1
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|
3
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Effects of Iodonium Analogs on Nadph Oxidase 1 in Human Colon Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10111757. [PMID: 34829628 PMCID: PMC8615264 DOI: 10.3390/antiox10111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that of the molecules postulated to function as inhibitors of the NADPH oxidase family of enzymes iodonium analogs known to broadly interfere with flavin dehydrogenase function demonstrate mechanistic validity as NADPH oxidase poisons. In recent work, we have produced a series of novel iodonium compounds as putative inhibitors of these oxidases. To evaluate the potential utility of two novel molecules with favorable chemical properties, NSC 740104 and NSC 751140, we compared effects of these compounds to the two standard inhibitors of this class, diphenyleneiodonium and di-2-thienyliodonium, with respect to antiproliferative, cell cycle, and gene expression effects in human colon cancer cells that require the function of NADPH oxidase 1. Both new agents blocked NADPH oxidase-related reactive oxygen production, inhibited tumor cell proliferation, produced a G1/S block in cell cycle progression, and inhibited NADPH oxidase 1 expression at the mRNA and protein levels at low nM concentrations in a fashion similar to or better than the parent molecules. These studies suggest that NSC 740104 and NSC 751140 should be developed further as mechanistic tools to better understand the role of NADPH oxidase inhibition as an approach to the development of novel therapeutic agents for colon cancer.
Collapse
|
6
|
Reactive Oxygen Species in Acute Lymphoblastic Leukaemia: Reducing Radicals to Refine Responses. Antioxidants (Basel) 2021; 10:antiox10101616. [PMID: 34679751 PMCID: PMC8533157 DOI: 10.3390/antiox10101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer diagnosed in children and adolescents. Approximately 70% of patients survive >5-years following diagnosis, however, for those that fail upfront therapies, survival is poor. Reactive oxygen species (ROS) are elevated in a range of cancers and are emerging as significant contributors to the leukaemogenesis of ALL. ROS modulate the function of signalling proteins through oxidation of cysteine residues, as well as promote genomic instability by damaging DNA, to promote chemotherapy resistance. Current therapeutic approaches exploit the pro-oxidant intracellular environment of malignant B and T lymphoblasts to cause irreversible DNA damage and cell death, however these strategies impact normal haematopoiesis and lead to long lasting side-effects. Therapies suppressing ROS production, especially those targeting ROS producing enzymes such as the NADPH oxidases (NOXs), are emerging alternatives to treat cancers and may be exploited to improve the ALL treatment. Here, we discuss the roles that ROS play in normal haematopoiesis and in ALL. We explore the molecular mechanisms underpinning overproduction of ROS in ALL, and their roles in disease progression and drug resistance. Finally, we examine strategies to target ROS production, with a specific focus on the NOX enzymes, to improve the treatment of ALL.
Collapse
|
7
|
Martínez MA, Úbeda A, Trillo MÁ. Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Electromagn Biol Med 2021; 40:103-116. [PMID: 33345643 DOI: 10.1080/15368378.2020.1851250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
Our previous studies have shown that intermittent exposure to a 50-Hz, 100-µT sine wave magnetic field (MF) promotes human NB69 cell proliferation, mediated by activation of the epidermal growth factor receptor (EGFR) and pathways MAPK-ERK1/2 and p38; being the effects on proliferation and p38 activation blocked by the chelator N-acetylcysteine. The present work investigates the MF effects on free radical (FR) production, and the potential involvement of NADPH oxidase, the main source of reactive oxygen species (ROS), in the MF-induced activation of MAPK pathways. To this end, the field effects on MAPK-ERK1/2, -p38 and -JNK activation in the presence or absence of the NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), as well as the expression of the p67phox subunit, were analyzed. The results revealed that field exposure increases FR production and induces early, transient expression of the cytosolic component of the NADPH oxidase, p67phox. Also, the MF-induced activation of the MAPK-JNK pathway, but not that of -ERK1/2 or -p38 pathways, was prevented in the presence of the DPI, which has been shown to significantly reduce p67phox expression. These data, together with those from previous studies, identify various, FR-dependent or -independent mechanisms, involved in the MF-induced proliferative response mediated by MAPK signaling activation.
