1
|
McBride S, Wei-LaPierre L, McMurray F, MacFarlane M, Qiu X, Patten DA, Dirksen RT, Harper ME. Skeletal muscle mitoflashes, pH, and the role of uncoupling protein-3. Arch Biochem Biophys 2019; 663:239-248. [PMID: 30659802 DOI: 10.1016/j.abb.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are important cellular signaling molecules, but can cause oxidative damage if not kept within tolerable limits. An important proximal form of ROS in mitochondria is superoxide. Its production is thought to occur in regulated stochastic bursts, but current methods using mitochondrial targeted cpYFP to assess superoxide flashes are confounded by changes in pH. Accordingly, these flashes are generally referred to as 'mitoflashes'. Here we provide regulatory insights into mitoflashes and pH fluctuations in skeletal muscle, and the role of uncoupling protein-3 (UCP3). Using quantitative confocal microscopy of mitoflashes in intact muscle fibers, we show that the mitoflash magnitude significantly correlates with the degree of mitochondrial inner membrane depolarization and ablation of UCP3 did not affect this correlation. We assessed the effects of the absence of UCP3 on mitoflash activity in intact skeletal muscle fibers, and found no effects on mitoflash frequency, amplitude or duration, with a slight reduction in the average size of mitoflashes. We further investigated the regulation of pH flashes (pHlashes, presumably a component of mitoflash) by UCP3 using mitochondrial targeted SypHer (mt-SypHer) in skeletal muscle fibers. The frequency of pHlashes was significantly reduced in the absence of UCP3, without changes in other flash properties. ROS scavenger, tiron, did not alter pHlash frequency in either WT or UCP3KO mice. High resolution respirometry revealed that in the absence of UCP3 there is impaired proton leak and Complex I-driven respiration and maximal coupled respiration. Total cellular production of hydrogen peroxide (H2O2) as detected by Amplex-UltraRed was unaffected. Altogether, we demonstrate a correlation between mitochondrial membrane potential and mitoflash magnitude in skeletal muscle fibers that is independent of UCP3, and a role for UCP3 in the control of pHlash frequency and of proton leak- and Complex I coupled-respiration in skeletal muscle fibers. The differential regulation of mitoflashes and pHlashes by UCP3 and tiron also indicate that the two events, though may be related, are not identical events.
Collapse
Affiliation(s)
- S McBride
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - L Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - F McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - M MacFarlane
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - X Qiu
- Department of Biostatistics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - D A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - R T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - M-E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Feng G, Liu B, Hou T, Wang X, Cheng H. Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handb Exp Pharmacol 2017; 240:403-422. [PMID: 28233181 DOI: 10.1007/164_2016_129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.
Collapse
Affiliation(s)
- Gaomin Feng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Beibei Liu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tingting Hou
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
|
4
|
Wang W, Zhang H, Cheng H. Mitochondrial flashes: From indicator characterization to in vivo imaging. Methods 2016; 109:12-20. [PMID: 27288722 PMCID: PMC5075495 DOI: 10.1016/j.ymeth.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022] Open
Abstract
Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Braeckman BP, Smolders A, Back P, De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid Redox Signal 2016; 25:577-92. [PMID: 27306519 PMCID: PMC5041511 DOI: 10.1089/ars.2016.6751] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.
Collapse
Affiliation(s)
| | - Arne Smolders
- Biology Department, Ghent University, Ghent, Belgium
| | - Patricia Back
- Biology Department, Ghent University, Ghent, Belgium
| | - Sasha De Henau
- Biology Department, Ghent University, Ghent, Belgium
- Biomedical Genetics, University Medical Center Untrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, Sheu SS. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid Redox Signal 2016; 25:534-549. [PMID: 27245241 PMCID: PMC5035371 DOI: 10.1089/ars.2016.6739] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.
