1
|
Shanmugam S, Patel D, Rodriguez AL, Walchale A, Liu X, Bergeson SE, Mahimainathan L, Narasimhan M, Henderson GI. Ethanol inhibition of undifferentiated rat neural progenitor cell replication can be prevented by chlorogenic acid via the NFATc4/CSE signaling pathway. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1530-1543. [PMID: 37364904 DOI: 10.1111/acer.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Prenatal ethanol exposure hinders oxidative stress-mediated neuroblast/neural progenitor cell proliferation by inhibiting G1-S transition, a process vital to neocortical development. We previously showed that ethanol elicits this redox imbalance by repressing cystathionine γ-lyase (CSE), the rate-limiting enzyme in the transsulfuration pathway in fetal brain and cultured cerebral cortical neurons. However, the mechanism by which ethanol impacts the CSE pathway in proliferating neuroblasts is not known. We conducted experiments to define the effects of ethanol on CSE regulation and the molecular signaling events that control this vital pathway. This enabled us to develop an intervention to prevent the ethanol-associated cytostasis. METHODS Spontaneously immortalized undifferentiated E18 rat neuroblasts from brain cerebral cortex were exposed to ethanol to mimic an acute consumption pattern in humans. We performed loss- and gain-of-function studies to evaluate whether NFATc4 is a transcriptional regulator of CSE. The neuroprotective effects of chlorogenic acid (CGA) against the effects of ethanol were assessed using ROS and GSH/GSSG assays as measures of oxidative stress, transcriptional activation of NFATc4, and expression of NFATc4 and CSE by qRT-PCR and immunoblotting. RESULTS Ethanol treatment of E18-neuroblast cells elicited oxidative stress and significantly reduced CSE expression with a concomitant decrease in NFATc4 transcriptional activation and expression. In parallel, inhibition of the calcineurin/NFAT pathway by FK506 exaggerated ethanol-induced CSE loss. In contrast, NFATc4 overexpression prevented loss of ethanol-induced CSE. CGA increased and activated NFATc4, amplified CSE expression, rescued ethanol-induced oxidative stress, and averted the cytostasis of neuroblasts by rescuing cyclin D1 expression. CONCLUSIONS These findings demonstrate that ethanol can perturb CSE-dependent redox homeostasis by impairing the NFATc4 signaling pathway in neuroblasts. Notably, ethanol-associated impairments were rescued by genetic or pharmacological activation of NFATc4. Furthermore, we found a potential role for CGA in mitigating the ethanol-related neuroblast toxicity with a compelling connection to the NFATc4/CSE pathway.
Collapse
Affiliation(s)
| | - Dhyanesh Patel
- Department of Pharmacology and Neuroscience, TTUHSC, Lubbock, Texas, USA
| | | | - Aashlesha Walchale
- Department of Pharmacology and Neuroscience, TTUHSC, Lubbock, Texas, USA
| | - Xiaobo Liu
- Department of Pharmacology and Neuroscience, TTUHSC, Lubbock, Texas, USA
| | - Susan E Bergeson
- Department of Cell Biology and Biochemistry, TTUHSC, Lubbock, Texas, USA
| | - Lenin Mahimainathan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - George I Henderson
- Department of Pharmacology and Neuroscience, TTUHSC, Lubbock, Texas, USA
| |
Collapse
|
2
|
Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, Eberting AL, Hansen JM. Real-time analysis of dynamic compartmentalized GSH redox shifts and H 2O 2 availability in undifferentiated and differentiated cells. Biochim Biophys Acta Gen Subj 2023; 1867:130321. [PMID: 36870547 DOI: 10.1016/j.bbagen.2023.130321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 μM) in both differentiated and undifferentiated cells. RESULTS Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.
