1
|
Mori R, Abe M, Saimoto Y, Shinto S, Jodai S, Tomomatsu M, Tazoe K, Ishida M, Enoki M, Kato N, Yamashita T, Itabashi Y, Nakanishi I, Ohkubo K, Kaidzu S, Tanito M, Matsuoka Y, Morimoto K, Yamada KI. Construction of a screening system for lipid-derived radical inhibitors and validation of hit compounds to target retinal and cerebrovascular diseases. Redox Biol 2024; 73:103186. [PMID: 38744193 PMCID: PMC11109892 DOI: 10.1016/j.redox.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies have highlighted the indispensable role of oxidized lipids in inflammatory responses, cell death, and disease pathogenesis. Consequently, inhibitors targeting oxidized lipids, particularly lipid-derived radicals critical in lipid peroxidation, which are known as radical-trapping antioxidants (RTAs), have been actively pursued. We focused our investigation on nitroxide compounds that have rapid second-order reaction rate constants for reaction with lipid-derived radicals. A novel screening system was developed by employing competitive reactions between library compounds and a newly developed profluorescence nitroxide probe with lipid-derived radicals to identify RTA compounds. A PubMed search of the top hit compounds revealed their wide application as repositioned drugs. Notably, the inhibitory efficacy of methyldopa, selected from these compounds, against retinal damage and bilateral common carotid artery stenosis was confirmed in animal models. These findings underscore the efficacy of our screening system and suggest that it is an effective approach for the discovery of RTA compounds.
Collapse
Affiliation(s)
- Ryota Mori
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Abe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuma Saimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Saki Shinto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Jodai
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Manami Tomomatsu
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kaho Tazoe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Minato Ishida
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Enoki
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Kato
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Yuta Matsuoka
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Rančić A, Babić N, Orio M, Peyrot F. Structural Features Governing the Metabolic Stability of Tetraethyl-Substituted Nitroxides in Rat Liver Microsomes. Antioxidants (Basel) 2023; 12:antiox12020402. [PMID: 36829960 PMCID: PMC9952648 DOI: 10.3390/antiox12020402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Nitroxides are potent tools for studying biological systems by electron paramagnetic resonance (EPR). Whatever the application, a certain stability is necessary for successful detection. Since conventional tetramethyl-substituted cyclic nitroxides have insufficient in vivo stability, efforts have recently been made to synthesize more stable, tetraethyl-substituted nitroxides. In our previous study on piperidine nitroxides, the introduction of steric hindrance around the nitroxide moiety successfully increased the resistance to reduction into hydroxylamine. However, it also rendered the carbon backbone susceptible to modifications by xenobiotic metabolism due to increased lipophilicity. Here, we focus on a new series of three nitroxide candidates with tetraethyl substitution, namely with pyrrolidine, pyrroline, and isoindoline cores, to identify which structural features afford increased stability for future probe design and application in in vivo EPR imaging. In the presence of rat liver microsomes, pyrrolidine and pyrroline tetraethyl nitroxides exhibited a higher stability than isoindoline nitroxide, which was studied in detail by HPLC-HRMS. Multiple metabolites suggest that the aerobic transformation of tetraethyl isoindoline nitroxide is initiated by hydrogen abstraction by P450-FeV = O from one of the ethyl groups, followed by rearrangement and further modifications by cytochrome P450, as supported by DFT calculations. Under anaerobic conditions, only reduction by rat liver microsomes was observed with involvement of P450-FeII.
Collapse
Affiliation(s)
- Aleksandra Rančić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Nikola Babić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Maylis Orio
- iSm2, Aix-Marseille University, CNRS, Centrale Marseille, F-13397 Marseille, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
- Institut National Supérieur du Professorat et de l’Education (INSPE) de l’Académie de Paris, Sorbonne Université, F-75016 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Yasukawa K. Redox-Based Theranostics of Gastric Ulcers Using Nitroxyl Radicals. Antioxid Redox Signal 2022; 36:160-171. [PMID: 34498915 DOI: 10.1089/ars.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Redox-based theranostics involves redox monitoring and therapeutics that normalize redox imbalance. It may be a promising approach to markedly improve a patient's quality of life through streamlined treatment. Nitroxyl radicals are useful for both redox monitoring and treating gastric ulcers in rodents. Recent Advances: Redox monitoring using in vivo electron paramagnetic resonance (EPR) spectroscopy in a gastric ulcer rat model showed the production of reactive oxygen species in the whole stomach. A combination of Overhauser-enhanced magnetic resonance imaging (MRI) and nitroxyl radicals provided high-resolution images of redox imbalance in the stomach of rats with a gastric ulcer. Treatment with nitroxyl radicals was effective to treat ulcers that were formed using model experiments of Helicobacter pylori and mental stress as well as nonsteroidal anti-inflammatory drugs. Critical Issues: For redox monitoring using Overhauser-enhanced MRI, the EPR irradiation power that is delivered to subjects must be within the range of the specific absorption rate regulation to protect against microwave damage regardless of a decrease in image contrast. The effect of long-term treatment with a nitroxyl radical in patients with a gastric ulcer remains unclear. Future Directions: Further research on redox-based theranostics in redox-related diseases, including gastric ulcers, would be accelerated by improving the redox imager and by developing functional nitroxyl radicals that localize in the target organ, tissue, or cell and that have specific reactivity for the redox-related biomolecule.
