpDFR, MpLDOX, MpUFGT, and MpMYB10). Among other repressor MYBs, MpMYB15 expression was high following HT treatment of the fruit. HT led to the generation of a substantial concentration of H2O2 due to enhanced activities of superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA) content and cell sap pH value. Similarly, transcript levels of MpVHA-B1 and MpVHA-B2 were reduced which are involved in the vacuolar transportation of anthocyanin. The enzymatic degradation of anthocyanin was eventually enhanced coupled with the oxidative activities of peroxidase (POD) and H2O2. Conversely, the RT treatments potentially enhanced anthocyanin content by stabilizing physiological attributes (such as MDA, H2O2, and pH, among others) and sustaining sufficient biosynthetic gene expression levels. Quantitative real-time PCR analysis indicated that the transcription of MpPOD1, MpPOD8 and MpPOD9 genes in fruit tissues was up-regulated due to HT treatment and that hypoxic conditions seems more compatible with the responsible POD isoenzymes involved in active anthocyanin degradation. The results of the current study could be useful for understanding as well as elucidating the physiological phenomenon and molecular signaling cascade underlying active anthocyanin degradation in Malus crops.
Collapse
Affiliation(s)
- Rana Naveed Ur Rehman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yaohua You
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Bachir Daoura Goudia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | | | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Fangwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
15
|
González-Sánchez MI, Laurenti M, Rubio-Retama J, López-Cabarcos E, Valero E. Searching for the fluorescence quenching mechanism of conjugated polymers by cytochrome c. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Kori M, Gov E, Arga KY. Molecular signatures of ovarian diseases: Insights from network medicine perspective. Syst Biol Reprod Med 2016; 62:266-82. [PMID: 27341345 DOI: 10.1080/19396368.2016.1197982] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysfunctions and disorders in the ovary lead to a host of diseases including ovarian cancer, ovarian endometriosis, and polycystic ovarian syndrome (PCOS). Understanding the molecular mechanisms behind ovarian diseases is a great challenge. In the present study, we performed a meta-analysis of transcriptome data for ovarian cancer, ovarian endometriosis, and PCOS, and integrated the information gained from statistical analysis with genome-scale biological networks (protein-protein interaction, transcriptional regulatory, and metabolic). Comparative and integrative analyses yielded reporter biomolecules (genes, proteins, metabolites, transcription factors, and micro-RNAs), and unique or common signatures at protein, metabolism, and transcription regulation levels, which might be beneficial to uncovering the underlying biological mechanisms behind the diseases. These signatures were mostly associated with formation or initiation of cancer development, and pointed out the potential tendency of PCOS and endometriosis to tumorigenesis. Molecules and pathways related to MAPK signaling, cell cycle, and apoptosis were the mutual determinants in the pathogenesis of all three diseases. To our knowledge, this is the first report that screens these diseases from a network medicine perspective. This study provides signatures which could be considered as potential therapeutic targets and/or as medical prognostic biomarkers in further experimental and clinical studies. Abbreviations DAVID: Database for Annotation, Visualization and Integrated Discovery; DEGs: differentially expressed genes; GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of Genes and Genomes; LIMMA: Linear Models for Microarray Data; MBRole: Metabolite Biological Role; miRNA: micro-RNA; PCOS: polycystic ovarian syndrome; PPI: protein-protein interaction; RMA: Robust Multi-Array Average; TF: transcription factor.
Collapse
Affiliation(s)
- Medi Kori
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| | - Esra Gov
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| | - Kazim Yalcin Arga
- a Department of Bioengineering , Marmara University , Istanbul , Turkey
| |
Collapse
|
17
|
Varhač R, Sedláková D, Stupák M, Sedlák E. Non-two-state thermal denaturation of ferricytochrome c at neutral and slightly acidic pH values. Biophys Chem 2015; 203-204:41-50. [DOI: 10.1016/j.bpc.2015.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
|
18
|
Bian YY, Guo J, Zhu KX, Guo XN, Peng W, Zhou HM. Resistance investigation of wheat bran polyphenols extracts on HEK293 cells against oxidative damage. RSC Adv 2015. [DOI: 10.1039/c4ra13602k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress has been considered as a major cause of cellular injury in a variety of clinical abnormalities.