Collapse
Affiliation(s)
- Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Guohua Gong
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Robert Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Hou T, Jian C, Xu J, Huang AY, Xi J, Hu K, Wei L, Cheng H, Wang X. Identification of EFHD1 as a novel Ca(2+) sensor for mitoflash activation. Cell Calcium 2016; 59:262-70. [PMID: 26975899 DOI: 10.1016/j.ceca.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 01/16/2023]
Abstract
Mitochondrial flashes (mitoflashes) represent stochastic and discrete mitochondrial events that each comprises a burst of superoxide production accompanied by transient depolarization and matrix alkalinization in a respiratory mitochondrion. While mitochondrial Ca(2+) is shown to be an important regulator of mitoflash activity, little is known about its specific mechanism of action. Here we sought to determine possible molecular players that mediate the Ca(2+) regulation of mitoflashes by screening mitochondrial proteins containing the Ca(2+)-binding motifs. In silico analysis and targeted siRNA screening identified four mitoflash activators (MICU1, EFHD1, SLC25A23, SLC25A25) and one mitoflash inhibitor (LETM1) in terms of their ability to modulate mitoflash response to hyperosmotic stress. In particular, overexpression or down-regulation of EFHD1 enhanced or depressed mitoflash activation, respectively, under various conditions of mitochondrial Ca(2+) elevations. Yet, it did not alter mitochondrial Ca(2+) handling, mitochondrial respiration, or ROS-induced mitoflash production. Further, disruption of the two EF-hand motifs of EFHD1 abolished its potentiating effect on the mitoflash responses. These results indicate that EFHD1 functions as a novel mitochondrial Ca(2+) sensor underlying Ca(2+)-dependent activation of mitoflashes.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiejia Xu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - August Yue Huang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianzhong Xi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Keping Hu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Liu X, Xu S, Wang P, Wang W. Transient mitochondrial permeability transition mediates excitotoxicity in glutamate-sensitive NSC34D motor neuron-like cells. Exp Neurol 2015; 271:122-30. [PMID: 26024861 DOI: 10.1016/j.expneurol.2015.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/16/2015] [Accepted: 05/07/2015] [Indexed: 12/11/2022]
Abstract
Excitotoxicity plays a critical role in neurodegenerative disease. Cytosolic calcium overload and mitochondrial dysfunction are among the major mediators of high level glutamate-induced neuron death. Here, we show that the transient opening of mitochondrial permeability transition pore (tMPT) bridges cytosolic calcium signaling and mitochondrial dysfunction and mediates glutamate-induced neuron death. Incubation of the differentiated motor neuron-like NSC34D cells with glutamate (1mM) acutely induces cytosolic calcium transient (30% increase). Glutamate also stimulates tMPT opening, as reflected by a 2-fold increase in the frequency of superoxide flash, a bursting superoxide production event in individual mitochondria coupled to tMPT opening. The glutamate-induced tMPT opening is attenuated by suppressing cytosolic calcium influx and abolished by inhibiting mitochondrial calcium uniporter (MCU) with Ru360 (100 μM) or MCU shRNA. Further, increased cytosolic calcium is sufficient to induce tMPT in a mitochondrial calcium dependent manner. Finally, chronic glutamate incubation (24h) persistently elevates the probability of tMPT opening, promotes oxidative stress and induces neuron death. Attenuating tMPT activity or inhibiting MCU protects NSC34D cells from glutamate-induced cell death. These results indicate that high level glutamate-induced neuron toxicity is mediated by tMPT, which connects increased cytosolic calcium signal to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Shangcheng Xu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Xu S, Chisholm AD. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 2015; 31:48-60. [PMID: 25313960 DOI: 10.1016/j.devcel.2014.08.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide are generated at wound sites and act as long-range signals in wound healing. The roles of other ROS in wound repair are little explored. Here, we reveal a cytoprotective role for mitochondrial ROS (mtROS) in Caenorhabditis elegans skin wound healing. We show that skin wounding causes local production of mtROS superoxide at the wound site. Inhibition of mtROS levels by mitochondrial superoxide-specific antioxidants blocks actin-based wound closure, whereas elevation of mtROS promotes wound closure and enhances survival of mutant animals defective in wound healing. mtROS act downstream of wound-triggered Ca(2+) influx. We find that the mitochondrial calcium uniporter MCU-1 is essential for rapid mitochondrial Ca(2+) uptake and mtROS production after wounding. mtROS can promote wound closure by local inhibition of Rho GTPase activity via a redox-sensitive motif. These findings delineate a pathway acting via mtROS that promotes cytoskeletal responses in wound healing.