Collapse
Affiliation(s)
| | - Alejandro Úbeda
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| | - María Ángeles Trillo
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| |
Collapse
|
8
|
Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9121248. [PMID: 33302580 PMCID: PMC7764543 DOI: 10.3390/antiox9121248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
NADPH oxidases (NOX) are commonly expressed ROS-producing enzymes that participate in the regulation of many signaling pathways, which influence cell metabolism, survival, and proliferation. Due to their high expression in several different types of cancer it was postulated that NOX promote tumor progression, growth, and survival. Thus, the inhibition of NOX activity was considered to have therapeutic potential. One of the possible outcomes of anticancer therapy, which has recently gained much interest, is cancer cell senescence. The induction of senescence leads to prolonged inhibition of proliferation and contributes to tumor growth restriction. The aim of our studies was to investigate the influence of low, non-toxic doses of diphenyleneiodonium chloride (DPI), a potent inhibitor of flavoenzymes including NADPH oxidases, on p53-proficient and p53-deficient HCT116 human colon cancer cells and MCF-7 breast cancer cells. We demonstrated that the temporal treatment of HCT116 and MCF-7 cancer cells (both p53 wild-type) with DPI caused induction of senescence, that was correlated with decreased level of ROS and upregulation of p53/p21 proteins. On the contrary, in the case of p53-/- HCT116 cells, apoptosis was shown to be the prevailing effect of DPI treatment. Thus, our studies provided a proof that inhibiting ROS production, and by this means influencing ROS sensitive pathways, remains an alternative strategy to facilitate so called therapy-induced senescence in cancers.
Collapse
|
9
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
12
|
Kuai Y, Liu H, Liu D, Liu Y, Sun Y, Xie J, Sun J, Fang Y, Pan H, Han W. An ultralow dose of the NADPH oxidase inhibitor diphenyleneiodonium (DPI) is an economical and effective therapeutic agent for the treatment of colitis-associated colorectal cancer. Am J Cancer Res 2020; 10:6743-6757. [PMID: 32550901 PMCID: PMC7295061 DOI: 10.7150/thno.43938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term inflammatory stimulation is considered one of the most important causes of colorectal cancer. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, can inhibit a variety of inflammatory responses. However, the systemic toxicity of DPI limits its clinical application. Whether DPI can inhibit colitis-associated colorectal cancer (CAC) at ultralow concentrations remains unknown. Methods: CAC was induced by azoxymethane (AOM) injection followed by treatment with dextran sulfate sodium (DSS), and DPI was intraperitoneally injected (i.p.) in the first cycle for 21 days. Colon tissue was collected and analyzed by western blotting. Immune cell infiltration and macrophage polarization were examined by immunohistochemistry, immunofluorescence, or real-time polymerase-chain reaction (PCR). Reactive oxygen species (ROS) production was measured by flow cytometry. Results: Ultralow dose DPI significantly ameliorated the DSS-induced colitis and attenuated the colon tumorigenesis in the mouse model of AOM/ DSS-induced CAC. Mechanistically, an ultralow dose of DPI inhibited the production of pro-inflammatory cytokines, (tumor necrosis factor (TNF)-α and interleukin (IL)-6), reduced the macrophage infiltration and classical polarization, and induced the ROS generation. These effects were found to be related to the inhibition of the phosphorylation of signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF -κB). Conclusion: The present study revealed that an ultralow dose of DPI, with no significant systemic toxicity involved, may be an effective way to prevent the occurrence and development of CAC.