Collapse
Affiliation(s)
- Keiji Yasukawa
- Laboratory of Advanced Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
4
|
Luo G, Sun L, Li H, Chen J, He P, Zhao L, Tang W, Qiu H. The potent radioprotective agents: Novel nitronyl nitroxide radical spin-labeled resveratrol derivatives. Fitoterapia 2021; 155:105053. [PMID: 34610355 DOI: 10.1016/j.fitote.2021.105053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023]
Abstract
It is commonly known that radiotherapy is still a key modality for treatment of cancer. Though this effect is desirable during radiotherapy, it leads to radiotoxicity on normal healthy cells. In the present research, we designed, synthesized and analyzed a series of nitronyl nitroxide radical (NITR) spin-labeled resveratrol (RES) derivatives. The cytotoxicity of the newly synthesized substances was tested on Jurkat T cells. The derivatives were studied as reactive oxygen species (ROS) scavenger to protect ionizing radiation of Jurkat T cells upon 6 Gy X-irradiation. The experimental results revealed that compound 2 and 3 could significantly alleviate the damage of Jurkat T cells, as evidenced by decreasing ROS production and restoring the cell apoptosis. Further mechanism investigations indicated that the radioprotective effects of the novel derivatives were largely associated with modulating the expression of apoptotic proteins including cIAP-1, cIAP-2, cytochrome c, caspase-3 and caspase-9. Based on the experimental result, we disclosed that the novel NITR spin-labeled RES derivatives exhibit the potential to be used as the novel radioprotective candidates to ameliorate the injury induced by ionizing radiation.
Collapse
Affiliation(s)
- Guoying Luo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lanlan Sun
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Peilan He
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Azuma R, Yamasaki T, Sano K, Munekane M, Matsuoka Y, Yamada KI, Mukai T. A radioiodinated nitroxide probe with improved stability against bioreduction for in vivo detection of lipid radicals. Free Radic Biol Med 2021; 163:297-305. [PMID: 33359688 DOI: 10.1016/j.freeradbiomed.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
It is well known that lipid carbon radicals (lipid radicals) are the origin of lipid peroxidation and are involved in various diseases such as cancer. Therefore, the in vivo detection of lipid radicals would be expected to lead to early diagnosis of these diseases. However, there are no methods for measuring lipid radicals in vivo. Nitroxides are known to be highly reactive with lipid radicals, but they tend to be reduced in vivo. Focusing on the excellent detection sensitivity of nuclear medical imaging, we have developed a radioiodinated nitroxide derivative with resistance to bioreduction for the in vivo detection of lipid radicals. The desired compound was obtained successfully and was highly stable against bioreduction while maintaining high reactivity toward lipid radicals. The I-125 labeling was efficacious with radiochemical yields of 84-87% and radiochemical purities of >99%. A cellular uptake assay showed that the radioiodinated compound was significantly taken up by cells under lipid radical-producing conditions compared to that in the absence of lipid radical production. A biodistribution study indicated that the radioiodinated compound accumulated more in organs where lipid peroxidation was promoted than the methoxyamine derivative, which lost reactivity to lipid radicals. These results indicated that the developed probe became trapped in cells or organs by reacting with lipid radicals. Thus, the radioiodinated nitroxide is a candidate probe for in vivo detection of lipid radicals.
Collapse
Affiliation(s)
- Risa Azuma
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Masayuki Munekane
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan.