Collapse
Affiliation(s)
- Suhong Xu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Gong G, Liu X, Wang W. Regulation of metabolism in individual mitochondria during excitation-contraction coupling. J Mol Cell Cardiol 2014; 76:235-246. [PMID: 25252178 PMCID: PMC4250349 DOI: 10.1016/j.yjmcc.2014.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
The heart is an excitable organ that undergoes spontaneous force generation and relaxation cycles driven by excitation-contraction (EC) coupling. A fraction of the oscillating cytosolic Ca(2+) during each heartbeat is taken up by mitochondria to stimulate mitochondrial metabolism, the major source of energy in the heart. Whether the mitochondrial metabolism is regulated individually during EC coupling and whether this heterogeneous regulation bears any physiological or pathological relevance have not been studied. Here, we developed a novel approach to determine the regulation of individual mitochondrial metabolism during cardiac EC coupling. Through monitoring superoxide flashes, which are stochastic and bursting superoxide production events arising from increased metabolism in individual mitochondria, we found that EC coupling stimulated the metabolism in individual mitochondria as indicated by significantly increased superoxide flash activity during electrical stimulation of the cultured intact myocytes or perfused heart. Mechanistically, cytosolic calcium transients promoted individual mitochondria to take up calcium via mitochondrial calcium uniporter, which subsequently triggered transient opening of the permeability transition pore and stimulated metabolism and bursting superoxide flash in that mitochondrion. The bursting superoxide, in turn, promoted local calcium release. In the early stage of heart failure, EC coupling regulation of superoxide flashes was compromised. This study highlights the heterogeneity in the regulation of cardiac mitochondrial metabolism, which may contribute to local redox signaling.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
|
12
|
Hou T, Wang X, Ma Q, Cheng H. Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond. J Physiol 2014; 592:3703-13. [PMID: 25038239 PMCID: PMC4192698 DOI: 10.1113/jphysiol.2014.275735] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
Respiratory mitochondria undergo stochastic, intermittent bursts of superoxide production accompanied by transient depolarization of the mitochondrial membrane potential and reversible opening of the membrane permeability transition pore. These discrete events were named 'superoxide flashes' for the reactive oxygen species (ROS) signal involved, and 'mitochondrial flashes' (mitoflashes) for the entirety of the multifaceted and intertwined mitochondrial processes. In contrast to the flashless basal ROS production of 'homeostatic ROS' for redox regulation, bursting ROS production during mitoflashes may provide 'signalling ROS' at the organelle level, fulfilling distinctly different cell functions. Mounting evidence indicates that mitoflash frequency is richly regulated over a broad range, and represents a novel, universal, and 'digital' readout of mitochondrial functional status and of the mitochondrial stress response. An emerging view is that mitoflashes participate in vital processes including metabolism, cell differentiation, the stress response and ageing. These recent advances shed new light on the role of mitochondrial functional dynamics in health and disease.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qi Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Heping Cheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Zhang W, Li K, Zhu X, Wu D, Shang W, Yuan X, Huang Z, Zheng M, Wang X, Yang D, Liu J, Cheng H. Subsarcolemmal mitochondrial flashes induced by hypochlorite stimulation in cardiac myocytes. Free Radic Res 2014; 48:1085-94. [PMID: 24912881 DOI: 10.3109/10715762.2014.932114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial superoxide flash (mitoflash) reflects quantal and bursting superoxide production and concurrent membrane depolarization triggered by transient mitochondrial permeability transition in many types of cells, at the level of single mitochondria. Here we investigate reactive oxygen species (ROS)-mediated modulation of mitoflash activity in cardiac myocytes and report a surprising finding that hypochlorite ions potently and preferentially triggered mitoflashes in the subsarcolemmal mitochondria (SSM), whereas hydrogen peroxide (H2O2) elicited mitoflash activity uniformly among SSM and interfibrillar mitochondria (IFM). The striking SSM mitoflash response to hypochlorite stimulation remained intact in cardiac myocytes from NOX2-deficient mice, excluding local NOX2-mediated ROS as the major player. Furthermore, it occurred concomitantly with SSM Ca(2+) accumulation and local Ca(2+) and CaMKII signaling played an important modulatory role by altering frequency and unitary properties of SSM mitoflashes. These findings underscore the functional heterogeneity of SSM and IFM and the oxidant-specific responsiveness of mitochondria to ROS, and may bear important ramifications in devising therapeutic strategies for the treatment of oxidative stress-related heart diseases.