Collapse
|
13
|
Ozsvari B, Bonuccelli G, Sanchez-Alvarez R, Foster R, Sotgia F, Lisanti MP. Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging (Albany NY) 2019; 9:2610-2628. [PMID: 29253841 PMCID: PMC5764395 DOI: 10.18632/aging.101351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Here, we performed high-throughput drug-screening to identify new non-toxic mitochondrial inhibitors. This screening platform was specifically designed to detect compounds that selectively deplete cellular ATP levels, but have little or no toxic side effects on cell viability. Using this approach, we identified DPI (Diphenyleneiodonium chloride) as a new potential therapeutic agent. Mechanistically, DPI potently blocks mitochondrial respiration by inhibiting flavin-containing enzymes (FMN and FAD-dependent), which form part of Complex I and II. Interestingly, DPI induced a chemo-quiescence phenotype that potently inhibited the propagation of CSCs, with an IC-50 of 3.2 nano-molar. Virtually identical results were obtained using CSC markers, such as CD44 and CD24. We further validated the effects of DPI on cellular metabolism. At 10 nM, DPI inhibited oxidative mitochondrial metabolism (OXPHOS), reducing mitochondrial driven ATP production by >90%. This resulted in a purely glycolytic phenotype, with elevated L-lactate production. We show that this metabolic inflexibility could be rapidly-induced, after only 1 hour of DPI treatment. Remarkably, the mitochondrial inhibitory effects of DPI were reversible, and DPI did not induce ROS production. Cells maintained in DPI for 1 month showed little or no mitochondrial activity, but remained viable. Thus, it appears that DPI behaves as a new type of mitochondrial inhibitor, which maintains cells in a state of metabolic-quiescence or “suspended animation”. In conclusion, DPI treatment can be used to acutely confer a mitochondrial-deficient phenotype, which we show effectively depletes CSCs from the heterogeneous cancer cell population. These findings have significant therapeutic implications for potently targeting CSCs, while minimizing toxic side effects. We also discuss the possible implications of DPI for the aging process. Interestingly, previous studies in C. elegans have shown that DPI prevents the accumulation of lipofuscin (an aging-associated hallmark), during the response to oxidative stress. Our current results are consistent with data showing that flavins (FAD, FMN and/or Riboflavin) are auto-fluorescent markers of i) increased mitochondrial “power” (OXPHOS) and ii) elevated CSC activity. Finally, we believe that DPI is one of the most potent and highly selective CSC inhibitors discovered to date. Therefore, our current findings suggest a new impetus to create novel analogues of i) DPI (Diphenyleneiodonium chloride) and ii) DPI-related compounds (Diphenyliodonium chloride), using medicinal chemistry, to optimize this very promising and potent anti-CSC activity. We propose to call these new molecules “Mitoflavoscins”. For example, DPI is ∼30 times more potent than Palbociclib (IC-50 = 100 nM), which is an FDA-approved CDK4/6 inhibitor, that broadly targets proliferation in any cell type, including CSCs.
Collapse
Affiliation(s)
- Bela Ozsvari
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Gloria Bonuccelli
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | | | - Richard Foster
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, West Yorkshire, UK.,School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, West Yorkshire, UK
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| |
Collapse
|
14
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Xu S, Catapang A, Braas D, Stiles L, Doh HM, Lee JT, Graeber TG, Damoiseaux R, Shirihai O, Herschman HR. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers. Cancer Metab 2018; 6:7. [PMID: 29988332 PMCID: PMC6022704 DOI: 10.1186/s40170-018-0181-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
Background Precision medicine therapies require identification of unique molecular cancer characteristics. Hexokinase (HK) activity has been proposed as a therapeutic target; however, different hexokinase isoforms have not been well characterized as alternative targets. While HK2 is highly expressed in the majority of cancers, cancer subtypes with differential HK1 and HK2 expression have not been characterized for their sensitivities to HK2 silencing. Methods HK1 and HK2 expression in the Cancer Cell Line Encyclopedia dataset was analyzed. A doxycycline-inducible shRNA silencing system was used to examine the effect of HK2 knockdown in cultured cells and in xenograft models of HK1−HK2+ and HK1+HK2+ cancers. Glucose consumption and lactate production rates were measured to monitor HK activity in cell culture, and 18F-FDG PET/CT was used to monitor HK activity in xenograft tumors. A high-throughput screen was performed to search for synthetically lethal compounds in combination with HK2 inhibition in HK1−HK2+ liver cancer cells, and a combination therapy for liver cancers with this phenotype was developed. A metabolomic analysis was performed to examine changes in cellular energy levels and key metabolites in HK1−HK2+ cells treated with this combination therapy. The CRISPR Cas9 method was used to establish isogenic HK1+HK2+ and HK1−HK2+ cell lines to evaluate HK1−HK2+ cancer cell sensitivity to the combination therapy. Results Most tumors express both HK1 and HK2, and subsets of cancers from a wide variety of tissues of origin express only HK2. Unlike HK1+HK2+ cancers, HK1−HK2+ cancers are sensitive to HK2 silencing-induced cytostasis. Synthetic lethality was achieved in HK1−HK2+ liver cancer cells, by the combination of DPI, a mitochondrial complex I inhibitor, and HK2 inhibition, in