| |
Collapse
|
6
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
7
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
8
|
Babić N, Orio M, Peyrot F. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine. Free Radic Biol Med 2020; 156:144-156. [PMID: 32561320 DOI: 10.1016/j.freeradbiomed.2020.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Aminoxyl radicals (nitroxides) are a class of compounds with important biomedical applications, serving as antioxidants, spin labels for proteins, spin probes of oximetry, pH, or redox status in electron paramagnetic resonance (EPR), or as contrast agents in magnetic resonance imaging (MRI). However, the fast reduction of the radical moiety in common tetramethyl-substituted cyclic nitroxides within cells, yielding diamagnetic hydroxylamines, limits their use in spectroscopic and imaging studies. In vivo half-lives of commonly used tetramethyl-substituted nitroxides span no more than a few minutes. Therefore, synthetic efforts have focused on enhancing the nitroxide stability towards reduction by varying the electronic and steric environment of the radical. Tetraethyl-substitution at alpha position to the aminoxyl function proved efficient in vitro against reduction by ascorbate or cytosolic extracts. Moreover, 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical (TEEPONE) was used successfully for tridimensional EPR and MRI in vivo imaging of mouse head, with a reported half-life of over 80 min. We decided to investigate the stability of tetraethyl-substituted piperidine nitroxides in the presence of hepatic microsomal fractions, since no detailed study of their "metabolic stability" at the molecular level had been reported despite examples of the use of these nitroxides in vivo. In this context, the rapid aerobic transformation of TEEPONE observed in the presence of rat liver microsomal fractions and NADPH was unexpected. Combining EPR, HPLC-HRMS, and DFT studies on a series of piperidine nitroxides - TEEPONE, 4-oxo-2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPONE), and 2,2,6,6-tetraethyl-4-hydroxy(piperidin-1-yloxyl) (TEEPOL), we propose that the rapid loss in paramagnetic character of TEEPONE is not due to reduction to hydroxylamine but is a consequence of carbon backbone modification initiated by hydrogen radical abstraction in alpha position to the carbonyl by the P450-Fe(V)=O species. Besides, hydrogen radical abstraction by P450 on ethyl substituents, leading to dehydrogenation or hydroxylation products, leaves the aminoxyl function intact but could alter the linewidth of the EPR signal and thus interfere with methods relying on measurement of this parameter (EPR oximetry).
Collapse
Affiliation(s)
- Nikola Babić
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France
| | - Maylis Orio
- Aix-Marseille Univ., CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Fabienne Peyrot
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France; Sorbonne Université, Institut National Supérieur Du Professorat et de L'Éducation (INSPE) de L'Académie de Paris, F-75016, Paris, France.
| |
Collapse
|
9
|
New synthetic route to 2,2,6,6-tetraethylpiperidin-4-one: A key-intermediate towards tetraethyl nitroxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Emoto MC, Sasaki K, Maeda K, Fujii HG, Sato S. Synthesis and Evaluation as a Blood-Brain Barrier-Permeable Probe of 7-N-(PROXYL-3-yl-methyl)theophylline. Chem Pharm Bull (Tokyo) 2019; 66:887-891. [PMID: 30175747 DOI: 10.1248/cpb.c18-00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The drug-nitroxide radical hybrid-compound 7-N-((2,2,5,5-tetramethylpyrrolidine-1-yloxy(PROXYL))-3-yl-methyl)theophylline (3) was synthesized by coupling 7-N-tosyltheophylline with 3-hydroxymethyl-PROXYL, HMP). The stability of 3 relative to that of HMP was examined in the presence of the anti-oxidant, ascorbic acid (AsA). The initial reduction rate constants of 3 and HMP were 11.9±5.3 and 6.1±5.2 M-1 min-1, respectively. In the presence of glutathione (GSH), these constants increased slightly to 22.3±6.8 and 9.1±2.4 M-1 min-1, respectively. Two-dimensional cranial electron paramagnetic resonance imaging of mice intravenously injected with 3 via the tail vein revealed that probe 3 enters the mouse brain by passing through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Miho C Emoto
- Center for Medical Education, Sapporo Medical University
| | - Kota Sasaki
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Koya Maeda
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | | | - Shingo Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| |
Collapse
|
11
|
Black HD, Xu W, Hortle E, Robertson SI, Britton WJ, Kaur A, New EJ, Witting PK, Chami B, Oehlers SH. The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets. Free Radic Biol Med 2019; 135:157-166. [PMID: 30878645 DOI: 10.1016/j.freeradbiomed.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis is a chronic inflammatory disease caused by persistent infection with Mycobacterium tuberculosis. The rise of antibiotic resistant strains necessitates the design of novel treatments. Recent evidence shows that not only is M. tuberculosis highly resistant to oxidative killing, it also co-opts host oxidant production to induce phagocyte death facilitating bacterial dissemination. We have targeted this redox environment with the cyclic nitroxide derivative 4-methoxy-TEMPO (MetT) in the zebrafish-M. marinum infection model. MetT inhibited the production of mitochondrial ROS and decreased infection-induced cell death to aid containment of infection. We identify a second mechanism of action whereby stress conditions, including hypoxia, found in the infection microenvironment appear to sensitise M. marinum to killing by MetT both in vitro and in vivo. Together, our study demonstrates MetT inhibited the growth and dissemination of M. marinum through host and bacterial targets.
Collapse
Affiliation(s)
- Harrison D Black
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Wenbo Xu
- Centenary Institute, The University of Sydney, Australia
| | - Elinor Hortle
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | | | - Warwick J Britton
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | - Amandeep Kaur
- The University of Sydney, School of Chemistry, Australia
| | | | - Paul K Witting
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Belal Chami
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Stefan H Oehlers
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia.
| |
Collapse
|
12
|
Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.