Collapse
Affiliation(s)
- W Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University , Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu Q, Lee CF, Wang W, Karamanlidis G, Kuroda J, Matsushima S, Sadoshima J, Tian R. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 2014; 3:e000555. [PMID: 24470522 PMCID: PMC3959718 DOI: 10.1161/jaha.113.000555] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The NADPH oxidase family (Nox) produces reactive oxygen species by adding the electron donated by NADPH to oxygen. Excessive reactive oxygen species production under a variety of pathological conditions has been attributed to increased Nox activity. Here, we aimed at investigating the role of Nox in cardiac ischemic injury through gain‐ and loss‐of‐function approaches. Methods and Results We modulated Nox activity in the heart by cardiac‐specific expression of Nox4 and dominant negative Nox4. Modulation of Nox activity drastically changes the cellular redox status. Increasing Nox activity by cardiac‐specific overexpression of Nox4 imposed oxidative stress on the myocardium [increased NAD(P)+/NAD(P)H and decreased glutathione/glutathione disulfide ratio] and worsened cardiac energetics and contractile function after ischemia‐reperfusion. Overexpression of the dominant negative Nox4 (DN), which abolished the Nox function, led to a markedly reduced state [decreased NAD(P)+/NAD(P)H and increased glutathione/glutathione disulfide ratio] at baseline and paradoxically promoted mitochondrial reactive oxygen species production during ischemia resulting in no recovery of heart function after reperfusion. Limiting the generation of reducing equivalent through modulating carbon substrates availability partially restored the NAD+/NADH ratio and protected dominant negative Nox4 hearts from ischemic injury. Conclusions This study reveals an important role of Nox in cardiac redox regulation and highlights the complexity of developing therapies that affect the intricately connected redox states.
Collapse
Affiliation(s)
- Qiujun Yu
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Scaringi JA, Rosa AO, Morad M, Cleemann L. A new method to detect rapid oxygen changes around cells: how quickly do calcium channels sense oxygen in cardiomyocytes? J Appl Physiol (1985) 2013; 115:1855-61. [PMID: 24157525 DOI: 10.1152/japplphysiol.00770.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute hypoxia is thought to trigger protective responses that, in tissues like heart and carotid body, include rapid (5-10 s) suppression of Ca(2+) and K(+) channels. To gain insight into the mechanism for the suppression of the cardiac l-type Ca(2+) channel, we measured O2-dependent fluorescence in the immediate vicinity of voltage-clamped cardiac cells subjected to rapid exchange of solutions with different O2 tensions. This was accomplished with an experimental chamber with a glass bottom that was used as a light guide for excitation of a thin ruthenium-based O2-sensitive ORMOSIL coating. Fluorescence imaging showed that steady-state Po2 was well controlled within the entire stream from an electromagnetically controlled solution "puffer" but that changes were slower at the periphery of the stream (τ1/2 ∼ 500 ms) than immediately around the voltage-clamped myocyte (τ1/2 ∼ 225 ms) where, in turn, firmly attached cells produced an additional local delay of 50-100 ms. Performing simultaneous voltage clamp and O2 measurements, we found that acute hypoxia gradually and reversibly suppressed the Ca(2+) channel (CaV1.2). Using Ba(2+) as charge carrier, the suppression was significant after 1.5 s, reached ∼10% after 2.5 s, and was nearly completely reversible in 5 s. The described fluorescence measurements provide the means to check and fine tune solution puffers and suggest that changes in Po2 can be accomplished within ∼200 ms. The rapid and reversible suppression of barium current under hypoxia is consistent with the notion that the cardiac Ca(2+) channel is directly modulated by O2.