HK1−HK2+ liver cancer cells. Perhexiline, a fatty acid oxidation inhibitor, further sensitizes HK1−HK2+ liver cancer cells to the complex I/HK2-targeted therapeutic combination. Although HK1+HK2+ lung cancer H460 cells are resistant to this therapeutic combination, isogenic HK1KOHK2+ cells are sensitive to this therapy. Conclusions The HK1−HK2+ cancer subsets exist among a wide variety of cancer types. Selective inhibition of the HK1−HK2+ cancer cell-specific energy production pathways (HK2-driven glycolysis, oxidative phosphorylation and fatty acid oxidation), due to the unique presence of only the HK2 isoform, appears promising to treat HK1−HK2+ cancers. This therapeutic strategy will likely be tolerated by most normal tissues, where only HK1 is expressed. Electronic supplementary material The online version of this article (10.1186/s40170-018-0181-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shili Xu
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Arthur Catapang
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Daniel Braas
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,3UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Linsey Stiles
- 6Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Hanna M Doh
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Jason T Lee
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Thomas G Graeber
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,3UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Damoiseaux
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,7California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Orian Shirihai
- 6Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Harvey R Herschman
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,2Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,8Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
16
|
Cui Y, Xing P, Wang Y, Liu M, Qiu L, Ying G, Li B. NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition. Oncotarget 2018; 8:32576-32585. [PMID: 28427229 PMCID: PMC5464810 DOI: 10.18632/oncotarget.15936] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Fatty acid synthase (FAS), as a key enzyme involved in de novo lipogenesis, is highly expressed in many cancers. FAS inhibition induces cell death in vivo and in vitro, rendering FAS as an attractive target for cancer therapy, but the defined mechanism is still not well understood. Herein, we confirmed that FAS was highly expressed in breast cancers and FAS inhibition by its inhibitors or knockdown induced apoptosis in breast cancer cells. Our results showed that a significantly high level of reactive oxygen species was induced but not responsible for apoptosis in breast cancer cells by FAS inhibition. Instead, NADPH accumulation resulting from FAS inhibition was found to stimulate NADPH oxidase to generate reactive oxygen species and highly associated with apoptosis induction. Suppression of NADPH oxidase almost totally blocked reactive oxygen species generation while significantly potentiated the in vitro and in vivo killing of breast cancers by FAS inhibition. Taken together, these data suggest that FAS plays a critical role in maintaining cellular redox homeostasis and its inhibition leads to NADPH accumulation-mediated apoptosis. Our finding may provide new insights into cancer metabolism and aid in designing effective anticancer treatments.
Collapse
Affiliation(s)
- Yanfen Cui
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Pan Xing
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yuanyuan Wang
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Miao Liu
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Li Qiu
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Binghui Li
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
17
|
Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2018; 8:38113-38135. [PMID: 28498822 PMCID: PMC5503519 DOI: 10.18632/oncotarget.17494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
Human colon cancers express higher levels of NADPH oxidase 1 [NOX1] than adjacent normal epithelium. It has been suggested that reactive oxygen species [ROS] derived from NOX1 contribute to DNA damage and neoplastic transformation in the colon, particularly during chronic inflammatory stress. However, the mechanism(s) underlying increased NOX1 expression in malignant tumors or chronic inflammatory states involving the intestine are poorly characterized. We examined the effects of two pro-inflammatory cytokines, IL-4 and IL-13, on the regulation of NOX1. NOX1 expression was increased 4- to 5-fold in a time- and concentration-dependent manner by both cytokines in human colon cancer cell lines when a functional Type II IL-4 receptor was present. Increased NOX1 transcription following IL-4/IL-13 exposure was mediated by JAK1/STAT6 signaling, was associated with a ROS-related inhibition of protein tyrosine phosphatase activity, and was dependent upon activation and specific binding of GATA3 to the NOX1 promoter. NOX1-mediated ROS production increased cell cycle progression through S-phase leading to a significant increase in cellular proliferation. Evaluation of twenty pairs of surgically-resected colon cancers and their associated uninvolved adjacent colonic epithelium demonstrated a significant increase in the active form of NOX1, NOX1-L, in tumors compared to normal tissues, and a significant correlation between the expression levels of NOX1 and the Type II IL-4 receptor in tumor and the uninvolved colon. These studies imply that NOX1 expression, mediated by IL-4/IL-13, could contribute to an oxidant milieu capable of supporting the initiation or progression of colonic cancer, suggesting a role for NOX1 as a therapeutic target.
