1
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
2
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Lazarin-Bidóia D, Garcia FP, Ueda-Nakamura T, Silva SDO, Nakamura CV. Natural compounds based chemotherapeutic against Chagas disease and leishmaniasis: mitochondrion as a strategic target. Mem Inst Oswaldo Cruz 2022; 117:e220396. [PMID: 35352776 PMCID: PMC8970591 DOI: 10.1590/0074-02760220396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Francielle Pelegrin Garcia
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Tânia Ueda-Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Sueli de Oliveira Silva
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Universidade Estadual de Maringá, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Maringá, PR, Brasil
| |
Collapse
|
4
|
In Vitro Nematocidal Effect and Anthelmintic Activity of Artemisia cina Against Haemonchus contortus in Gerbils and Relative Expression of Hc29 Gene in Transitional Larvae (L 3-L 4). Acta Parasitol 2021; 66:938-946. [PMID: 33721186 DOI: 10.1007/s11686-021-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE (1) To assess the in vitro activity of Artemisia cina against Haemonchus contortus L3 (HcL3) and in transitional (L3-L4) larvae (HcTrL3-L4); (2) to quantify the relative expression of the Hc29 gene in HcTrL3-L4 exposed to the A. cina n-hexane extract; and (3) to assess the anthelmintic activity (AA) of the A. cina organic extracts in gerbils artificially infected with H. contortus (HcArt/inf/gerbs). METHODS The in vitro assay was carried out in 96-well microtitration plates. The following A. cina extracts: ethyl acetate (Ac-EtOAcEx), n-hexane (Ac-n-HexEx), and methanol (Ac-MethEx) were assessed at 1 and 2 mg/mL against HcL3 and HcTrL3-L4 at 24 h exposure. Relative expression of the Hc29 gene in HcTrL3-L4 was obtained by RT-PCR. For assessing the AA, six groups of five HcArt/inf/gerbs were used. Groups were treated orally with 4 mg/kg BW of A. cina extracts. Five days after treatment, the gerbils were necropsied and nematodes counted. RESULTS The highest in vitro activities (75 and 82.6%) were shown by Ac-n-HexEx at 1 and 2 mg/mL, respectively. For HcTrL3-L4 the highest in vitro activities (69 and 23%) were shown by Ac-n-HexEx and isoguaiacine at 0.625 mg/mL, respectively. Also, upregulation of H. contortus Hc29 gene by 13- and 80-fold (p < 0.01) was observed on the HcTrL3-L4 stage after exposure to Ac-n-HexEx extract and isoguaiacine at 0.078 mg/mL, respectively. Reduction percentage was 100% in HcArt/inf/gerbs treated with Ac-n-HexEx. CONCLUSIONS We conclude that the Ac-n-HexEx and isoguaiacine compound had anthelmintic efficacy against H. contortus and L3 and HcTrL3-L4.
Collapse
|
5
|
Salgado F, Moncada-Basualto M, Pozo-Martinez J, Liempi A, Kemmerling U, Maya JD, Jaque P, Borges F, Uriarte E, Matos MJ, Olea-Azar C. Chemical and biological analysis of 4-acyloxy-3-nitrocoumarins as trypanocidal agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
6
|
Rodríguez-Hernández KD, Martínez I, Reyes-Chilpa R, Espinoza B. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations. Bioorg Chem 2020; 100:103894. [DOI: 10.1016/j.bioorg.2020.103894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
7
|
Ribeiro V, Dias N, Paiva T, Hagström-Bex L, Nitz N, Pratesi R, Hecht M. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020; 12:7-17. [PMID: 31862616 PMCID: PMC6928327 DOI: 10.1016/j.ijpddr.2019.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease (CD) is a tropical neglected illness, affecting mainly populations of low socioeconomic status in Latin America. An estimated 6 to 8 million people worldwide are infected with Trypanosoma cruzi, the etiological agent of CD. Despite being one of the main global health problems, this disease continues without effective treatment during the chronic phase of the infection. The limitation of therapeutic strategies has been one of the biggest challenges on the fight against CD. Nifurtimox and benznidazole, developed in the 1970s, are still the only commercial options with established efficacy on CD. However, the efficacy of these drugs have a proven efficacy only during early infection and the benefits in the chronic phase are questionable. Consequently, there is a growing need for new pharmacological alternatives, either by optimization of existing drugs or by the formulation of new compounds. In the present study, a literature review of the currently adopted therapy, its concomitant combination with other drugs, and potential future treatments for CD was performed, considering articles published from 2012. The revised articles were selected according to the protocol of treatment: evaluation of drug association, drug repositioning and research of new drugs. As a result of the present revision, it was possible to conclude that the use of benznidazole in combination with other compounds showed better results when compared with its use as a single therapy. The search of new drugs has been the strategy most used in pursuing more effective forms of treatment for CD. However, studies have still focused on basic research, that is, they are still in a pre-clinical stage, using methodologies based on in vitro or in animal studies.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Taís Paiva
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
8
|
Antinarelli LMR, Meinel RS, Coelho EAF, da Silva AD, Coimbra ES. Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct Leishmania species by multitarget action in the parasites. ACTA ACUST UNITED AC 2019; 71:1854-1863. [PMID: 31595530 DOI: 10.1111/jphp.13177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The in vitro antileishmanial effect of analogues of resveratrol (AR) present in the N-aryl imines and N-aryl hydrazones series was investigated. In addition, possible parasite targets were evaluated. METHODS Antipromastigote activity of Leishmania amazonensis, L. braziliensis and L. infantum, as well as the cytotoxicity on macrophages was determined by MTT assay and L. braziliensis-infected macrophages effect by Giemsa stain. After staining, effects on the parasite targets were analysed by flow cytometry or by fluorescence microscopy. KEY-FINDINGS Among the tested compounds, the derivative AR26 showed the best effect against promastigotes of all Leishmania species (IC50 < 3.0 µg/ml), being more active than miltefosine, the control drug. AR26 was also effective against amastigotes of L. braziliensis (IC50 = 15.9 µg/ml), with low toxicity to mammalian cells. The evaluation of mechanism of action of AR26 on L. braziliensis promastigotes indicates mitochondrial potential depolarization, plasma membrane permeabilization, interference in the progression of the cell cycle and accumulation of autophagic vacuoles. In addition, any increase of the reactive oxygen species levels was detected in the treated L. braziliensis-macrophages. CONCLUSIONS Data indicate that the antileishmanial activity of AR26 is related to multitarget action, and the resveratrol analogues could be used in future studies as antileishmanial agent.