Collapse
Affiliation(s)
- John A Scaringi
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | | | | | | |
Collapse
|
16
|
Wang X, Fang H, Huang Z, Shang W, Hou T, Cheng A, Cheng H. Imaging ROS signaling in cells and animals. J Mol Med (Berl) 2013; 91:917-27. [PMID: 23873151 PMCID: PMC3730091 DOI: 10.1007/s00109-013-1067-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) act as essential cellular messengers, redox regulators, and, when in excess, oxidative stressors that are widely implicated in pathologies of cancer and cardiovascular and neurodegenerative diseases. Understanding such complexity of the ROS signaling is critically hinged on the ability to visualize and quantify local, compartmental, and global ROS dynamics at high selectivity, sensitivity, and spatiotemporal resolution. The past decade has witnessed significant progress in ROS imaging at levels of intact cells, whole organs or tissues, and even live organisms. In particular, major advances include the development of novel synthetic or genetically encoded fluorescent protein-based ROS indicators, the use of protein indicator-expressing animal models, and the advent of in vivo imaging technology. Innovative ROS imaging has led to important discoveries in ROS signaling—for example, mitochondrial superoxide flashes as elemental ROS signaling events and hydrogen peroxide transients for wound healing. This review aims at providing an update of the current status in ROS imaging, while identifying areas of insufficient knowledge and highlighting emerging research directions.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Superoxide constitutes a major signal of mitochondrial superoxide flash. Life Sci 2013; 93:178-86. [PMID: 23800644 DOI: 10.1016/j.lfs.2013.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/08/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022]
Abstract
AIMS Mitochondrial flashes detected with an N- and C-terminal circularly-permuted yellow fluorescent protein (cpYFP) have been thought to represent transient and quantal bursts of superoxide production under physiological, stressful and pathophysiological conditions. However, the superoxide nature of the cpYFP-flash has been challenged, considering the pH-sensitivity of cpYFP and the distinctive regulation of the flash versus the basal production of mitochondrial reactive oxygen species (ROS). Thus, the aim of the study is to further determine the origin of mitochondrial flashes. MAIN METHODS We investigated the origin of the flashes using the widely-used pH-insensitive ROS indicators, mitoSOX, an indicator for superoxide, and 2, 7-dichlorodihydrofluorescein diacetate (DCF), an indicator for H2O2 and other oxidants. KEY FINDINGS Robust, quantal, and stochastic mitochondrial flashes were detected with either mitoSOX or DCF in several cell-types and in mitochondria isolated from the heart. Both mitoSOX-flashes and DCF-flashes showed similar incidence and kinetics to those of cpYFP-flashes, and were equally sensitive to mitochondria-targeted antioxidants. Furthermore, they were markedly decreased by inhibitors or an uncoupler of the mitochondrial electron transport chain, as is the case with cpYFP-flashes. The involvement of the mitochondrial permeability transition pore in DCF-flashes was evidenced by the coincidental loss of mitochondrial membrane potential and matrix-enriched rhod-2, as well as by their sensitivity to cyclosporine A. SIGNIFICANCE These data indicate that all the three types of mitochondrial flashes stem from the common physiological process of bursting superoxide and ensuing H2O2 production in the matrix of single mitochondrion.
Collapse
|
18
|
Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol 2013; 94:657-70. [PMID: 23610146 DOI: 10.1189/jlb.1012544] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the phagocytosis field, ROS production by the phagocyte NOX has been associated with pathogen killing for the last 50 years. Since the discovery of nonphagocyte NOX, numerous other roles for ROS production have been identified. Oxidative stress and ROS-mediated signaling have received much attention in recent years. Much lower concentrations of ROS may be required for signaling compared with microbial killing. Based on the discoveries in nonphagocytic cells, it became logical to look for ROS functions distinct from pathogen killing, even in phagocytes. ROS are now linked to various forms of cell death, to chemotaxis, and to numerous modifications of cellular processes, including the NOX itself. ROS functions are clearly concentration-dependent over a wide range of concentrations. How much is required for which function? Which species are required for how much time? Is ROS signaling only a side effect of bactericidal ROS production? One major obstacle to answer these questions is the difficulty of reliable quantitative ROS detection. Signal transduction often takes place on a subcellular scale over periods of seconds or minutes, so the detection methods need to provide appropriate time and space resolution. We present examples of local ROS production, decreased degradation, signaling events, and potentially ROS-sensitive functions. We attempt to illustrate the current limitations for quantitative spatiotemporal ROS detection and point out directions for ongoing development. Probes for localized ROS detection and for combined detection of ROS, together with protein localization or other cellular parameters, are constantly improved.