Collapse
|
18
|
Antony S, Jiang G, Wu Y, Meitzler JL, Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, Juhasz A, Lu J, Liu H, Dahan I, Konate M, Roy KK, Doroshow JH. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27 Kip1 expression in malignant melanoma and other human tumors. Mol Carcinog 2017; 56:2643-2662. [PMID: 28762556 PMCID: PMC5675809 DOI: 10.1002/mc.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased p27Kip1 expression. Similarly, increased normoxic HIF-1α expression and decreased p27Kip1 expression were observed in stable NOX5-overexpressing clones of KARPAS 299 human lymphoma cells and in the human prostate cancer cell line, PC-3. Conversely, knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased cell growth, decreased HIF-1α expression, and increased p27Kip1 expression. Likewise, in an additional human melanoma cell line, WM852, and in PC-3 cells, transient knockdown of endogenous NOX5 resulted in increased p27Kip1 and decreased HIF-1α expression. Knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased Akt and GSK3β phosphorylation, signaling pathways known to modulate p27Kip1 levels. In summary, our findings suggest that NOX5 expression in human UACC-257 melanoma cells could contribute to cell proliferation due, in part, to the generation of high local concentrations of extracellular ROS that modulate multiple pathways that regulate HIF-1α and networks that signal through Akt/GSK3β/p27Kip1 .
Collapse
Affiliation(s)
- Smitha Antony
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jennifer L. Meitzler
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Hala R. Makhlouf
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Dave S. Hoon
- Department of Molecular OncologyJohn Wayne Cancer InstituteSanta MonicaCalifornia
| | - Jiuping Ji
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Yiping Zhang
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Han Liu
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Iris Dahan
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Mariam Konate
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Krishnendu K. Roy
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - James H. Doroshow
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| |
Collapse
|
19
|
Lu J, Risbood P, Kane CT, Hossain MT, Anderson L, Hill K, Monks A, Wu Y, Antony S, Juhasz A, Liu H, Jiang G, Harris E, Roy K, Meitzler JL, Konaté M, Doroshow JH. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases. Biochem Pharmacol 2017; 143:25-38. [PMID: 28709950 PMCID: PMC5610936 DOI: 10.1016/j.bcp.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
The NADPH oxidases (NOXs) play a recognized role in the development and progression of inflammation-associated disorders, as well as cancer. To date, several NOX inhibitors have been developed, through either high throughput screening or targeted disruption of NOX interaction partners, although only a few have reached clinical trials. To improve the efficacy and bioavailability of the iodonium class NOX inhibitor diphenylene iodonium (DPI), we synthesized 36 analogs of DPI, focusing on improved solubility and functionalization. The inhibitory activity of the analogs was interrogated through cell viability and clonogenic studies with a colon cancer cell line (HT-29) that depends on NOX for its proliferative potential. Lack of altered cellular respiration at relevant iodonium analog concentrations was also demonstrated. Additionally, inhibition of ROS generation was evaluated with a luminescence assay for superoxide, or by Amplex Red® assay for H2O2 production, in cell models expressing specific NOX isoforms. DPI and four analogs (NSCs 740104, 751140, 734428, 737392) strongly inhibited HT-29 cell growth and ROS production with nanomolar potency in a concentration-dependent manner. NSC 737392 and 734428, which both feature nitro functional groups at the meta position, had >10-fold higher activity against ROS production by cells that overexpress dual oxidase 2 (DUOX2) than the other compounds examined (IC50≈200-400nM). Based on these results, we synthesized and tested NSC 780521 with optimized potency against DUOX2. Iodonium analogs with anticancer activity, including the first generation of targeted agents with improved specificity against DUOX2, may provide a novel therapeutic approach to NOX-driven tumors.
Collapse
Affiliation(s)
- Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Prabhakar Risbood
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Larry Anderson
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kimberly Hill
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anne Monks
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Erik Harris
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Bourdakou MM, Spyrou GM. Informed walks: whispering hints to gene hunters inside networks' jungle. BMC SYSTEMS BIOLOGY 2017; 11:97. [PMID: 29020948 PMCID: PMC5637247 DOI: 10.1186/s12918-017-0473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Background Systemic approaches offer a different point of view on the analysis of several types of molecular associations as well as on the identification of specific gene communities in several cancer types. However, due to lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression networks are widely used instead. Many efforts have been made to exploit the information hidden in these networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types. Methods In this study we present the development of the Informed Walks model based on random walks that incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to suppress the corresponding cancer type through a drug-repurposing pipeline. Conclusions We have developed a method of gene subnetwork highlighting based on prior knowledge, capable to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing pipelines for a variety of cancer types. Electronic supplementary material The online version of this article (10.1186/s12918-017-0473-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.,Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, 115 27, Athens, Greece
| | - George M Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.