Collapse
Affiliation(s)
- Luciana Maria Ribeiro Antinarelli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Raissa Soares Meinel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
9
|
Morais TR, Costa-Silva TA, Ferreira DD, Novais BJ, Torrecilhas ACT, Tempone AG, Lago JHG. Antitrypanosomal activity and effect in plasma membrane permeability of (−)-bornyl p-coumarate isolated from Piper cernuum (Piperaceae). Bioorg Chem 2019; 89:103001. [DOI: 10.1016/j.bioorg.2019.103001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023]
|
10
|
Rodríguez-Hernández KD, Martínez I, Agredano-Moreno LT, Jiménez-García LF, Reyes-Chilpa R, Espinoza B. Coumarins isolated from Calophyllum brasiliense produce ultrastructural alterations and affect in vitro infectivity of Trypanosoma cruzi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152827. [PMID: 31039535 DOI: 10.1016/j.phymed.2019.152827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The current drugs for Chagas Disease caused by the protozoan Trypanosoma cruzi have limited therapeutic potential and are associated with serious side effects. Natural products can aid to develop new chemotherapeutic agents. Several natural coumarins, especially Mammea A/BA, have shown significant activity against T. cruzi and low toxicity on human lymphocytes, but its effectivity on a wide range of strains need to be tested, as well as to deepen in their mode of action and safety. HYPOTHESIS/PURPOSE To discern the effects and explore the action mechanisms of mammea A/BA and a mixture of mammea coumarins isolated from Calophyllum brasiliense on Mexican strains of T. cruzi belonging to different genotypes and compare its effectivity with the drug benznidazole. STUDY DESIGN We evaluated the trypanocidal activity in vitro of mammea A/BA (93.6%), and a mixture of coumarins, mammea A/BA + A/BB + A/BD (86:10:1%) on Mexican T. cruzi strains belonging to different genotypes Ninoa, Querétaro (TcI) and Ver6 (TcVI). MATERIAL AND METHODS Mammea A/BA and the mixture of coumarins, were isolated from Calophyllum brasiliense, identified by proton NMR and purity determined by HPLC. The in vitro trypanocidal activity was evaluated on mobility, growth recovery, morphology and infectivity of T. cruzi. The cytotoxicity on mammalian cells was compared with benznidazole. The ultrastructure of the treated epimastigotes was analyzed by transmission electron microscopy (TEM). RESULTS Mammea A/BA and the mixture of coumarins showed high trypanocidal activity, affecting the mobility, growth recovery, morphology, ultrastructure of epimastigotes, and drastically reduce trypomastigotes infectivity on Vero cells. These substances were four times more potent than benznidazole and showed low cytotoxicity and high selectivity index. The TEM showed severe alterations on the plasmatic membrane, nuclear envelope, as well as, mitochondrial swelling, that leads to the death of parasites. CONCLUSION Mammea A/BA (93.6%) and a mixture of mammea A/BA + A/BB and A/BD (86: 10: 1%) isolated from the tropical tree C. brasiliense showed higher trypanocidal activity than the current drug benznidazole on three Mexican strains of T. cruzi. These compounds induced severe physiological and morphological alterations. These results suggest their possible use in preclinical studies.
Collapse
Affiliation(s)
- Karla Daniela Rodríguez-Hernández
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Ignacio Martínez
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Ricardo Reyes-Chilpa
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico.