Collapse
|
19
|
Wei-LaPierre L, Gong G, Gerstner BJ, Ducreux S, Yule DI, Pouvreau S, Wang X, Sheu SS, Cheng H, Dirksen RT, Wang W. Respective contribution of mitochondrial superoxide and pH to mitochondria-targeted circularly permuted yellow fluorescent protein (mt-cpYFP) flash activity. J Biol Chem 2013; 288:10567-10577. [PMID: 23457298 PMCID: PMC3624438 DOI: 10.1074/jbc.m113.455709] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/14/2013] [Indexed: 11/06/2022] Open
Abstract
Superoxide flashes are transient bursts of superoxide production within the mitochondrial matrix that are detected using the superoxide-sensitive biosensor, mitochondria-targeted circularly permuted YFP (mt-cpYFP). However, due to the pH sensitivity of mt-cpYFP, flashes were suggested to reflect transient events of mitochondrial alkalinization. Here, we simultaneously monitored flashes with mt-cpYFP and mitochondrial pH with carboxy-SNARF-1. In intact cardiac myocytes and purified skeletal muscle mitochondria, robust mt-cpYFP flashes were accompanied by only a modest increase in SNARF-1 ratio (corresponding to a pH increase of <0.1), indicating that matrix alkalinization is minimal during an mt-cpYFP flash. Individual flashes were also accompanied by stepwise increases of MitoSOX signal and decreases of NADH autofluorescence, supporting the superoxide origin of mt-cpYFP flashes. Transient matrix alkalinization induced by NH4Cl only minimally influenced flash frequency and failed to alter flash amplitude. However, matrix acidification modulated superoxide flash frequency in a bimodal manner. Low concentrations of nigericin (< 100 nM) that resulted in a mild dissipation of the mitochondrial pH gradient increased flash frequency, whereas a maximal concentration of nigericin (5 μm) collapsed the pH gradient and abolished flash activity. These results indicate that mt-cpYFP flash events reflect a burst in electron transport chain-dependent superoxide production that is coincident with a modest increase in matrix pH. Furthermore, flash activity depends strongly on a combination of mitochondrial oxidation and pH gradient.
Collapse
Affiliation(s)
- Lan Wei-LaPierre
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Guohua Gong
- the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Brent J. Gerstner
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sylvie Ducreux
- the Physiologie Intégrative, Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | - David I. Yule
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sandrine Pouvreau
- the Physiologie Intégrative, Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | - Xianhua Wang
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Shey-Shing Sheu
- the Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Heping Cheng
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Robert T. Dirksen
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Wang Wang
- the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| |
Collapse
|
20
|
Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H. ROS regulation of microdomain Ca(2+) signalling at the dyads. Cardiovasc Res 2013; 98:248-58. [PMID: 23455546 DOI: 10.1093/cvr/cvt050] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species (ROS) are emerging as centre-stage players in cardiac functional regulation. ROS and Ca(2+) signals converge at dyads, the structural and functional units of cardiac excitation-contraction coupling. These two prominent signalling systems are intertwined with ROS modulation of the entire Ca(2+)-signalling network, and vice versa. While constitutively generated homoeostatic ROS are important in setting the redox potential of the intracellular milieu, dynamic signalling ROS shape microdomain and global Ca(2+) signals on both the beat-to-beat and greater time scales. However, ROS effects are complex and subtle, characterized by multiphasic and bidirectional Ca(2+) responses; and sustained oxidative stress may lead to compromised contractility and arrhythmogenicity. These new understandings should be leveraged to harness ROS for their beneficial roles while avoiding deleterious effects in the heart.
Collapse
Affiliation(s)
- Huiliang Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
21
|
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. ACTA ACUST UNITED AC 2013; 139:415-23. [PMID: 22641636 PMCID: PMC3362525 DOI: 10.1085/jgp.201110767] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
22
|
Hou T, Zhang X, Xu J, Jian C, Huang Z, Ye T, Hu K, Zheng M, Gao F, Wang X, Cheng H. Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. J Biol Chem 2013; 288:4602-12. [PMID: 23283965 DOI: 10.1074/jbc.m112.398297] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca(2+) uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca(2+) and ROS. Blocking mitochondrial Ca(2+) transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca(2+) uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca(2+) or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca(2+) and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca(2+) and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca(2+) and ROS signals.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012; 53:1903-18. [PMID: 22982596 DOI: 10.1016/j.freeradbiomed.2012.09.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
NADPH oxidases (NOX) are superoxide anion radical (O(2)(-•))-generating enzymes. They form a family of seven members, each with a specific tissue distribution. They function as electron transport chains across membranes, using NADPH as electron donor to reduce molecular oxygen to O(2)(-•). NOX have multiple biological functions, ranging from host defense to inflammation and cellular signaling. Measuring NOX activity is crucial in understanding the roles of these enzymes in physiology and pathology. Many of the methods used to measure NOX activity are based on the detection of small molecules that react with NOX-generated O(2)(-•) or its direct dismutation product hydrogen peroxide (H(2)O(2)) to form fluorescent, luminescent, or colored products. Initial techniques were developed to measure the activity of the phagocyte isoform NOX2 during the oxidative burst of stimulated polymorphonuclear leukocytes, which generate large quantities of O(2)(-•). However, other members of the NOX family generate much less O(2)(-•) and hence H(2)O(2), and their activity is difficult to distinguish from other sources of these reactive species. In addition, O(2)(-•) and H(2)O(2) are reactive molecules and most probes are prone to artifacts and therefore should be used with appropriate controls and the data carefully interpreted. This review gives an overview of current methods used to measure NOX activity and NOX-derived O(2)(-•) and H(2)O(2) in cells, tissues, isolated systems, and living organisms, describing the advantages and caveats of many established methods with emphasis on more recent technologies and future perspectives.