| |
Collapse
|
21
|
Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, Wu X, Antony S, Wu Y, Melillo G, Meitzler JL, Haines DC, Butcher D, Roy K, Doroshow JH. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292:7866-7887. [PMID: 28330872 PMCID: PMC5427267 DOI: 10.1074/jbc.m116.768283] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Agnes Juhasz
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Susan Markel
- the Department of Medical Oncology and Therapeutics Research and
| | - Shikha Gaur
- the Department of Medical Oncology and Therapeutics Research and
| | - Han Liu
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiamo Lu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Guojian Jiang
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Xiwei Wu
- the Bioinformatics Group, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Smitha Antony
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Yongzhong Wu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Giovanni Melillo
- the Developmental Therapeutics Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702, and
| | - Jennifer L Meitzler
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Diana C Haines
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Donna Butcher
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Krishnendu Roy
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - James H Doroshow
- From the Developmental Therapeutics Branch of the Center for Cancer Research, .,the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Zhang J, Feng Z, Wang C, Zhou H, Liu W, Kanchana K, Dai X, Zou P, Gu J, Cai L, Liang G. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis. Am J Cancer Res 2017; 7:275-288. [PMID: 28337376 PMCID: PMC5336501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 06/06/2023] Open
Abstract
Colon cancer is characterized by its fast progression and poor prognosis, and novel agents of treating colon cancer are urgently needed. WZ35, a synthetic curcumin derivative, has been reported to exhibit promising antitumor activity. Here, we investigated the in vitro and in vivo activities of WZ35 and explored the underlying mechanisms in colon cancer cell lines. WZ35 treatment significantly decreased the cell viability associated with G2/M cell cycle arrest and apoptosis induction in colon cancer cell lines. We also show that WZ35 is highly effective in inhibiting tumor growth in a CT26 xenograft mouse model. Mechanistically, WZ35 treatment significantly induced reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress in CT26 cells. Abrogation of ROS production by N-acetylcysteine (NAC) co-treatment almost totally reversed the WZ35-induced cell apoptosis and ER stress activation. Inhibition of p-PERK by GSK2606414 can significantly reverse WZ35-induced cell apoptosis in CT26 cells. Taken together, the curcumin derivative WZ35 exhibited anti-tumor effects in colon cancer cells both in vitro and in vivo, via a ROS-ER stress-mediated mechanism. These findings indicate that activating ROS generation could be an important strategy for the treatment of colon cancers.
Collapse
Affiliation(s)
- Junru Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
- School of Pharmaceutical Science, Binzhou Medical UniversityYantai, Shandong 264003, China
| | - Zhiguo Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Chunhua Wang
- School of Pharmaceutical Science, Binzhou Medical UniversityYantai, Shandong 264003, China
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Weidong Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Karvannan Kanchana
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| | - Junlian Gu
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics of The University of LouisvilleLouisville, KY 40202, USA
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics of The University of LouisvilleLouisville, KY 40202, USA
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou, Zhejiang 325035, China
| |
Collapse
|
23
|
Mousslim M, Pagano A, Andreotti N, Garrouste F, Thuault S, Peyrot V, Parat F, Luis J, Culcasi M, Thétiot-Laurent S, Pietri S, Sabatier JM, Kovacic H. Peptide screen identifies a new NADPH oxidase inhibitor: impact on cell migration and invasion. Eur J Pharmacol 2017; 794:162-172. [DOI: 10.1016/j.ejphar.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
|
24
|