Collapse
Affiliation(s)
- Brandon M Davies
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jenna K Katayama
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua E Monsivais
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - James R Adams
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Miriam E Dilts
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Arielle L Eberting
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Ahmed AR, Ahmed M, Vun-Sang S, Iqbal M. Is Glyceryl Trinitrate, a Nitric Oxide Donor Responsible for Ameliorating the Chemical-Induced Tissue Injury In Vivo? Molecules 2022; 27:molecules27144362. [PMID: 35889233 PMCID: PMC9318303 DOI: 10.3390/molecules27144362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress induced by well-known toxins including ferric nitrilotriacetate (Fe-NTA), carbon tetrachloride (CCl4) and thioacetamide (TAA) has been attributed to causing tissue injury in the liver and kidney. In this study, the effect of glyceryl trinitrate (GTN), a donor of nitric oxide and NG-nitroarginine methyl ester (l-NAME), a nitric oxide inhibitor on TAA-induced hepatic oxidative stress, GSH and GSH-dependent enzymes, serum transaminases and tumor promotion markers such as ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats were examined. The animals were divided into seven groups consisting of six healthy rats per group. The six rats were injected intraperitoneally with TAA to evaluate its toxic effect, improvement in its toxic effect if any, or worsening in its toxic effect if any, when given in combination with GTN or l-NAME. The single necrogenic dose of TAA administration caused a significant change in the levels of both hepatic and serum enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), γ-glutamyl transpeptidase (GGT), glucose 6-phosphate dehydrogenase (G6PD), alanine aminotransferase (AST) and aspartate aminotransferase (ALT). In addition, treatment with TAA also augmented malondialdehyde (MDA), ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats liver. Concomitantly, TAA treatment depleted the levels of GSH. However, most of these changes were alleviated by the treatment of animals with GTN dose-dependently. The protective effect of GTN against TAA was also confirmed histopathologically. The present data confirmed our earlier findings with other oxidants including Fe-NTA and CCl4. The GTN showed no change whatsoever when administered alone, however when it was given along with TAA then it showed protection thereby contributing towards defending the role against oxidants-induced organ toxicity. Overall, GTN may contribute to protection against TAA-induced oxidative stress, toxicity, and proliferative response in the liver, according to our findings.
Collapse
Affiliation(s)
- Ayesha Rahman Ahmed
- Department of Medical Elementology and Toxicology, Faculty of Science, Hamdard University, New Delhi 110062, India;
| | - Mahiba Ahmed
- Voiland School of Chemical Engineering and Bioengineering, Pullman, WA 99164, USA;
| | - Senty Vun-Sang
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammad Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: or
| |
Collapse
|
4
|
Lapehn S, Piorczynski TB, Hansen JM, Harris C. Spatiotemporal evaluation of the mouse embryonic redox environment and histiotrophic nutrition following treatment with valproic acid and 1,2-dithiole-3-thione during early organogenesis. Reprod Toxicol 2021; 101:81-92. [PMID: 33713778 PMCID: PMC8110175 DOI: 10.1016/j.reprotox.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Redox regulation during metazoan development ensures that coordinated metabolic reprogramming and developmental signaling are orchestrated with high fidelity in the hypoxic embryonic environment. Valproic acid (VPA), an anti-seizure medication, is known to increase markers of oxidation and also increase the risk of neural tube defects (NTDs) when taken during pregnancy. It is unknown, however, whether oxidation plays a direct role in failed neural tube closure (NTC). Spatial and temporal fluctuations in total glutathione (GSH) and total cysteine (Cys) redox steady states were seen during a 24 h period of CD-1 mouse organogenesis in untreated conceptuses and following exposure to VPA and the Nrf2 antioxidant pathway inducer, 1,2-dithiole-3-thione (D3T). Glutathione, glutathione disulfide (GSSG), and Cys, cystine (CySS) concentrations, measured in conceptal tissues (embryo/visceral yolk sac) and fluids (yolk sac fluid/amniotic fluid) showed that VPA did not cause extensive and prolonged oxidation during the period of NTC, but instead produced transient periods of oxidation, as assessed by GSH:GSSG redox potentials, which revealed oxidation in all four conceptal compartments at 4, 10, and 14 h, corresponding to the period of heartbeat activation and NTC. Other changes were tissue and time specific. VPA treatment also reduced total FITC-Ab clearance from the medium over 3 h, indicating potential disruption of nutritive amino acid supply. Overall, these results indicated that VPA's ability to affect cellular redox status may be limited to tissue-specific windows of sensitivity during the period of NTC. The safety evaluation of drugs used during pregnancy should consider time and tissue specific redox factors.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