Collapse
Affiliation(s)
- Ghassan J Maghzal
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Emilie Quatresous
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon 1, 69622 Villeurbanne, France
| | - Claude Legrand
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon 1, 69622 Villeurbanne, France
| | - Sandrine Pouvreau
- CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
25
|
Mitochondrial ‘flashes’: a radical concept repHined. Trends Cell Biol 2012; 22:503-8. [DOI: 10.1016/j.tcb.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
|
26
|
Wei L, Dirksen RT. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies. J Gen Physiol 2012; 139:425-34. [PMID: 22641637 PMCID: PMC3362526 DOI: 10.1085/jgp.201210790] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lan Wei
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
27
|
Cardoso AR, Chausse B, da Cunha FM, Luévano-Martínez LA, Marazzi TBM, Pessoa PS, Queliconi BB, Kowaltowski AJ. Mitochondrial compartmentalization of redox processes. Free Radic Biol Med 2012; 52:2201-8. [PMID: 22564526 DOI: 10.1016/j.freeradbiomed.2012.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/25/2022]
Abstract
Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria. We also review techniques used to measure redox state in mitochondrial subcompartments, antioxidants targeted to mitochondrial subcompartments, and methodological concerns that must be addressed when using these tools.
Collapse
|
28
|
Wang X, Jian C, Zhang X, Huang Z, Xu J, Hou T, Shang W, Ding Y, Zhang W, Ouyang M, Wang Y, Yang Z, Zheng M, Cheng H. Superoxide flashes: Elemental events of mitochondrial ROS signaling in the heart. J Mol Cell Cardiol 2012; 52:940-8. [DOI: 10.1016/j.yjmcc.2012.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
|
29
|
Li K, Zhang W, Fang H, Xie W, Liu J, Zheng M, Wang X, Wang W, Tan W, Cheng H. Superoxide flashes reveal novel properties of mitochondrial reactive oxygen species excitability in cardiomyocytes. Biophys J 2012; 102:1011-21. [PMID: 22404923 DOI: 10.1016/j.bpj.2012.01.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/02/2012] [Accepted: 01/27/2012] [Indexed: 11/18/2022] Open
Abstract
Superoxide flash represents quantal and bursting production of mitochondrial reactive oxygen species (ROS) instigated by transient opening of the mitochondrial permeability transition pore (mPTP). Given their critical role in metabolism, ischemia-reperfusion injury, and apoptosis, characterization of flash properties would be valuable to further mechanistic and physiological studies of this newly discovered mitochondrial phenomenon. Here we developed the flash detector FlashSniper based on segmentation of two-dimensional feature maps extracted from time-lapse confocal image stacks, and on the theory for correcting optical distortion of flash-amplitude histograms. Through large-scale analysis of superoxide flashes in cardiomyocytes, we demonstrated uniform mitochondrial ROS excitability among subsarcolemmal and intermyofibrillar mitochondria, and exponential distribution of intervals between consecutive flash events. Flash ignition displayed three different patterns: an abrupt rise from quiescence (44%), a rise with an exponential foot (27%), or a rise occurring after a pedestal precursor (29%), closely resembling action-potential initiation in excitable cells. However, the optical blurring-corrected amplitudes of superoxide flashes were highly variable, as were their durations, indicating stochastic automaticity of single-mitochondrion ROS excitation. Simultaneous measurement of mitochondrial membrane potential revealed that graded, rather than all-or-none, depolarization mirrored the precursor and the primary peak of the flash. We propose that superoxide flash production is a regenerative process dominated by stochastic, autonomous recruitment of a limited number of units (e.g., mPTPs) in single mitochondria.
Collapse
Affiliation(s)
- Kaitao Li
- Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|