Collapse
|
13
|
Chong KL, Chalmers BA, Cullen JK, Kaur A, Kolanowski JL, Morrow BJ, Fairfull-Smith KE, Lavin MJ, Barnett NL, New EJ, Murphy MP, Bottle SE. Pro-fluorescent mitochondria-targeted real-time responsive redox probes synthesised from carboxy isoindoline nitroxides: Sensitive probes of mitochondrial redox status in cells. Free Radic Biol Med 2018; 128:97-110. [PMID: 29567391 DOI: 10.1016/j.freeradbiomed.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
Here we describe new fluorescent probes based on fluorescein and rhodamine that provide reversible, real-time insight into cellular redox status. The new probes incorporate bio-imaging relevant fluorophores derived from fluorescein and rhodamine linked with stable nitroxide radicals such that they cannot be cleaved, either spontaneously or enzymatically by cellular processes. Overall fluorescence emission is determined by reversible reduction and oxidation, hence the steady state emission intensity reflects the balance between redox potentials of critical redox couples within the cell. The permanent positive charge on the rhodamine-based probes leads to their rapid localisation within mitochondria in cells. Reduction and oxidation also leads to marked changes in the fluorophore lifetime, enabling monitoring by fluorescence lifetime imaging microscopy. Finally, we demonstrate that administration of a methyl ester version of the rhodamine-based probe can be used at concentrations as low as 5 nM to generate a readily detected response to redox stress within cells as analysed by flow cytometry.
Collapse
Affiliation(s)
- Kok Leong Chong
- ARC Centre of Excellence for Free Radical Chemistry, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Benjamin A Chalmers
- ARC Centre of Excellence for Free Radical Chemistry, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Jason K Cullen
- Cell and Molecular Biology, Queensland Institute of Medical Research, Brisbane, Australia
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Australia
| | | | - Benjamin J Morrow
- ARC Centre of Excellence for Free Radical Chemistry, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Kathryn E Fairfull-Smith
- ARC Centre of Excellence for Free Radical Chemistry, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Martin J Lavin
- Cell and Molecular Biology, Queensland Institute of Medical Research, Brisbane, Australia; University of Queensland, Centre for Clinical Research, Brisbane, Australia
| | | | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Steven E Bottle
- ARC Centre of Excellence for Free Radical Chemistry, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Nyui M, Nakanishi I, Anzai K, Ozawa T, Matsumoto KI. Reactivity of redox sensitive paramagnetic nitroxyl contrast agents with reactive oxygen species. J Clin Biochem Nutr 2018; 64:13-19. [PMID: 30705507 PMCID: PMC6348418 DOI: 10.3164/jcbn.17-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/10/2018] [Indexed: 11/22/2022] Open
Abstract
The reactivity of nitroxyl free radicals, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP), with reactive oxygen species (ROS) were compared as typical 6-membered and 5-membered ring nitroxyl compounds, respectively. The reactivity of the hydroxylamine forms of both these nitroxyl radicals (TEMPOL-H and CmP-H) was also assessed. Two free radical species of ROS, hydroxyl radical (•OH) and superoxide (O2•−), were subjected to a competing reaction. •OH was generated by UV irradiation from an aqueous H2O2 solution (H2O2-UV system), and O2•− was generated by a reaction between hypoxanthine and xanthine oxidase (HX-XO system). •OH and O2•− generated by the H2O2-UV and HX-XO systems, respectively, were measured by electron paramagnetic resonance (EPR) spin-trapping, and the amount of spin adducts generated by each system was adjusted to be equal. The time courses of the one-electron oxidation of TEMPOL, CmP, TEMPOL-H, and CmP-H in each ROS generation system were compared. A greater amount of TEMPOL was oxidized in the HX-XO system compared with the H2O2-UV system, whereas the reverse was observed for CmP. Although the hydroxylamine forms of the tested nitroxyl radicals were oxidized evenly in the H2O2-UV and HX-XO systems, the amount of oxidized CmP-H was approximately 3 times greater compared with TEMPOL-H.