5
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Rastogi A, Clark CW, Conlin SM, Brown SE, Timme-Laragy AR. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol 2019; 26:101235. [PMID: 31202080 PMCID: PMC6581987 DOI: 10.1016/j.redox.2019.101235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 μM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 μM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 μM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 μM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 μM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Christopher W Clark
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah E Brown
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Harris C. Rat Whole Embryo Culture. Methods Mol Biol 2019; 1965:195-217. [PMID: 31069677 DOI: 10.1007/978-1-4939-9182-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The direct effects of chemical exposures, environmental extremes, and nutrient quality/quantity have been very difficult to study in mammalian embryos due to their anatomical inaccessibility, paucity of tissue, and other factors that make human studies unethical. Many acute and chronic developmental anomalies can trace their origins to postimplantation phases of gestation, where the organs are first being established and growth and differentiation are in highly active states of flux. Most chemical insults and conditions that produce birth defects are believed to act during this period of organogenesis. The evolution of rodent whole embryo culture (WEC) techniques has provided a valuable experimental model where physiological conditions and exposures can be carefully controlled and manipulated to test hypotheses and explore biochemical and molecular mechanisms of action that would otherwise be extremely difficult. Exposure to chemicals can be controlled through their direct addition to the culture medium. Optimal in vitro culture conditions support the growth of intact, viable conceptuses (embryo and associated extraembryonic membranes) from early egg cylinder stages through the establishment of the neural plate, gastrulation, neural tube closure, onset of active heartbeat and circulation, and the initial formation of all major organ systems that occur prior to the establishment of a functional placenta. Detailed comparisons of in vivo and in vitro growth show that conceptuses grown in WEC are nearly identical, structurally and functionally, to conceptuses of the same developmental stage that are allowed to develop normally in utero during a comparable developmental period. Culture conditions and mechanical apparatuses can be modified to suit a large number of different experimental approaches and paradigms.
Collapse
Affiliation(s)
- Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Abstract
The chicken embryo is a versatile and effective model for studying the effects of teratogenic compounds during early development. Easy access to the embryo allows for exposure and analysis of toxicant effects during embryogenesis. This chapter will provide detailed protocols for embryonic collection and toxicant exposure techniques, including EC culture and Cornish Pasty methods, LysoTracker staining, glutathione redox potential analysis, and 2',7'-dichlorodihydrofluorescein diacetate.
Collapse
|
9
|
Veltman K, Harris C, Ahmad Y, Jolliet O. A mechanistic model for thiol redox dynamics in the organogenesis stage rat conceptus. Reprod Toxicol 2018; 82:38-49. [PMID: 30292673 PMCID: PMC9999374 DOI: 10.1016/j.reprotox.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022]
Abstract
Precise control of the glutathione/glutathione disulfide (GSH/GSSG) redox balance is vital for the developing embryo, but regulatory mechanisms are poorly understood. We developed a novel, mechanistic mass-balance model for GSH metabolism in the organogenesis stage (gestational day 10.0-11.13) rat conceptus predicting the dynamics of 8 unique metabolites in 3 conceptal compartments: the visceral yolk sac (VYS), the extra-embryonic fluid (EEF) and the embryo proper (EMB). Our results show that thiol concentrations in all compartments are well predicted by the model. Protein synthesis is predicted to be a major efflux pathway for all amino acid precursors of GSH synthesis and an essential model element. Our model provides quantitative insights in the transport fluxes and enzymatic fluxes needed to maintain thiol redox balances under normal physiological conditions. This is crucial to further elucidate the mechanisms through which chemical exposure can perturb redox homeostasis, causing oxidative stress, and potentially birth defects.