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico.
| |
Collapse
|
11
|
Tavares GS, Mendonça DV, Lage DP, Antinarelli LM, Soyer TG, Senna AJ, Matos GF, Dias DS, Ribeiro PA, Batista JP, Poletto JM, Brandão GC, Chávez-Fumagalli MA, Pereira GR, Coimbra ES, Coelho EA. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Acta Trop 2019; 191:29-37. [PMID: 30586571 DOI: 10.1016/j.actatropica.2018.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
New therapeutics against leishmaniasis are desirable, since the current drugs applied against this disease complex presents problems, such as the toxicity, high cost and/or parasite resistance. In the present study, a new fluoroquinoline derivate, namely 7-chloro-N-(4-fluorophenethyl)quinolin-4-amine or GF1061, was evaluated regarding to its in vitro antileishmanial action against Leishmania infantum and L. amazonensis species, as well as by its toxicity in mammalian cells and efficacy in the treatment of infected macrophages. The mechanism of action of this molecule in L. amazonensis and the therapeutic efficacy in infected BALB/c mice were also evaluated. Results showed that GF1061 was effective against both parasite species, showing selectivity index (SI) of 38.7 and 42.7 against L. infantum and L. amazonensis promastigotes, respectively, and of 45.0 and 48.9 against the amastigotes, respectively. Amphotericin B (AmpB), used as control, showed SI values of 6.6 and 8.8 against L. infantum and L. amazonensis promastigotes, respectively, and of 2.2 and 2.7 against the amastigotes, respectively. The molecule was effective in treat infected macrophages, as well as it induced alterations in the mitochondrial membrane potential, increase in the reactive oxygen species production, and in the cell integrity of the parasites. Regarding to the in vivo experiments, BALB/c mice (n = 8 per group) were subcutaneously infected with 106L. amazonensis stationary promastigotes and, 60 days post-infection, they received saline or were treated during 10 days, once a day, with AmpB (1 mg/kg body weight) or GF1061 (5 mg/kg body weight). One day after the treatment, the infected tissue, spleen, liver, and draining lymph node (dLN) of the animals were collected, and the parasite load was evaluated. GF1061-treated mice, as compared to the saline and AmpB groups, showed significant reductions in the parasitism in the infected tissue (66% and 62%, respectively), liver (69% and 44%, respectively), spleen (71% and 38%, respectively), and dLN (72% and 48%, respectively). In conclusion, results suggested that GF1061 may be considered as a possible therapeutic target to be evaluated against leishmaniasis in other mammalian hosts.
Collapse
|
12
|
Ramu D, Jain R, Kumar RR, Sharma V, Garg S, Ayana R, Luthra T, Yadav P, Sen S, Singh S. Design and synthesis of imidazolidinone derivatives as potent anti‐leishmanial agents by bioisosterism. Arch Pharm (Weinheim) 2019; 352:e1800290. [DOI: 10.1002/ardp.201800290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Ravi Jain
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Ravi R. Kumar
- Department of Bioscience and BiotechnologyBanasthali Vidyapeeth UniversityVanasthaliIndia
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Veena Sharma
- Department of Bioscience and BiotechnologyBanasthali Vidyapeeth UniversityVanasthaliIndia
| | - Swati Garg
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Rajagopal Ayana
- Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Tania Luthra
- Department of Chemistry, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Preeti Yadav
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Subhabrata Sen
- Department of Chemistry, School of Natural SciencesShiv Nadar UniversityGreater NoidaIndia
| | - Shailja Singh
- Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
13
|
Martinez-Sotillo N, Pinto-Martínez A, Hejchman E, Benaim G. Antiproliferative effect of a benzofuran derivate based on the structure of amiodarone on Leishmania donovani affecting mitochondria, acidocalcisomes and intracellular Ca 2+ homeostasis. Parasitol Int 2019; 70:112-117. [PMID: 30794871 DOI: 10.1016/j.parint.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is a parasitic disease representing an important problem of public health. Visceral leishmaniasis, resulting from infection with Leishmania donovani, causes considerable mortality and morbidity in the poorest region of the word. At present there is no current effective treatment, since the approved, drugs are expensive and are not free of undesirable side effects. Therefore, there is a need for the identification of new drugs. In this context, the parasite Ca2+ regulatory mechanisms in which mitochondria and acidocalcisomes are involved have been postulated as important targets for several trypanocidal drugs. Thus, amiodarone and dronedarone, common human antiarrythmics, exert its known action on these parasites through the disruption of the intracellular Ca2+ homeostasis. AMIODER is a benzofuran derivate based on the structure of amiodarone that recently demonstrates a significant effect on Trypanosoma cruzi. We now report the effect of AMIODER on Leishmania donovani demonstrating that it inhibit the growth of promastigotes and also of amastigotes inside macrophages, the clinically relevant stage of the parasite, obtaining IC50 values significantly lower than those reported for T. cruzi. We also show that this compound disrupted Ca2+ homeostasis in L. donovani, through its action on two organelles involved in the intracellular Ca2+ regulation and on the bioenergetics of the parasite. AMIODER totally collapsed the electrochemical membrane potential of the unique giant mitochondrion and simultaneously induced the alkalinization of acidocalcisomes, driving together to a large increase in the intracellular Ca2+ concentration of the parasite as the main mechanism of action of this benzofurane derivative.