Collapse
Affiliation(s)
- Minako Nyui
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Anzai
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Division of Physical and Analytical Chemistry, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Toshihiko Ozawa
- Laboratory of Oxidative Stress Research, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Dobrynin SA, Glazachev YI, Gatilov YV, Chernyak EI, Salnikov GE, Kirilyuk IA. Synthesis of 3,4-Bis(hydroxymethyl)-2,2,5,5-tetraethylpyrrolidin-1-oxyl via 1,3-Dipolar Cycloaddition of Azomethine Ylide to Activated Alkene. J Org Chem 2018; 83:5392-5397. [DOI: 10.1021/acs.joc.8b00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sergey A. Dobrynin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Yuri I. Glazachev
- Institute of Chemical Kinetics & Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Yuri V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
| | - Elena I. Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
| | - George E. Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Academician Lavrentiev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Matsumoto KI, Mitchell JB, Krishna MC. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest. Free Radic Res 2018; 52:248-255. [PMID: 29320888 DOI: 10.1080/10715762.2018.1427235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo decay rates of a nitroxyl contrast agent were estimated by a MR redox imaging (MRRI) technique and compared with the decay rates obtained by the electron paramagnetic resonance spectroscopy (EPRS) and imaging (EPRI). MRRI is a dynamic imaging technique employing T1-weighted pulse sequence, which can visualise a nitroxyl-induced enhancement of signal intensity by T1-weighted contrast. EPR techniques can directly measure the paramagnetic nitroxyl radical. Both the squamous cell carcinoma (SCC) tumour-bearing and normal legs of a female C3H mouse were scanned by T1-weighted SPGR sequence at 4.7 T with the nitroxyl radical, carbamoyl-proxyl (CmP), as the contrast agent. Similarly, the time course of CmP in normal muscle and tumour tissues was obtained using a 700-MHz EPR spectrometer with a surface coil. The time course imaging of CmP was also performed by 300 MHz CW EPR imager. EPRS and EPRI gave slower decay rates of CmP compared to the MRRI. Relatively slow decay rate at peripheral region of the tumour tissues, which was found in the image obtained by MRRI, may contribute to the slower decay rates observed by EPRS and/or the EPRI measurements. To reliably determine the tissue redox status from the reduction rates of nitroxyls such as CmP, heterogenic structure in the tumour tissue must be considered. The high spatial and temporal resolution of T1-weighted MRI and the T1-enhancing capabilities of nitroxyls support the use of this method to map tissue redox status which can be a useful biomarker to guide appropriate treatments based on the tumour microenvironment.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- a Quantitative Redox Sensing Team, Department of Basic Medical Sciences for Radiation Damages , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba-shi , Japan
| | - James B Mitchell
- b Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Murali C Krishna
- b Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
17
|
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA. Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides. Free Radic Res 2017; 52:339-350. [PMID: 29098905 DOI: 10.1080/10715762.2017.1390744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
Collapse
Affiliation(s)
- Sergey I Dikalov
- a Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Anna E Dikalova
- a Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Denis A Morozov
- b Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk , Russia.,c Department of Organic Chemistry, Novosibirsk State University , Novosibirsk , Russia
| | - Igor A Kirilyuk
- b Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk , Russia.,c Department of Organic Chemistry, Novosibirsk State University , Novosibirsk , Russia
| |
Collapse
|
18
|
Chami B, Jeong G, Varda A, Maw AM, Kim HB, Fong G, Simone M, Rayner B, Wang XS, Dennis J, Witting P. The nitroxide 4-methoxy TEMPO inhibits neutrophil-stimulated kinase activation in H9c2 cardiomyocytes. Arch Biochem Biophys 2017; 629:19-35. [DOI: 10.1016/j.abb.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
|
19
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|
20
|
Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging. Biochem Biophys Res Commun 2017; 485:802-806. [DOI: 10.1016/j.bbrc.2017.02.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
|
21
|
Wang F, Gao P, Guo L, Meng P, Fan Y, Chen Y, Lin Y, Guo G, Ding G, Wang H. Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6- tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med 2017; 22:14. [PMID: 29165102 PMCID: PMC5664570 DOI: 10.1186/s12199-017-0616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/04/2017] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES To search for more effective radiation protectors with minimal toxicity, a water-soluble nitroxides Acetamido-Tempol (AA-Tempol) was evaluated for potential radioprotective properties in HUVEC cells (Human Umbilical Vein Endothelial cell line). METHODS To study the anti-radiation effect of AA-Tempol in cell culture, the viability of irradiated HUVEC cells using a clonogenic survival assay was examined. The anti-apoptosis effects of AA-Tempol using Annexin V/propidium iodide staining in a flow cytometry assay was also evaluated. To elucidate the molecular mechanism of the anti-apoptosis effect of AA-Tempol against X-radiation induced HUVEC cell apoptosis, the expression of Bax, Bcl-2 and p53 and caspase-3 were examined. The changes in the level of malondialdehyde (MDA) and glutathione (GSH) in HUVEC cells after X-radiation were also investigated. RESULTS Pretreatment of the HUVEC cells colony with AA-Tempol 1 h before X-radiation significantly increased the colony survival (p < 0.05) compared with the cells without pretreatment. This demonstrates that AA-Tempol provides an effective radiation protection in the irradiated HUVEC cells, thus reducing apoptosis from 20.1 ± 1.3% in 8 Gy X-radiated cells to 12.2 ± 0.9% (1.0 mmol/L-1 AA-Tempol) in AA-Tempo pretreated HUVEC cells. This implies that 1.0 mM AA-Tempol treatment significantly block the increase of caspase-3 activity in radiated HUVEC cells (P < 0.01), causing down-regulation in expressions of Bax and P53 and up-regulation in the expression of Bcl-2. Pretreatment with AA-Tempol also decreased the MDA activities (P < 0.01) and increase the GSH level (P < 0.05) in HUVEC cells compared to the 8Gy X-radiated cells without pretreatment. CONCLUSIONS These observations indicate that AA-Tempol is a potential therapeutic agent against the radiation damage.