Collapse
Affiliation(s)
- K Veltman
- Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - C Harris
- Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Y Ahmad
- Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - O Jolliet
- Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
10
|
Patel D, Rathinam M, Jarvis C, Mahimainathan L, Henderson G, Narasimhan M. Role for Cystathionine γ Lyase (CSE) in an Ethanol (E)-Induced Lesion in Fetal Brain GSH Homeostasis. Int J Mol Sci 2018; 19:ijms19051537. [PMID: 29786653 PMCID: PMC5983808 DOI: 10.3390/ijms19051537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/19/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023] Open
Abstract
Earlier, we reported that gestational ethanol (E) can dysregulate neuron glutathione (GSH) homeostasis partially via impairing the EAAC1-mediated inward transport of Cysteine (Cys) and this can affect fetal brain development. In this study, we investigated if there is a role for the transulfuration pathway (TSP), a critical bio-synthetic point to supply Cys in E-induced dysregulation of GSH homeostasis. These studies utilized an in utero E binge model where the pregnant Sprague⁻Dawley (SD) rat dams received five doses of E at 3.5 g/kg by gastric intubation beginning embryonic day (ED) 17 until ED19 separated by 12 h. The postnatal day 7 (PN7) alcohol model employed an oral dosing of 4 g/kg body weight split into 2 feedings at 2 h interval and an iso-caloric and iso-volumic equivalent maltose-dextrin milk solution served as controls. The in vitro model consisted of cerebral cortical neuron cultures from embryonic day (ED) 16⁻17 fetus from SD rats and differentiated neurons from ED18 rat cerebral cortical neuroblasts. E concentrations were 4 mg/mL. E induced an accumulation of cystathionine in primary cortical neurons (PCNs), 2nd trimester equivalent in utero binge, and 3rd trimester equivalent PN7 model suggesting that breakdown of cystathionine, a required process for Cys supply is impaired. This was associated with a significant reduction in cystathionine γ-lyase (CSE) protein expression in PCN (p < 0.05) and in fetal cerebral cortex in utero (53%, p < 0.05) without a change in the expression of cystathionine β-synthase (CBS). Concomitantly, E decreased Cse mRNA expression in PCNs (by 32% within 6 h of exposure, p < 0.05) and in fetal brain (33%, p < 0.05). In parallel, knock down of CSE in differentiated rat cortical neuroblasts exaggerated the E-induced ROS, GSH loss with a pronounced caspase-3 activation and cell death. These studies illustrate the importance of TSP in CSE-related maintenance of GSH and the downstream events via Cys synthesis in neurons and fetal brain.