Collapse
Affiliation(s)
- Nathalia Martinez-Sotillo
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Elżbieta Hejchman
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
14
|
Sereia AL, de Oliveira MT, Baranoski A, Marques LLM, Ribeiro FM, Isolani RG, de Medeiros DC, Chierrito D, Lazarin-Bidóia D, Zielinski AAF, Novello CR, Nakamura CV, Mantovani MS, de Mello JCP. In vitro evaluation of the protective effects of plant extracts against amyloid-beta peptide-induced toxicity in human neuroblastoma SH-SY5Y cells. PLoS One 2019; 14:e0212089. [PMID: 30763379 PMCID: PMC6375598 DOI: 10.1371/journal.pone.0212089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has no cure. Therapeutic strategies focusing on the reduction of oxidative stress, modulation of amyloid-beta (Aβ) toxicity and inhibition of tau protein hyperphosphorylation are warranted to avoid the development and progression of AD. The aim of this study was to screen the crude extracts (CEs) and ethyl-acetate fractions (EAFs) of Guazuma ulmifolia, Limonium brasiliense, Paullinia cupana, Poincianella pluviosa, Stryphnodendron adstringens and Trichilia catigua using preliminary in vitro bioassays (acetylcholinesterase inhibition, antioxidant activity and total polyphenol content) to select extracts/fractions and assess their protective effects against Aβ25-35 toxicity in SH-SY5Y cells. The effect of the EAF of S. adstringens on mitochondrial membrane potential, lipid peroxidation, superoxide production and mRNA expression of 10 genes related to AD was also evaluated and the electropherogram fingerprints of EAFs were established by capillary electrophoresis. Chemometric tools were used to correlate the in vitro activities of the samples with their potential to be evaluated against AD and to divide extracts/fractions into four clusters. Pretreatment with the EAFs grouped in cluster 1 (S. adstringens, P. pluviosa and L. brasiliense) protected SH-SY5Y cells from Aβ25-35-induced toxicity. The EAF of S. adstringens at 15.62 μg/mL was able completely to inhibit the mitochondrial depolarization (69%), superoxide production (49%) and Aβ25-35-induced lipid peroxidation (35%). With respect to mRNA expression, the EAF of S. adstringens also prevented the MAPT mRNA overexpression (expression ratio of 2.387x) induced by Aβ25-35, which may be related to tau protein hyperphosphorylation. This is the first time that the neuroprotective effects of these fractions have been demonstrated and that the electropherogram fingerprints for the EAFs of G. ulmifolia, L. brasiliense, P. cupana, P. pluviosa and S. adstringens have been established. The study expands knowledge of the in vitro protective effects and quality control of the evaluated fractions.
Collapse
Affiliation(s)
- Ana Luiza Sereia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marcelo Tempesta de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Adrivanio Baranoski
- Programa de Pós-Graduação em Genética e Biologia Molecular, Department of General Biology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Leila Larisa Medeiros Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fabianne Martins Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Raquel Garcia Isolani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Daniela Cristina de Medeiros
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Danielly Chierrito
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudio Roberto Novello
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Programa de Pós-Graduação em Genética e Biologia Molecular, Department of General Biology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - João Carlos Palazzo de Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
15
|
The antidepressant clomipramine induces programmed cell death in Leishmania amazonensis through a mitochondrial pathway. Parasitol Res 2019; 118:977-989. [DOI: 10.1007/s00436-018-06200-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
16
|
Pinto-Martinez A, Hernández-Rodríguez V, Rodríguez-Durán J, Hejchman E, Benaim G. Anti-Trypanosoma cruzi action of a new benzofuran derivative based on amiodarone structure. Exp Parasitol 2018; 189:8-15. [PMID: 29684665 DOI: 10.1016/j.exppara.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/16/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
Chagas disease is a neglected tropical affection caused by the protozoan parasite Trypanosoma cruzi. There is no current effective treatment since the only two available drugs have a limited efficacy and produce side effects. Thus, investigation efforts have been directed to the identification of new drug leads. In this context, Ca2+ regulating mechanisms have been postulated as targets for antiparasitic compounds, since they present paramount differences when compared to host cells. Amiodarone is an antiarrhythmic with demonstrated trypanocidal activity acting through the disruption of the parasite intracellular Ca2+ homeostasis. We now report the effect of a benzofuran derivative based on the structure of amiodarone on T. cruzi. This derivative was able to inhibit the growth of epimastigotes in culture and of amastigotes inside infected cells, the clinically relevant phase. We also show that this compound, similarly to amiodarone, disrupts Ca2+ homeostasis in T. cruzi epimastigotes, via two organelles involved in the intracellular Ca2+ regulation and the bioenergetics of the parasite. We demonstrate that the benzofuran derivative was able to totally collapse the membrane potential of the unique giant mitochondrion of the parasite and simultaneously produced the alkalinization of the acidocalcisomes. Both effects are evidenced by a large increase in the intracellular Ca2+ concentration of T. cruzi.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Hejchman
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
17
|
Garcia FP, Henrique da Silva Rodrigues J, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Auzély-Velty R, Nakamura CV. A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis 2018; 22:57-71. [PMID: 27761752 DOI: 10.1007/s10495-016-1308-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people worldwide. Current therapies mainly rely on antimonial drugs that are inadequate because of their high toxicity and increased drug resistance. An urgent need exists to discover new, more effective, more affordable, and more target-specific drugs. Pathways that are associated with apoptosis-like cell death have been identified in unicellular eukaryotes, including protozoan parasites. In the present study, we studied the mechanism of cell death that is induced by A3K2A3 against L. amazonensis. A3K2A3 is a dibenzylideneacetone that has an acyclic dienone that is attached to aryl groups in both β-positions, which is similar to curcuminoids and chalcone structures. This compound was previously shown to be safe with regard to cytotoxicity and active against the parasite. Biochemical and morphological approaches were used in the present study. The results suggested that A3K2A3 caused mitochondrial dysfunction in L. amazonensis promastigotes, leading to mechanisms of cell death that share some common phenotypic features with metazoan apoptosis, such as an increase in reactive oxygen species production, a decrease in the adenosine triphosphate ratio, phosphatidylserine exposure, a decrease in cell volume, caspase production, and DNA fragmentation. Altogether, these findings indicate that apoptosis can indeed be triggered by chemotherapeutic agents.