Collapse
Affiliation(s)
- Feng Wang
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Shanxi Province Corps Hospital, Chinese People's Armed Police Forces, Taiyuan, 030006, People's Republic of China
| | - Peng Gao
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ling Guo
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ping Meng
- Department of urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yuexing Fan
- Shanxi Province Corps Hospital, Chinese People's Armed Police Forces, Taiyuan, 030006, People's Republic of China
| | - Yongbin Chen
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanyun Lin
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guozhen Guo
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guirong Ding
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Haibo Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
22
|
Sasaki K, Ito T, Fujii HG, Sato S. Synthesis and Reduction Kinetics of Five Ibuprofen-Nitroxides for Ascorbic Acid and Methyl Radicals. Chem Pharm Bull (Tokyo) 2017; 64:1509-1513. [PMID: 27725505 DOI: 10.1248/cpb.c16-00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hybrid compounds 1-5 comprised of five nitroxides with ibuprofen were synthesized and their reduction rate for ascorbic acid (AsA) and methyl radicals were measured in comparison with 3-hydroxy-tetramethylpyrrolidine-1-oxyl (PROXYL) 6. The rate constants in reduction reaction with 200-fold excess of AsA were determined in following order: 1 (0.42±0.06), 3 (0.17±0.06), 2 (0.10±0.05), and 6 (0.09±0.02 M-1s-1). The remaining two sterically shielded nitroxides 4 and 5 scarcely reacted with AsA. In the reaction with the more reactive methyl radicals, produced by 200-fold excess of Fenton's reagent, the reduction rates of 2, 4, and 5 were in the following decreasing order: 2 (1.1±0.2), 4 (0.76±0.09), and 5 (0.31±0.03 M-1s-1).
Collapse
Affiliation(s)
- Kota Sasaki
- Graduate School of Science and Engineering, Yamagata University
| | | | | | | |
Collapse
|
23
|
Matsuoka Y, Yamato M, Yamada KI. Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 2016. [PMID: 26798193 DOI: 10.3164/jcbn.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
24
|
Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants. Neurochem Int 2016; 92:1-12. [DOI: 10.1016/j.neuint.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022]
|
25
|
|
26
|
Matsuoka Y, Yamato M, Yamada KI. Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 2015; 58:16-22. [PMID: 26798193 PMCID: PMC4706089 DOI: 10.3164/jcbn.15-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Shugalei IV, Ilyushin МА, Voznyakovskii АP, Boganova АА, Borovikova AS. Perspectives for thiamin as a preparation for correction of free radical states of different origin. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215130046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Utsumi H, Hyodo F. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. Methods Enzymol 2015; 564:553-71. [DOI: 10.1016/bs.mie.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Saha S, Jagtap AP, Sigurdsson ST. Site-directed spin labeling of 2′-amino groups in RNA with isoindoline nitroxides that are resistant to reduction. Chem Commun (Camb) 2015; 51:13142-5. [DOI: 10.1039/c5cc05014f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
2'-Amino groups in RNA were selectively spin labeled with reductively stable isoindoline nitroxides through a high-yielding reaction with aromatic isothiocyanates.
Collapse
Affiliation(s)
- Subham Saha
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | - Anil P. Jagtap
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | | |
Collapse
|
30
|
Jagtap AP, Krstic I, Kunjir NC, Hänsel R, Prisner TF, Sigurdsson ST. Sterically shielded spin labels for in-cell EPR spectroscopy: Analysis of stability in reducing environment. Free Radic Res 2014; 49:78-85. [DOI: 10.3109/10715762.2014.979409] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Niidome T, Gokuden R, Watanabe K, Mori T, Naganuma T, Utsumi H, Ichikawa K, Katayama Y. Nitroxyl radicals-modified dendritic poly(l-lysine) as a contrast agent for Overhauser-enhanced MRI. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1425-39. [PMID: 25088777 DOI: 10.1080/09205063.2014.943538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overhauser-enhanced magnetic resonance imaging (OMRI), which is a double resonance technique, creates images of free radical distribution in animals by enhancing the water proton signal intensity by the overhauser effect. In this study, we constructed a contrast agent by combining PROXYL groups that have nitroxyl radicals with PEG-modified dendritic poly(l-lysine) that accumulates in the tumor by enhanced permeability and retention (EPR) effect. Addition of the PROXYL groups at the PEG chains' termini on KG6 was advantageous in OMRI, because the ESR signal of the nitroxyl radical was maintained without decay caused by mobility restriction, even if the PROXYL groups were attached at 25 mol% on one molecule. After intramuscular injection of the molecule modified at 25 mol%, that is, PR25-PEG-KG6, a significant OMRI signal was observed at the injected site. However, no signal was detected in the tumor after intravenous injection of PR25-PEG-KG6 to a tumor-bearing mouse, although PR25-PEG-KG6 itself accumulated in the tumor. The reason was that the nitroxyl radicals were immediately reduced in the blood after the injection, suggesting that use of stable nitroxyl radicals will enable detection of tumors by OMRI after intravenous injection.