Collapse
Affiliation(s)
- Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Marylatha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Courtney Jarvis
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - George Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Sant KE, Sinno PP, Jacobs HM, Timme-Laragy AR. Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:92-102. [PMID: 29524743 PMCID: PMC6077977 DOI: 10.1016/j.aquatox.2018.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 05/07/2023]
Abstract
The glutathione redox system undergoes precise and dynamic changes during embryonic development, protecting against and mitigating oxidative insults. The antioxidant response is coordinately largely by the transcription factor Nuclear factor erythroid-2 (Nrf2), an endogenous sensor for cellular oxidative stress. We have previously demonstrated that impaired Nrf family signaling disrupts the glutathione redox system in the zebrafish embryo, and that impaired Nrf2 function increases embryonic sensitivity to environmental toxicants. Here, we investigated the persistent environmental toxicant and reported pro-oxidant perfluorooctanesulfonic acid (PFOS), and its impact on the embryonic glutathione-mediated redox environment. We further examined whether impaired Nrf2a function exacerbates PFOS-induced oxidative stress and embryotoxicity in the zebrafish, and the potential for Nrf2-PPAR crosstalk in the embryonic adaptive response. Wild-type and nrf2afh318-/- mutant embryos were exposed daily to 0 (0.01% v/v DMSO), 16, 32, or 64 μM PFOS beginning at 3 h post fertilization (hpf). Embryonic glutathione and cysteine redox environments were examined at 72 hpf. Gross embryonic toxicity, antioxidant gene expression, and apoptosis were examined at 96 hpf. Mortality, pericardial edema, and yolk sac utilization were increased in wild-type embryos exposed to PFOS. Embryonic glutathione and cysteine redox couples and gene expression of Nrf2 pathway targets were modulated by both exposure and genotype. Apoptosis was increased in PFOS-exposed wild-type embryos, though not in nrf2a mutants. In silico examination of putative transcription factor binding site suggested potential crosstalk between Nrf2 and PPAR signaling, since expression of PPARs and gene targets was modulated by both PFOS exposure and Nrf2a genotype. Overall, this work demonstrates that nrf2a modulates the embryonic response to PFOS, and that PPAR signaling may play a role in the embryonic adaptive response to PFOS.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Paul P Sinno
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haydee M Jacobs
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
12
|
Patel D, Mahimainathan L, Narasimhan M, Rathinam M, Henderson G. Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport. Int J Mol Sci 2017; 18:ijms18122596. [PMID: 29206135 PMCID: PMC5751199 DOI: 10.3390/ijms18122596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
Central among the fetotoxic responses to in utero ethanol (E) exposure is redox-shift related glutathione (GSH) loss and apoptosis. Previously, we reported that despite an E-generated Nrf2 upregulation, fetal neurons still succumb. In this study, we investigate if the compromised GSH results from an impaired inward transport of cysteine (Cys), a precursor of GSH in association with dysregulated excitatory amino acid carrier1 (EAAC1), a cysteine transporter. In utero binge model involves administration of isocaloric dextrose or 20% E (3.5 g/kg)/ by gavage at 12 h intervals to pregnant Sprague Dawley (SD) rats, starting gestation day (gd) 17 with a final dose on gd19, 2 h prior to sacrifice. Primary cerebral cortical neurons (PCNs) from embryonic day 16–17 fetal SD rats were the in vitro model. E reduced both PCN and cerebral cortical GSH and Cys up to 50% and the abridged GSH could be blocked by administration of N-acetylcysteine. E reduced EAAC1 protein expression in utero and in PCNs (p < 0.05). This was accompanied by a 60–70% decrease in neuron surface expression of EAAC1 along with significant reductions of EAAC1/Slc1a1 mRNA (p < 0.05). In PCNs, EAAC1 knockdown significantly decreased GSH but not oxidized glutathione (GSSG) illustrating that while not the sole provider of Cys, EAAC1 plays an important role in neuron GSH homeostasis. These studies strongly support the concept that in both E exposed intact fetal brain and cultured PCNs a mechanism underlying E impairment of GSH homeostasis is reduction of import of external Cys which is mediated by perturbations of EAAC1 expression/function.