Collapse
Affiliation(s)
- Francielle Pelegrin Garcia
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Jean Henrique da Silva Rodrigues
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP, 13.565-905, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP, 13.565-905, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | | | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil.
| |
Collapse
|
18
|
Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology 2018; 145:1251-1259. [DOI: 10.1017/s0031182018000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.
Collapse
|
19
|
Acyclic Sesquiterpenes from the Fruit Pericarp of Sapindus saponaria Induce Ultrastructural Alterations and Cell Death in Leishmania amazonensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5620693. [PMID: 28904555 PMCID: PMC5585602 DOI: 10.1155/2017/5620693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Previous studies reported antiprotozoal activities of Sapindus saponaria L. The aim of this work was the evaluation of antileishmanial activity and mechanism of action of extract and fractions of S. saponaria L. Hydroethanolic extract (EHA) obtained from fruit pericarps was fractionated using solid-phase extraction in a reversed phase, resulting in fractions enriched with saponins (SAP fraction) and acyclic sesquiterpene oligoglycosides (OGSA fraction). The activities of EHA, SAP, and OGSA were evaluated by antiproliferative assays with promastigote and intracellular amastigote forms. Cytotoxicity on macrophages and hemolytic activity were also analyzed. Morphological and ultrastructural changes in Leishmania amazonensis promastigotes were evaluated by electron microscopy. Flow cytometry was used to investigate mitochondrial dysfunction and phosphatidylserine exposure. OGSA was more selective for parasites than mammalian J774A1 macrophage cells, with selectivity indices of 3.79 and 7.35, respectively. Our results showed that only the OGSA fraction did not present hemolytic activity at its IC50 for promastigote growth. Electron microscopy revealed changes in parasite flagellum, cell body shape, and organelle size, mainly mitochondria. Flow cytometry analysis indicated mitochondrial membrane and cell membrane dysfunction. OGSA showed antileishmanial activity, resulting in several changes to protozoa cells, including mitochondrial depolarization and early phosphatidylserine exposure, suggesting a possible apoptotic induction.
Collapse
|
20
|
Miranda N, Volpato H, da Silva Rodrigues JH, Caetano W, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:342-354. [PMID: 28821011 DOI: 10.1016/j.jphotobiol.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψm], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψm, and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically relevant form of this parasite.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Hélito Volpato
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Jean Henrique da Silva Rodrigues
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
21
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Meneguello JE, Seixas FAV, Lopes-Ortiz MA, Scodro RBL, Pires CTA, da Silva RZ, Siqueira VLD, Nakamura CV, Cardoso RF. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets. Future Microbiol 2017; 12:867-879. [DOI: 10.2217/fmb-2017-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Paula AZ Campanerut-Sá
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Flávio AV Seixas
- Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Mariana A Lopes-Ortiz
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Claudia TA Pires
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosi Z da Silva
- State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Vera LD Siqueira
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
22
|
Alexandre TR, Lima ML, Galuppo MK, Mesquita JT, do Nascimento MA, Dos Santos AL, Sartorelli P, Pimenta DC, Tempone AG. Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria. J Venom Anim Toxins Incl Trop Dis 2017; 23:30. [PMID: 28572816 PMCID: PMC5450401 DOI: 10.1186/s40409-017-0120-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background Major drawbacks of the available treatment against Chagas disease (American trypanosomiasis) include its toxicity and therapeutic inefficiency in the chronic phase of the infection, which makes it a concern among neglected diseases. Therefore, the discovery of alternative drugs for treating chronic Chagas disease requires immediate action. In this work, we evaluated the mushroom Pleurotus salmoneostramineus in the search for potential antiparasitic compounds. Methods Fruit bodies of the basidiomycete Pleurotus salmoneostramineus were triturated and submitted to organic solvent extraction. After liquid-liquid partition of the crude extract, three fractions were obtained and the bioguided fractionation study was conducted to isolate the active metabolites. The elucidation of the chemical structure was performed using GC-MS and NMR techniques. The biological assays for antiparasitic activity were carried out using trypomastigotes of Trypanosoma cruzi and murine macrophages for mammalian cytotoxicity. The mechanism of action of the isolated compound used different fluorescent probes to evaluate the plasma membrane permeability, the potential of the mitochondrial membrane and the intracellular levels of reactive oxygen species (ROS). Results The most abundant fraction showing the antiparasitic activity was isolated and chemically elucidated, confirming the presence of ergosterol. It showed anti-Trypanosoma cruzi activity against trypomastigotes, with an IC50 value of 51.3 μg/mL. The compound demonstrated no cytotoxicity against mammalian cells to the maximal tested concentration of 200 μg/mL. The mechanism of action of ergosterol in Trypanosoma cruzi trypomastigotes resulted in permeabilization of the plasma membrane, as well as depolarization of mitochondrial membrane potential, leading to parasite death. Nevertheless, no increase in ROS levels could be observed, suggesting damages to plasma membrane rather than an induction of oxidative stress in the parasite. Conclusions The selection of naturally antiparasitic secondary metabolites in basidiomycetes, such as ergosterol, may provide potential scaffolds for drug design studies against neglected diseases. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0120-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatiana Rodrigues Alexandre