Chu FF, Esworthy RS, Doroshow JH, Grasberger H, Donko A, Leto TL, Gao Q, Shen B. Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol 2016; 11:144-156. [PMID: 27930931 PMCID: PMC5148781 DOI: 10.1016/j.redox.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Mice deficient in glutathione peroxidase (GPx)-1 and -2 (GPx1-/-GPx2-/- double knockout or DKO mice) develop very-early-onset (VEO) ileocolitis, suggesting that lack of defense against reactive oxygen species (ROS) renders susceptibility to intestinal inflammation. Two members of ROS-generating NADPH oxidase family, NOX1 and DUOX2, are highly inducible in the intestinal epithelium. Previously, we reported that Nox1 deficiency ameliorated the pathology in DKO mice (Nox1-TKO). The role of Duox2 in ileocolitis of the DKO mice is evaluated here in Duoxa-TKO mice by breeding DKO mice with Duoxa-/- mice (Duoxa-TKO), which do not have Duox2 activity. Similar to Nox1-TKO mice, Duoxa-TKO mice no longer have growth retardation, shortened intestine, exfoliation of crypt epithelium, crypt abscesses and depletion of goblet cells manifested in DKO mice by 35 days of age. Unlike Nox1-TKO mice, Duoxa-TKO mice still have rampant crypt apoptosis, elevated proliferation, partial loss of Paneth cells and diminished crypt density. Treating DKO mice with NOX inhibitors (di-2-thienyliodonium/DTI and thioridazine/THZ) and an antioxidant (mitoquinone/MitoQ) significantly reduced gut pathology. Furthermore, in the inflamed human colon, DUOX protein expression is highly elevated in the apical, lateral and perinuclear membrane along the whole length of gland. Taken together, we conclude that exfoliation of crypt epithelium, but not crypt apoptosis, is a major contributor to inflammation. Both Nox1 and Duox2 induce exfoliation of crypt epithelium, but only Nox1 induces apoptosis. NOX1 and DUOX2 may be potential therapeutic targets for treating ileocolitis in human patients suffering inflammatory bowel disease (IBD). Glutathione peroxidase-1/2-double knockout mice have very-early-onset ileocolitis. By deletion of Nox1 gene expression, the triple knockout mice are without pathology. By deletion of Duoxa, the mice have milder pathology without crypt exfoliation. The Duoxa triple knock mice still have rampant crypt epithelium apoptosis. Several antioxidants and NOX inhibitors reduce gut inflammation in the DKO mice. DKO mice are an excellent animal model for preclinical testing of NOX inhibitors.
Collapse
Affiliation(s)
- Fong-Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA.
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - James H Doroshow
- Center for Cancer Research and Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Helmut Grasberger
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnes Donko
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Thomas L Leto
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Wu Y, Meitzler JL, Antony S, Juhasz A, Lu J, Jiang G, Liu H, Hollingshead M, Haines DC, Butcher D, Panter MS, Roy K, Doroshow JH. Dual oxidase 2 and pancreatic adenocarcinoma: IFN-γ-mediated dual oxidase 2 overexpression results in H2O2-induced, ERK-associated up-regulation of HIF-1α and VEGF-A. Oncotarget 2016; 7:68412-68433. [PMID: 27637085 PMCID: PMC5340089 DOI: 10.18632/oncotarget.12032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Several NADPH oxidase family members, including dual oxidase 2 [DUOX2], are expressed in human tumors, particularly gastrointestinal cancers associated with long-standing chronic inflammation. We found previously that exposure of pancreatic ductal adenocarcinoma cells to the pro-inflammatory cytokine IFN-γ increased DUOX2 expression (but not other NADPH oxidases) leading to long-lived H2O2 production. To elucidate the pathophysiology of DUOX2-mediated H2O2 formation in the pancreas further, we demonstrate here that IFN-γ-treated BxPC-3 and CFPAC-1 pancreatic cancer cells (known to increase DUOX2 expression) produce significant levels of intracellular oxidants and extracellular H2O2 which correlate with concomitant up-regulation of VEGF-A and HIF-1α transcription. These changes are not observed in the PANC-1 line that does not increase DUOX2 expression following IFN-γ treatment. DUOX2 knockdown with short interfering RNA significantly decreased IFN-γ-induced VEGF-A or HIF-1α up-regulation, as did treatment of pancreatic cancer cells with the NADPH oxidase inhibitor diphenylene iodonium, the multifunctional reduced thiol N-acetylcysteine, and the polyethylene glycol-modified form of the hydrogen peroxide detoxifying enzyme catalase. Increased DUOX2-related VEGF-A expression appears to result from reactive oxygen-mediated activation of ERK signaling that is responsible for AP-1-related transcriptional effects on the VEGF-A promoter. To clarify the relevance of these observations in vivo, we demonstrate that many human pre-malignant pancreatic intraepithelial neoplasms and frank pancreatic cancers express substantial levels of DUOX protein compared to histologically normal pancreatic tissues, and that expression of both DUOX2 and VEGF-A mRNAs is significantly increased in surgically-resected pancreatic cancers compared to the adjacent normal pancreas.