Collapse
Affiliation(s)
- Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Marylatha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - George Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
13
|
Veltman K, Ahmad Y, Harris C, Jolliet O. Characterizing thiol redox dynamics in the organogenesis stage rat embryo. Free Radic Biol Med 2017; 113:97-108. [PMID: 28916472 DOI: 10.1016/j.freeradbiomed.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 01/19/2023]
Abstract
Precise control of the glutathione (GSH): glutathione disulfide (GSSG) balance is vital for the developing embryo, but it is not yet well understood how GSH levels and the GSH redox state are regulated, maintained, and modulated over the course of mammalian embryonic development. In this study, we characterize and connect thiol redox dynamics, protein synthesis, volumetric growth and net cysteine fluxes over the course of early organogenesis (gestational day (GD) 10-GD11.13) in the rat embryo. Our results show that despite a significant exponential growth of conceptal volumes and protein mass, the GSH: GSSG redox balance is remarkably stable during early organogenesis, with distinct redox potentials for the visceral yolk sac (VYS) (- 218mV) and the embryo proper (EMB) (- 222mV). The yolk sac was found to play a key role in maintaining GSH levels and the GSH: GSSG redox balance in the developing embryo. Based on an overall cysteine (Cys) mass-balance, we show that until GD10.6, yolk sac supply of Cys, the rate-limiting precursor for GSH synthesis, is sufficient to sustain embryonic demands for its GSH synthesis and protein synthesis needs. After GD10.6, the EMB maintains the amino acid intake flux, resulting in a significant depletion of most thiols in the amniotic fluid and the yolk sac fluid. Cysteine, was found to be predominantly used for de novo protein synthesis in the developing embryo (approximately 90% of total Cys). Protein synthesis (rates) should thus be included in any quantitative assessment of GSH redox dynamics in the developing embryo. Our time-course dataset of thiol dynamics, developed exponential relationships for protein synthesis and volumetric growth, and yolk sac surface area-mediated protein influx, provide important quantitative insights in GSH redox dynamics during embryonic development and are a prerequisite to further develop quantitative 'systems biology' models for GSH metabolism in the developing embryo.
Collapse
Affiliation(s)
- K Veltman
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| | - Y Ahmad
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - C Harris
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - O Jolliet
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Sant KE, Hansen JM, Williams LM, Tran NL, Goldstone JV, Stegeman JJ, Hahn ME, Timme-Laragy A. The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. Redox Biol 2017; 13:207-218. [PMID: 28582729 PMCID: PMC5458767 DOI: 10.1016/j.redox.2017.05.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022] Open
Abstract
Redox signaling is important for embryogenesis, guiding pathways that govern processes crucial for embryo patterning, including cell polarization, proliferation, and apoptosis. Exposure to pro-oxidants during this period can be deleterious, resulting in altered physiology, teratogenesis, later-life diseases, or lethality. We previously reported that the glutathione antioxidant defense system becomes increasingly robust, including a doubling of total glutathione and dynamic shifts in the glutathione redox potential at specific stages during embryonic development in the zebrafish, Danio rerio. However, the mechanisms underlying these changes are unclear, as is the effectiveness of the glutathione system in ameliorating oxidative insults to the embryo at different stages. Here, we examine how the glutathione system responds to the model pro-oxidants tert-butylhydroperoxide and tert-butylhydroquinone at different developmental stages, and the role of Nuclear factor erythroid 2-related factor (Nrf) proteins in regulating developmental glutathione redox status. Embryos became increasingly sensitive to pro-oxidants after 72h post-fertilization (hpf), after which the duration of the recovery period for the glutathione redox potential was increased. To determine whether the doubling of glutathione or the dynamic changes in glutathione redox potential are mediated by zebrafish paralogs of Nrf transcription factors, morpholino oligonucleotides were used to knock down translation of Nrf1 and Nrf2 (nrf1a, nrf1b, nrf2a, nrf2b). Knockdown of Nrf1a or Nrf1b perturbed glutathione redox state until 72 hpf. Knockdown of Nrf2 paralogs also perturbed glutathione redox state but did not significantly affect the response of glutathione to pro-oxidants. Nrf1b morphants had decreased gene expression of glutathione synthesis enzymes, while hsp70 increased in Nrf2b morphants. This work demonstrates that despite having a more robust glutathione system, embryos become more sensitive to oxidative stress later in development, and that neither Nrf1 nor Nrf2 alone appear to be essential for the response and recovery of glutathione to oxidative insults.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jason M Hansen