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil
| | - Marta Lopes Lima
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil.,Institute of Tropical Medicine of São Paulo, University of São Paulo (USP), São Paulo, SP Brazil
| | - Mariana Kolos Galuppo
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil
| | - Juliana Tonini Mesquita
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil
| | - Matilia Ana do Nascimento
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil
| | - Augusto Leonardo Dos Santos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo (UNIFESP), Diadema, SP Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo (UNIFESP), Diadema, SP Brazil
| | | | - Andre Gustavo Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8° andar, CEP 01246-000, São Paulo, SP Brazil
| |
Collapse
|
23
|
Novel Therapeutic Targets for Human African Trypanosomiasis. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Pérez-Morales D, Hernández KDR, Martínez I, Agredano-Moreno LT, Jiménez-García LF, Espinoza B. Ultrastructural and physiological changes induced by different stress conditions on the human parasite Trypanosoma cruzi. Cell Stress Chaperones 2017; 22:15-27. [PMID: 27714535 PMCID: PMC5225055 DOI: 10.1007/s12192-016-0736-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease. The life cycle of this protozoan parasite is digenetic because it alternates its different developmental forms through two hosts, a vector insect and a vertebrate host. As a result, the parasites are exposed to sudden and drastic environmental changes causing cellular stress. The stress response to some types of stress has been studied in T. cruzi, mainly at the molecular level; however, data about ultrastructure and physiological state of the cells in stress conditions are scarce or null. In this work, we analyzed the morphological, ultrastructural, and physiological changes produced on T. cruzi epimastigotes when they were exposed to acid, nutritional, heat, and oxidative stress. Clear morphological changes were observed, but the physiological conditions varied depending on the type of stress. The maintenance of the physiological state was severely affected by heat shock, acidic, nutritional, and oxidative stress. According to the surprising observed growth recovery after damage by stress alterations, different adaptations from the parasite to these harsh conditions were suggested. Particular cellular death pathways are discussed.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, Ciudad de México, México
| | - Karla Daniela Rodríguez Hernández
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, Ciudad de México, México
| | - Ignacio Martínez
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, Ciudad de México, México
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, México, D.F., México
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, México, D.F., México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
25
|
Ramu D, Garg S, Ayana R, Keerthana AK, Sharma V, Saini CP, Sen S, Pati S, Singh S. Novel β-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem Pharmacol 2016; 129:26-42. [PMID: 28017772 DOI: 10.1016/j.bcp.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor β-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of β-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - A K Keerthana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Vijeta Sharma
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - C P Saini
- Department of Physics, School of Natural Sciences, Shiv Nadar University, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
26
|
C5 induces different cell death pathways in promastigotes of Leishmania amazonensis. Chem Biol Interact 2016; 256:16-24. [DOI: 10.1016/j.cbi.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
|
27
|
Martins SC, Lazarin-Bidóia D, Desoti VC, Falzirolli H, da Silva CC, Ueda-Nakamura T, Silva SDO, Nakamura CV. 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect 2016; 18:787-797. [PMID: 27484335 DOI: 10.1016/j.micinf.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
This work evaluated the in vitro and in vivo activity of TDZ 2 on Trypanosoma cruzi amastigotes and determined the possible mechanism of action of this compound on T. cruzi death. TDZ 2 inhibited T. cruzi proliferation in vitro and had low haemolytic potential. It also induced morphological and ultrastructural alterations. We observed a reduction of cell volume, the depolarization of the mitochondrial membrane, an increase in ROS production, lipoperoxidation of the cell membrane, lipid bodies formation and production of nitric oxide, a decrease in reduced thiols levels and, presence of autophagic vacuoles. The in vivo study found a reduction of parasitemia in animals treated with TDZ 2 alone or combined with benznidazole. Altogether, the alterations induced by TDZ 2 point to an oxidative stress condition that lead to T. cruzi cell death.
Collapse
Affiliation(s)
- Solange C Martins
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Vânia C Desoti
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Hugo Falzirolli
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Cleuza C da Silva
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Sueli de O Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
28
|
de Silva Rodrigues JH, Stein J, Strauss M, Rivarola HW, Ueda-Nakamura T, Nakamura CV, Duszenko M. Clomipramine kills Trypanosoma brucei by apoptosis. Int J Med Microbiol 2016; 306:196-205. [DOI: 10.1016/j.ijmm.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
|
29
|
In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis. Antimicrob Agents Chemother 2016; 60:3433-44. [PMID: 27001812 DOI: 10.1128/aac.02582-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.