Collapse
Affiliation(s)
- Takuro Niidome
- a Department of Applied Chemistry and Biochemistry , Graduate School of Science and Technology, Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada KI, Fu S, Bottle SE, Hawkins CL, Davies MJ. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Free Radic Biol Med 2014; 70:96-105. [PMID: 24566469 DOI: 10.1016/j.freeradbiomed.2014.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, (-)OCl) generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79-86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89-99% decreased rate of reduction) and activated human neutrophils (62-75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.
Collapse
Affiliation(s)
- Tracey B Kajer
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Fairfull-Smith
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Toshihide Yamasaki
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Ken-ichi Yamada
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology, Sydney, NSW, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Clare L Hawkins
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Michael J Davies
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Wang X, Emoto M, Sugimoto A, Miyake Y, Itto K, Amasaka M, Xu S, Hirata H, Fujii H, Arimoto H. Synthesis of 15N-labeled 4-oxo-2,2,6,6-tetraethylpiperidine nitroxide for EPR brain imaging. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Wang H, Jia Y, Gao P, Cheng Y, Cheng M, Lu C, Zhou S, Sun X. Synthesis, radioprotective activity and pharmacokinetics characteristic of a new stable nitronyl nitroxyl radical-NIT2011. Biochimie 2013; 95:1574-81. [DOI: 10.1016/j.biochi.2013.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/13/2013] [Indexed: 11/24/2022]
|
35
|
Utsumi H. Novel Redox Molecular Imaging “ReMI” with Dual Magnetic Resonance. YAKUGAKU ZASSHI 2013; 133:803-14. [DOI: 10.1248/yakushi.13-00139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| |
Collapse
|
36
|
Novel ascorbic acid-resistive nitroxide in a lipid emulsion: An efficient brain imaging contrast agent for MRI of small rodents. Neurosci Lett 2013; 546:11-5. [DOI: 10.1016/j.neulet.2013.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 01/27/2023]
|
37
|
Bobko AA, Efimova OV, Voinov MA, Khramtsov VV. Unique oxidation of imidazolidine nitroxides by potassium ferricyanide: strategy for designing paramagnetic probes with enhanced sensitivity to oxidative stress. Free Radic Res 2012; 46:1115-22. [PMID: 22574921 DOI: 10.3109/10715762.2012.692785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Potassium ferricyanide (PF), routinely employed for the oxidation of sterically-hindered hydroxylamines to nitroxides, is considered to be chemically inert towards the latter. In the present study, we report on an unexpected oxidative fragmentation of the imidazolidine nitroxides containing hydrogen atom in the 4-position of the heterocycle (HIMD) by PF resulting in the loss of the EPR signal. The mechanistic EPR, spectrophotometric, electrochemical and HPLC-MS studies support the assumption that the HIMD fragmentation is facilitated by the proton abstraction from the 4-position of the oxoammonium cation formed as a result of the initial one-electron HIMD oxidation. Increase in steric hindrance around the radical fragment by introducing ethyl substituents decreased the rate of ascorbate-induced HIMD reduction by more than 20 times, but did not affect the rate of ferricyanide-induced HIMD oxidation. This preferential sensitivity of HIMDs to oxidative processes has been used to detect peroxyl radicals in the presence of high concentration of the reducing agent, ascorbate. HIMD-based EPR probes capable to discriminate oxidative and reductive processes might find application in biomedicine and related fields for monitoring the oxidative stress and reactive radical species in biological systems.