Collapse
Affiliation(s)
- Yuan-Yuan Bian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| | - Jia Guo
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| | - Wei Peng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| | - Hui-Ming Zhou
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Collaborative Innovation Center for Modern Grain Circulation and Safety
- Jiangnan University
- Wuxi-214122, PR China
| |
Collapse
|
19
|
Jancura D, Stanicova J, Palmer G, Fabian M. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase. Biochemistry 2014; 53:3564-75. [PMID: 24840065 PMCID: PMC4059527 DOI: 10.1021/bi401078b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biophysics, University of P. J. Safarik , Kosice, Slovak Republic
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
21
|
Das K, Maiti S, Das PK. Probing enzyme location in water-in-oil microemulsion using enzyme-carbon dot conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2448-59. [PMID: 24528191 DOI: 10.1021/la403835h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This article delineates the formation and characterization of different enzyme-carbon dot conjugates in aqueous medium (pH = 7.0). We used soybean peroxidase (SBP), Chromobacterium viscosum (CV) lipase, trypsin, and cytochrome c (cyt c) for the formation of conjugate either with cationic carbon dot (CCD) or anionic carbon dot (ACD) depending on the overall charge of the protein at pH 7.0. These nanobioconjugates were used to probe the location of enzymes in water-in-oil (w/o) microemulsion. The size of the synthesized water-soluble carbon dots were of 2-3 nm with distinctive emission property. The formation of enzyme/protein-carbon dot conjugates in aqueous buffer was confirmed via fluorescence spectroscopy and zeta potential measurement, and the structural alteration of enzyme/protein was monitored by circular dichroism spectroscopy. Biocatalytic activities of protein/enzymes in conjugation with carbon dots were found to be decreased in aqueous phosphate buffer (pH 7.0, 25 mM). Interestingly, the catalytic activity of the nanobioconjugates of SBP, CV lipase, and cyt c did not reduce in cetyltrimethylammonium bromide (CTAB)-based reverse micelle. It indicates different localization of carbon dots and the enzymes inside the reverse micelle. The hydrophilic carbon dots always preferred to be located in the water pool of reverse micelle, and thus, enzyme must be located away from the water pool, which is the interface. However, in case of trypsin-carbon dot conjugate, the enzyme activity notably decreased in reverse micelle in the presence of carbon dot in a similar way that was observed in water. This implies that trypsin and carbon dots both must be located at the same place, which is the water pool of reverse micelle. Carbon dot induced deactivation was not observed for those enzymes which stay away from the water pool and localized at the interfacial domain while deactivation is observed for those enzymes which reside at the water pool. Thus, the location of enzymes in the microdomain of w/o microemulsion can be predicted by comparing the activity profile of enzyme-carbon dot conjugate in water and w/o microemulsion.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| | | | | |
Collapse
|
22
|
True wild type and recombinant wild type cytochrome c oxidase from Paracoccus denitrificans show a 20-fold difference in their catalase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:319-27. [DOI: 10.1016/j.bbabio.2012.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022]
|
23
|
Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin. J Biol Inorg Chem 2012; 18:137-44. [PMID: 23160757 DOI: 10.1007/s00775-012-0958-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented.
Collapse
|
24
|
Maiti S, Das K, Dutta S, Das PK. Striking Improvement in Peroxidase Activity of Cytochrome c by Modulating Hydrophobicity of Surface-Functionalized Gold Nanoparticles within Cationic Reverse Micelles. Chemistry 2012; 18:15021-30. [DOI: 10.1002/chem.201202398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 01/07/2023]
|
25
|
Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 2012; 46:1313-26. [PMID: 22856385 DOI: 10.3109/10715762.2012.717273] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are associated with a number of mitochondrial disorders. These include: ischemia/reperfusion injury, Parkinson's disease, Alzheimer's disease, neurodegenerative diseases, and other age-related degenerative changes. ROS can be generated at numerous sites within the cell, but the mitochondrial electron transport chain is recognized as the major source of intracellular ROS. Two mitochondrial electron-transfer complexes are major sources of ROS: complex I and complex III. Oxidative damage to either of these complexes, or to electron transport complexes that are in close proximity to these ROS sources, e.g., cytochrome c oxidase, would be expected to inhibit electron transport. Such inhibition would lead to increased electron leakage and more ROS production, much like the well-known effect of adding electron transport inhibitors. Recent studies reveal that ROS and lipid peroxidation products are effective inhibitors of the electron-transport complexes. In some cases, inactivation of enzymes correlates with chemical modification of only a small number of unusually reactive amino acids. In this article, we review current knowledge of ROS-induced alterations within three complexes: (1) complex IV; (2) complex III; and (3) complex I. Our goal is to identify "hot spots" within each complex that are easily chemically modified and could be responsible for ROS-induced inhibition of the individual complexes. Special attention has been placed on ROS-induced damage to cardiolipin that is tightly bound to each of the inner membrane protein complexes. Peroxidation of the bound cardiolipin is thought to be particularly important since its close proximity and long residence time on the protein make it an especially effective reagent for subsequent ROS-induced damage to these proteins.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
26
|
Velayutham M, Hemann C, Zweier JL. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH. Free Radic Biol Med 2011; 51:160-70. [PMID: 21545835 PMCID: PMC3112007 DOI: 10.1016/j.freeradbiomed.2011.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe³⁺cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H₂O₂) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe³⁺cyt c in the presence of H₂O₂. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe³⁺cyt c, and H₂O₂ in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe³⁺cyt c increased with NADH and H₂O₂ concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe³⁺cyt c oxidizes NADH to NAD(•), which in turn donates an electron to O₂, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe³⁺cyt c is reduced in the presence of both NADH and H₂O₂. Our results suggest that Fe³⁺cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe³⁺cyt c may play a key role in the mitochondrial "ROS-induced ROS-release" signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Address correspondence to: Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12th Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614-292-9082, Fax: 614-292-8454, , Jay L. Zweier, MD, Davis Heart and Lung Research Institute, 473 W. 12th Ave, Room 611C, The Ohio State University, Columbus, OH - 43210, Phone: 614-247-7788, Fax: 614-292-8778,
| | | | - Jay L. Zweier
- Address correspondence to: Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12th Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614-292-9082, Fax: 614-292-8454, , Jay L. Zweier, MD, Davis Heart and Lung Research Institute, 473 W. 12th Ave, Room 611C, The Ohio State University, Columbus, OH - 43210, Phone: 614-247-7788, Fax: 614-292-8778,
| |
Collapse
|