Collapse
|
30
|
Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV, de Oliveira Silva S. Dibenzylideneacetones Are Potent Trypanocidal Compounds That Affect the Trypanosoma cruzi Redox System. Antimicrob Agents Chemother 2016; 60:890-903. [PMID: 26596953 PMCID: PMC4750705 DOI: 10.1128/aac.01360-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
Despite ongoing efforts, the available treatments for Chagas' disease are still unsatisfactory, especially in the chronic phase of the disease. Our previous study reported the strong trypanocidal activity of the dibenzylideneacetones A3K2A1 and A3K2A3 against Trypanosoma cruzi (Z. Ud Din, T. P. Fill, F. F. de Assis, D. Lazarin-Bidóia, V. Kaplum, F. P. Garcia, C. V. Nakamura, K. T. de Oliveira, and E. Rodrigues-Filho, Bioorg Med Chem 22:1121-1127, 2014, http://dx.doi.org/10.1016/j.bmc.2013.12.020). In the present study, we investigated the mechanisms of action of these compounds that are involved in parasite death. We showed that A3K2A1 and A3K2A3 induced oxidative stress in the three parasitic forms, especially trypomastigotes, reflected by an increase in oxidant species production and depletion of the endogenous antioxidant system. This oxidative imbalance culminated in damage in essential cell structures of T. cruzi, reflected by lipid peroxidation and DNA fragmentation. Consequently, A3K2A1 and A3K2A3 induced vital alterations in T. cruzi, leading to parasite death through the three pathways, apoptosis, autophagy, and necrosis.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Solange Cardoso Martins
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
31
|
Cristina Desoti V, Lazarin-Bidóia D, Martins Ribeiro F, Cardoso Martins S, da Silva Rodrigues JH, Ueda-Nakamura T, Vataru Nakamura C, Farias Ximenes V, de Oliveira Silva S. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process. PLoS One 2015; 10:e0144033. [PMID: 26641473 PMCID: PMC4671608 DOI: 10.1371/journal.pone.0144033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.
Collapse
Affiliation(s)
- Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Solange Cardoso Martins
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Jean Henrique da Silva Rodrigues
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Tania Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Valdecir Farias Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP, Brasil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- * E-mail:
| |
Collapse
|
32
|
Volpato H, Desoti VC, Valdez RH, Ueda-Nakamura T, Silva SDO, Sarragiotto MH, Nakamura CV. Mitochondrial Dysfunction Induced by N-Butyl-1-(4-Dimethylamino)Phenyl-1,2,3,4-Tetrahydro-β-Carboline-3-Carboxamide Is Required for Cell Death of Trypanosoma cruzi. PLoS One 2015; 10:e0130652. [PMID: 26086449 PMCID: PMC4472351 DOI: 10.1371/journal.pone.0130652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chagas' disease is caused by the protozoan Trypanosoma cruzi and affects thousands of people worldwide. The available treatments are unsatisfactory, and new drugs must be developed. Our group recently reported the trypanocidal activity of the synthetic compound N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide (C4), but the mechanism of action of this compound was unclear. METHODOLOGY/PRINCIPAL FINDINGS We investigated the mechanism of action of C4 against epimastigote and trypomastigote forms of T. cruzi. The results showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species, phosphatidylserine exposure, a reduction of cell volume, DNA fragmentation, and the formation of lipid inclusions. CONCLUSION/SIGNIFICANCE These finding suggest that mitochondria are a target of C4, the dysfunction of which can lead to different pathways of cell death.
Collapse
Affiliation(s)
- Hélito Volpato
- Programa de Pós-Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | | | - Tânia Ueda-Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | | | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
33
|
Longato GB, Fiorito GF, Vendramini-Costa DB, de Oliveira Sousa IM, Tinti SV, Ruiz ALTG, de Almeida SMV, Padilha RJR, Foglio MA, de Carvalho JE. Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786-0 tumor cell lines. Toxicol In Vitro 2015; 29:1026-33. [PMID: 25882683 DOI: 10.1016/j.tiv.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022]
Abstract
Natural products remain an important source of new drugs, including anticancer drugs. Recently, our group reported the anticancer activity of eupomatenoid-5 (eup-5), a neolignan isolated from Piper regnellii (Miq.) C. DC. var. regnellii leaves. In vitro studies demonstrated that MCF-7 (breast) and 786-0 (kidney) were among the cancer cell lines most sensitive to eup-5 treatment. The current results demonstrate that mitochondrial membrane depolarization and generation of reactive oxygen species are implicated in eup-5-mediated cytotoxic effects on these cancer cells lines. In MCF-7 cells, eup-5 led to phosphatidylserine externalization and caspase activation, whereas the same did not occur in 786-0 cells. Scanning electron microscopy revealed a reduction of microvilli density, as well as cell morphology alterations. Moreover, treated MCF-7 cells exhibited well-characterized apoptosis alterations, while treated 786-0 cells exhibited characteristics of programmed necroptosis process. These findings support the possibility that different mechanisms may be targeted by eup-5 in cell death response.