Collapse
Affiliation(s)
- Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Smitha Antony
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michaela S. Panter
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James H. Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Montalvo-Javé EE, Olguín-Martínez M, Hernández-Espinosa DR, Sánchez-Sevilla L, Mendieta-Condado E, Contreras-Zentella ML, Oñate-Ocaña LF, Escalante-Tatersfield T, Echegaray-Donde A, Ruiz-Molina JM, Herrera MF, Morán J, Hernández-Muñoz R. Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma. Eur J Cancer 2016; 57:50-7. [DOI: 10.1016/j.ejca.2015.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022]
|
27
|
Derochette S, Serteyn D, Mouithys-Mickalad A, Ceusters J, Deby-Dupont G, Neven P, Franck T. EquiNox2: A new method to measure NADPH oxidase activity and to study effect of inhibitors and their interactions with the enzyme. Talanta 2015; 144:1252-9. [DOI: 10.1016/j.talanta.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
28
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
29
|
Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014; 20:2741-54. [PMID: 24070014 PMCID: PMC4026400 DOI: 10.1089/ars.2013.5620] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
30
|
Sánchez-Sánchez B, Gutiérrez-Herrero S, López-Ruano G, Prieto-Bermejo R, Romo-González M, Llanillo M, Pandiella A, Guerrero C, Miguel JFS, Sánchez-Guijo F, Del Cañizo C, Hernández-Hernández A. NADPH oxidases as therapeutic targets in chronic myelogenous leukemia. Clin Cancer Res 2014; 20:4014-25. [PMID: 24833663 DOI: 10.1158/1078-0432.ccr-13-3044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer cells show higher levels of reactive oxygen species (ROS) than normal cells and increasing intracellular ROS levels are becoming a recognized strategy against tumor cells. Thus, diminishing ROS levels could be also detrimental to cancer cells. We surmise that avoiding ROS generation would be a better option than quenching ROS with antioxidants. Chronic myelogenous leukemia (CML) is triggered by the expression of BCR-ABL kinase, whose activity leads to increased ROS production, partly through NADPH oxidases. Here, we assessed NADPH oxidases as therapeutic targets in CML. EXPERIMENTAL DESIGN We have analyzed the effect of different NADPH oxidase inhibitors, either alone or in combination with BCR-ABL inhibitors, in CML cells and in two different animal models for CML. RESULTS NADPH oxidase inhibition dramatically impaired the proliferation and viability of BCR-ABL-expressing cells due to the attenuation of BCR-ABL signaling and a pronounced cell-cycle arrest. Moreover, the combination of NADPH oxidase inhibitors with BCR-ABL inhibitors was highly synergistic. Two different animal models underscore the effectiveness of NADPH oxidase inhibitors and their combination with BCR-ABL inhibitors for CML targeting in vivo. CONCLUSION Our results offer further therapeutic opportunities for CML, by targeting NADPH oxidases. In the future, it would be worthwhile conducting further experiments to ascertain the feasibility of translating such therapies to clinical practice.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sánchez
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Sara Gutiérrez-Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL); CIC, Centro de Investigación del Cáncer, CSIC; and
| | - Guillermo López-Ruano
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Marta Romo-González
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Marcial Llanillo
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Atanasio Pandiella
- Instituto de Investigación Biomédica de Salamanca (IBSAL); CIC, Centro de Investigación del Cáncer, CSIC; and
| | - Carmen Guerrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL); CIC, Centro de Investigación del Cáncer, CSIC; and
| | - Jesús F San Miguel
- Instituto de Investigación Biomédica de Salamanca (IBSAL); Hospital Universitario de Salamanca, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Instituto de Investigación Biomédica de Salamanca (IBSAL); Hospital Universitario de Salamanca, Salamanca, Spain
| | - Consuelo Del Cañizo
- Instituto de Investigación Biomédica de Salamanca (IBSAL); Hospital Universitario de Salamanca, Salamanca, Spain
| | - Angel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL);
| |
Collapse
|
31
|
Massart C, Giusti N, Beauwens R, Dumont JE, Miot F, Sande JV. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter. FEBS Open Bio 2013; 4:55-9. [PMID: 24371722 PMCID: PMC3871273 DOI: 10.1016/j.fob.2013.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/07/2013] [Accepted: 11/28/2013] [Indexed: 01/22/2023] Open
Abstract
NADPH oxidases (NOXes) and dual oxidases (DUOXes) generate O2 (.-) and H2O2. Diphenyleneiodonium (DPI) inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog (99m)TcO4 (-) nor of the K(+) cation mimic (86)Rb(+) in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.
Collapse
Affiliation(s)
- C Massart
- IRIBHM, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| | - N Giusti
- IRIBHM, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| | - R Beauwens
- Laboratory of Physiology, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| | - J E Dumont
- IRIBHM, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| | - F Miot
- IRIBHM, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| | - J Van Sande
- IRIBHM, School of Medicine, ULB, Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Belgium
| |
Collapse
|
32
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|