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Larissa M Williams
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Biology Department, Bates College, Lewiston, ME 04240, USA
| | - Nancy L Tran
- Biology Department, Bates College, Lewiston, ME 04240, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Alicia Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
15
|
Booze ML, Hansen JM, Vitiello PF. A novel mouse model for the identification of thioredoxin-1 protein interactions. Free Radic Biol Med 2016; 99:533-543. [PMID: 27639450 PMCID: PMC5107173 DOI: 10.1016/j.freeradbiomed.2016.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
Thiol switches are important regulators of cellular signaling and are coordinated by several redox enzyme systems including thioredoxins, peroxiredoxins, and glutathione. Thioredoxin-1 (Trx1), in particular, is an important signaling molecule not only in response to redox perturbations, but also in cellular growth, regulation of gene expression, and apoptosis. The active site of this enzyme is a highly conserved C-G-P-C motif and the redox mechanism of Trx1 is rapid which presents a challenge in determining specific substrates. Numerous in vitro approaches have identified Trx1-dependent thiol switches; however, these findings may not be physiologically relevant and little is known about Trx1 interactions in vivo. In order to identify Trx1 targets in vivo, we generated a transgenic mouse with inducible expression of a mutant Trx1 transgene to stabilize intermolecular disulfides with protein substrates. Expression of the Trx1 "substrate trap" transgene did not interfere with endogenous thioredoxin or glutathione systems in brain, heart, lung, liver, and kidney. Following immunoprecipitation and proteomic analysis, we identified 41 homeostatic Trx1 interactions in perinatal lung, including previously described Trx1 substrates such as members of the peroxiredoxin family and collapsin response mediator protein 2. Using perinatal hyperoxia as a model of oxidative injury, we found 17 oxygen-induced interactions which included several cytoskeletal proteins which may be important to alveolar development. The data herein validates this novel mouse model for identification of tissue- and cell-specific Trx1-dependent pathways that regulate physiological signals in response to redox perturbations.
Collapse
Affiliation(s)
- Michelle L Booze
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Peter F Vitiello
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, The University of South Dakota, Sioux Falls, SD 57104, USA.
| |
Collapse
|
16
|
Sant KE, Dolinoy DC, Jilek JL, Sartor MA, Harris C. Mono-2-ethylhexyl phthalate disrupts neurulation and modifies the embryonic redox environment and gene expression. Reprod Toxicol 2016; 63:32-48. [PMID: 27167697 DOI: 10.1016/j.reprotox.2016.03.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Mono-2-ethylhexl phthalate (MEHP) is the primary metabolite of di-2-ethylhexyl phthalate (DEHP), a ubiquitous contaminant in plastics. This study sought to determine how structural defects caused by MEHP in mouse whole embryo culture were related to temporal and spatial patterns of redox state and gene expression. MEHP reduced morphology scores along with increased incidence of neural tube defects. Glutathione (GSH) and cysteine (Cys) concentrations fluctuated spatially and temporally in embryo (EMB) and visceral yolk sac (VYS) across the 24h culture. Redox potentials (Eh) for GSSG/GSH were increased by MEHP in EMB (12h) but not in VYS. CySS/CyS Eh in EMB and VYS were significantly increased at 3h and 24h, respectively. Gene expression at 6h showed that MEHP induced selective alterations in EMB and VYS for oxidative phosphorylation and energy metabolism pathways. Overall, MEHP affects neurulation, alters Eh, and spatially alters the expression of metabolic genes in the early organogenesis-stage mouse conceptus.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Joseph L Jilek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Maureen A Sartor
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Amino acid starvation induced by protease inhibition produces differential alterations in redox status and the thiol proteome in organogenesis-stage rat embryos and visceral yolk sacs. J Nutr Biochem 2015; 26:1589-98. [PMID: 26365578 DOI: 10.1016/j.jnutbio.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