Collapse
Affiliation(s)
- Giovanna Barbarini Longato
- Programa de Pós-graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil; Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil.
| | - Giovanna Francisco Fiorito
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Débora Barbosa Vendramini-Costa
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | | | - Sirlene Valério Tinti
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Ana Lúcia Tasca Gois Ruiz
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Universidade de Pernambuco (UPE), Garanhuns 55290-000, PE, Brazil
| | - Rafael José Ribeiro Padilha
- Laboratório de Imunopatologia Keizo Asami (LIKA) e Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Mary Ann Foglio
- Divisão de Fitoquímica, CPQBA, UNICAMP, Campinas 13083-970, SP, Brazil
| | - João Ernesto de Carvalho
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas 13083-970, SP, Brazil; Faculdade de Ciências Farmacêuticas, UNICAMP, Campinas 13083-872, SP, Brazil
| |
Collapse
|
34
|
Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol 2014; 14:236. [PMID: 25253283 PMCID: PMC4188478 DOI: 10.1186/s12866-014-0236-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of leishmaniasis with pentavalent antimonials is problematic because of their toxicity. Investigations of potentially active molecules are important to discover less toxic drugs that are viable economic alternatives for the treatment of leishmaniasis. Thiosemicarbazones are a group of molecules that are known for their wide versatility and biological activity. In the present study, we examined the antileishmania activity, mechanism of action, and biochemical alterations produced by a novel molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-limonene against Leishmania amazonensis. Results BZTS inhibited the growth of the promastigote and axenic amastigote forms, with an IC50 of 3.8 and 8.0 μM, respectively. Intracellular amastigotes were inhibited by the compound with an IC50 of 7.7 μM. BZTS also had a CC50 of 88.8 μM for the macrophage strain J774A1. BZTS altered the shape, size, and ultrastructure of the parasites, including damage to mitochondria, reflected by extensive swelling and disorganization of the inner mitochondrial membrane, intense cytoplasmic vacuolization, and the presence of concentric membrane structures inside the organelle. Cytoplasmic lipid bodies, vesicles inside vacuoles in the flagellar pocket, and enlargement were also observed. BZTS did not induce alterations in the plasma membrane or increase annexin-V fluorescence intensity, indicating no phosphatidylserine exposure. However, it induced the production of mitochondrial superoxide anion radicals. Conclusions The present results indicate that BZTS induced dramatic effects on the ultrastructure of L. amazonensis, which might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0236-0) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Inacio JDF, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE. The effect of (-)-epigallocatechin 3-O--gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Negl Trop Dis 2014; 8:e3093. [PMID: 25144225 PMCID: PMC4140776 DOI: 10.1371/journal.pntd.0003093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease associated with extensive mortality and morbidity. The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. Natural compounds have been used as novel treatments for parasitic diseases. In this paper, we evaluated the effect of (-)-epigallocatechin 3-O-gallate (EGCG) on Leishmania braziliensis in vitro and in vivo and described the mechanism of EGCG action against L. braziliensis promastigotes and intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDING In vitro activity and reactive oxygen species (ROS) measurements were determined during the promastigote and intracellular amastigote life stages. The effect of EGCG on mitochondrial membrane potential (ΔΨm) was assayed using JC-1, and intracellular ATP concentrations were measured using a luciferin-luciferase system. The in vivo experiments were performed in infected BALB/c mice orally treated with EGCG. EGCG reduced promastigote viability and the infection index in a time- and dose-dependent manner, with IC50 values of 278.8 µM and 3.4 µM, respectively, at 72 h and a selectivity index of 149.5. In addition, EGCG induced ROS production in the promastigote and intracellular amastigote, and the effects were reversed by polyethylene glycol (PEG)-catalase. Additionally, EGCG reduced ΔΨm, thereby decreasing intracellular ATP concentrations in promastigotes. Furthermore, EGCG treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. CONCLUSIONS/SIGNIFICANCE In conclusion, our study demonstrates the leishmanicidal effects of EGCG against the two forms of L. braziliensis, the promastigote and amastigote. In addition, EGCG promotes ROS production as a part of its mechanism of action, resulting in decreased ΔΨm and reduced intracellular ATP concentrations. These actions ultimately culminate in parasite death. Furthermore, our data suggest that EGCG is orally effective in the treatment of L. braziliensis-infected BALB/c mice without altering serological toxicity markers.
Collapse
Affiliation(s)
- Job D. F. Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilene M. Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
36
|
Eupomatenoid-5 Isolated from Leaves of Piper regnellii Induces Apoptosis in Leishmania amazonensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:940531. [PMID: 23573160 PMCID: PMC3618946 DOI: 10.1155/2013/940531] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Leishmania spp. are protozoa responsible for leishmaniasis, a neglected disease that kills up to 50,000 people every year. Current therapies mainly rely on antimonial drugs that are inadequate because of their poor efficacy and safety and increased drug resistance. An urgent need exists to find new and more affordable drugs. Our previous study demonstrated the antileishmanial activity of eupomatenoid-5, a neolignan obtained from leaves of Piper regnellii var. pallescens. The aim of the present study was to clarify the mode of action of eupomatenoid-5 against L. amazonensis. We used biochemical and morphological techniques and demonstrated that eupomatenoid-5 induced cell death in L. amazonensis promastigotes, sharing some phenotypic features observed in metazoan apoptosis, including increased reactive oxygen species production, hypopolarization of mitochondrial potential, phosphatidylserine exposure, decreased cell volume, and G0/G1 phase cell cycle arrest.
Collapse
|