Collapse
Affiliation(s)
- Andrey A Bobko
- The Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
38
|
Ichikawa K, Yasukawa K. Imagingin vivoredox status in high spatial resolution with OMRI. Free Radic Res 2012; 46:1004-10. [DOI: 10.3109/10715762.2012.670874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Muir BW, Acharya DP, Kennedy DF, Mulet X, Evans RA, Pereira SM, Wark KL, Boyd BJ, Nguyen TH, Hinton TM, Waddington LJ, Kirby N, Wright DK, Wang HX, Egan GF, Moffat BA. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles. Biomaterials 2011; 33:2723-33. [PMID: 22209558 DOI: 10.1016/j.biomaterials.2011.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/06/2011] [Indexed: 02/05/2023]
Abstract
The development of improved, low toxicity, clinically viable nanomaterials that provide MRI contrast have tremendous potential to form the basis of translatable theranostic agents. Herein we describe a class of MRI visible materials based on lyotropic liquid crystal nanoparticles loaded with a paramagnetic nitroxide lipid. These readily synthesized nanoparticles achieved enhanced proton-relaxivities on the order of clinically used gadolinium complexes such as Omniscan™ without the use of heavy metal coordination complexes. Their low toxicity, high water solubility and colloidal stability in buffer resulted in them being well tolerated in vitro and in vivo. The nanoparticles were initially screened in vitro for cytotoxicity and subsequently a defined concentration range was tested in rats to determine the maximum tolerated dose. Pharmacokinetic profiles of the candidate nanoparticles were established in vivo on IV administration to rats. The lyotropic liquid crystal nanoparticles were proven to be effective liver MRI contrast agents. We have demonstrated the effective in vivo performance of a T1 enhancing, biocompatible, colloidally stable, amphiphilic MRI contrast agent that does not contain a metal.
Collapse
Affiliation(s)
- Benjamin W Muir
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Deguchi H, Yasukawa K, Yamasaki T, Mito F, Kinoshita Y, Naganuma T, Sato S, Yamato M, Ichikawa K, Sakai K, Utsumi H, Yamada KI. Nitroxides prevent exacerbation of indomethacin-induced gastric damage in adjuvant arthritis rats. Free Radic Biol Med 2011; 51:1799-805. [PMID: 21906674 DOI: 10.1016/j.freeradbiomed.2011.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 02/02/2023]
Abstract
Nonsteroidal anti-inflammatory drugs are the drugs of choice in the treatment of rheumatoid arthritis (RA) because of their rapid analgesic effect. However, they induce severe gastric damage in RA patients and animals by a process mediated by reactive oxygen species (ROS). Nitroxides (nitroxyl radicals) are widely used as imaging agents and antioxidants to explore the role of ROS generation in the pathogenesis of disease. In this study, the effectiveness of the newly synthesized nitroxides 8-aza-7,7,9,9-tetramethyl-1,4-dioxaspiro[4.5]undecan-8-oxyl (compound 1) and 4-oxo-2,2,6,6-tetraethylpiperidine-1-oxyl (compound 2) in the prevention of gastric ulcers in adjuvant arthritis rats treated with indomethacin was evaluated by monitoring the reaction of reactive oxygen species in gastric tissue with Overhauser-enhanced magnetic resonance imaging (OMRI). Pretreatment with all tested nitroxides suppressed the ulcers induced by indomethacin treatment in arthritic rats. OMRI using compounds 1 and 2 as well as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) demonstrated a redox imbalance in the stomach of these rats. Lipid peroxide and interleukin (IL)-1β levels in the gastric mucosa were significantly suppressed by compound 1 and TEMPOL, whereas CINC/gro, a member of the IL-8 family, was significantly suppressed by compound 1 only. These results suggest that the preventive effects of nitroxides on gastric ulcers may operate by different mechanisms.
Collapse
Affiliation(s)
- Hisato Deguchi
- Department of Bio-Functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Emoto M, Mito F, Yamasaki T, Yamada KI, Sato-Akaba H, Hirata H, Fujii H. A novel ascorbic acid-resistant nitroxide in fat emulsion is an efficient brain imaging probe forin vivoEPR imaging of mouse. Free Radic Res 2011; 45:1325-32. [DOI: 10.3109/10715762.2011.618499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Mito F, Kitagawa K, Yamasaki T, Shirahama C, Oishi T, Ito Y, Yamato M, Yamada KI. Oxygen concentration dependence of lipid peroxidation and lipid-derived radical generation: Application of profluorescent nitroxide switch. Free Radic Res 2011; 45:1103-10. [DOI: 10.3109/10715762.2011.595410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Yamasaki T, Ito Y, Mito F, Kitagawa K, Matsuoka Y, Yamato M, Yamada KI. Structural Concept of Nitroxide As a Lipid Peroxidation Inhibitor. J Org Chem 2011; 76:4144-8. [DOI: 10.1021/jo200361p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Toshihide Yamasaki
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuko Ito
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Fumiya Mito
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kana Kitagawa
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
44
|
Mito F, Yamasaki T, Ito Y, Yamato M, Mino H, Sadasue H, Shirahama C, Sakai K, Utsumi H, Yamada KI. Monitoring the aggregation processes of amyloid-β using a spin-labeled, fluorescent nitroxyl radical. Chem Commun (Camb) 2011; 47:5070-2. [DOI: 10.1039/c0cc05764a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|