The process of embryonic nutrition in rodent conceptuses during organogenesis has been shown to involve a dominant histiotrophic mechanism where essential developmental substrates and micronutrients are supplied as whole maternal proteins or cargoes associated with proteins. The histiotrophic nutrition pathways (HNP) responsible for uptake and initial processing of proteins across maternal-conceptal interfaces involve uptake via receptor mediated endocytosis and protein degradation via lysosomal proteolysis. Chemical inhibition of either process can lead to growth deficits and malformation in the embryo (EMB), but selective inhibition of either HNP component will elicit a different subset of developmental perturbations. In vitro, whole embryo culture exposure of GD10 or GD11 rat conceptuses to the natural protease inhibitor, leupeptin, leads to significant reductions in all measured embryonic growth parameters as well as a myriad of other effects. Leupeptin doses of 10 μM or 20 μM over a 26-h period (GD10-GD11) and 50 μM over a 3 h pulse period produced significant decreases in the clearance of FITC-albumin from culture media. The near complete loss of acid soluble fluorescence and increased total visceral yolk sac (VYS) protein content confirmed the selective inhibition of proteolysis. Inhibition of lysosomal proteolysis thus deprives the developing EMB of essential nutrient amino acids producing conditions akin to amino acid starvation, but may also cause direct effects on pathways critical for normal growth and differentiation. Following leupeptin exposure for 26 or 6 h, total glutathione (GSH) concentrations dropped significantly in the VYS, but only slightly in yolk sac (YSF) and amniotic (AF) fluids. Cys concentrations increased in VYS and EMB, but dropped in YSF and AF fluids. Redox potentials (Eh) for the glutathione disulfide (GSSG)/glutathione (GSH) redox couple trended significantly toward the positive, confirming the net oxidation of conceptual tissues following leupeptin treatment. Analysis of the thiol proteome showed few alterations to specific pathways mapped to the Kyoto Encyclopedia of Genes and Genomes Pathway database, but did reveal significant increases in concentrations of proteins associated with glycolysis/gluconeogenesis in the VYS and decreased concentrations proteins associated with ribosome biogenesis and function in the EMB. A subset of proteins elevated by >2-23-fold in the VYS were identified as serum (blood) proteins and represent the maternal-side proteins captured by the VYS and which are not degraded in the lysosomes as a result of leupeptin's inhibitory action. The observed constellation of proteins decreased in the EMB by leupeptin represent proteins from several adaptive pathways that are commonly altered in responses to amino acid starvation. These studies show clear differential responses to protease inhibition in VYS and EMB during organogenesis and suggest the possibility for additional roles of redox regulation, cellular adaptations and metabolic insufficiency caused by protease inhibition.
Collapse
|
18
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
19
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|
20
|
Larina IM, Ivanisenko VA, Nikolaev EN, Grigorev AI. The Proteome of a Healthy Human during Physical Activity under Extreme Conditions. Acta Naturae 2014; 6:66-75. [PMID: 25349715 PMCID: PMC4207561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The review examines the new approaches in modern systems biology, in terms of their use for a deeper understanding of the physiological adaptation of a healthy human in extreme environments. Human physiology under extreme conditions of life, or environmental physiology, and systems biology are natural partners. The similarities and differences between the object and methods in systems biology, the OMICs (proteomics, transcriptomics, metabolomics) disciplines, and other related sciences have been studied. The latest data on environmental human physiology obtained using systems biology methods are discussed. The independent achievements of systems biology in studying the adaptation of a healthy human to physical activity, including human presence at high altitude, to the effects of hypoxia and oxidative stress have been noted. A reasonable conclusion is drawn that the application of the methods and approaches used in systems biology to study the molecular pattern of the adaptive mechanisms that develop in the human body during space flight can provide valuable fundamental knowledge and fill the picture of human metabolic pathways.
Collapse
Affiliation(s)
- I. M. Larina
- SSC RF Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007, Moscow, Russia
| | - V. A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Akad. Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
| | - E. N. Nikolaev
- Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Str., 4, 119334, Moscow, Russia
| | - A. I. Grigorev
- SSC RF Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, 123007, Moscow, Russia
| |
Collapse
|
21
|
Go YM, Roede JR, Walker DI, Duong DM, Seyfried NT, Orr M, Liang Y, Pennell KD, Jones DP. Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics 2013; 12:3285-96. [PMID: 23946468 DOI: 10.1074/mcp.m113.030437] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|