1
|
Kweon HY, Song EJ, Jeong SJ, Lee S, Sonn SK, Seo S, Jin J, Kim S, Kim TK, Moon SH, Kim D, Park YM, Woo HA, Oh GT. Extracellular peroxiredoxin 5 exacerbates atherosclerosis via the TLR4/MyD88 pathway. Atherosclerosis 2025; 400:119052. [PMID: 39549462 DOI: 10.1016/j.atherosclerosis.2024.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUNGD AND AIMS Peroxiredoxin 5 (PRDX5), an atypical 2-Cys peroxiredoxin (PRDX), is known to regulate global oxidative stresses and inflammatory responses. Inflammation and oxidative stress are pivotal factors in the development of atherosclerosis, especially in the context of vascular endothelial dysfunction. However, effects of PRDX5 on atherosclerosis remain unclear. This study aimed to elucidate the role of PRDX5 in the pathogenesis of atherosclerosis. METHODS For in vivo analysis, normal chow diet 60-week old Apolipoprotein E knockout (ApoE-/-) and Prdx5-/-; ApoE-/- mice were used for the experiments. For in vitro analysis, human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized LDL (oxLDL; 50 ng/ml) for 24hrs, following serum starvation by incubation with serum-free Endothelial Cell Growth Medium-2 (EGM-2) for 1hr. RESULTS We observed elevated PRDX5 expression under atherosclerotic conditions in both humans and mice. Unexpectedly, Prdx5-/-; ApoE-/- mice exhibited reduced plaque formation, with no discernible difference in aortic hydrogen peroxide (H2O2) levels compared to ApoE-/- mice. Additionally, there was a notable decrease in macrophage accumulation and vascular inflammation in the atherosclerotic aorta of Prdx5-/-; ApoE-/-. In vitro, HUVECs stimulated with oxLDL showed upregulated PRDX5 expression in both lysate and culture medium. Moreover, PRDX5 knockdown in oxLDL-stimulated (oxLDL-siPRDX5) HUVECs significantly reduced the migration and adhesion of human monocytic cells (THP-1) to HUVECs, indicating diminished vascular immune responses. Mechanistically, both in vivo and in vitro, PRDX5 deficiency inhibited the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88) signaling pathway, resulting in reduced nuclear factor kappa B (NF-κB) and P38 phosphorylation. Furthermore, treatment with recombinant PRDX5 (rPRDX5) protein restored TLR4/MyD88 signaling in oxLDL-siPRDX5 HUVECs. CONCLUSIONS These data demonstrate that extracellular PRDX5 contributes to endothelial inflammation, promoting macrophage accumulation in the atherosclerotic aorta through activation of TLR4/MyD88/NF-κB and P38 signaling pathways, thereby exacerbating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Ju Song
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, United States
| | - SoonHo Lee
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungwoon Seo
- Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, United States
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Doyeon Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, 03760, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Cho E, Che X, Ang MJ, Cheon S, Lee J, Kim KS, Lee CH, Lee SY, Yang HY, Moon C, Park C, Choi JY, Lee TH. Peroxiredoxin 5 regulates osteogenic differentiation through interaction with hnRNPK during bone regeneration. eLife 2023; 12:80122. [PMID: 36735291 PMCID: PMC9897727 DOI: 10.7554/elife.80122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Mary Jasmin Ang
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los BañosLos BañosPhilippines
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea,Proteomics Core Facility, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Jinkyung Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Department of Molecular Medicine (BK21plus), Chonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Chang Hoon Lee
- Therapeutic & Biotechnology Division, Drug Discovery Platform Research Center, Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science InstituteOchangRepublic of Korea
| | - Hee-Young Yang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation FoundationDaeguRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| |
Collapse
|
3
|
Ma P, Zhou Y, Fang P, Ke W, Xiao S, Fang L. Molecular cloning, prokaryotic expression and the anti-inflammatory activity of porcine PRDX5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104515. [PMID: 35985565 DOI: 10.1016/j.dci.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Peroxiredoxin 5 (PRDX5) is the sole member of the atypical 2-Cys subfamily of mammalian PRDXs, a family of thiol-dependent peroxidases. In addition to its antioxidant effect, PRDX5 has been implicated in modulating the inflammatory response. In this study, the full-length cDNA encoding porcine PRDX5 (pPRDX5) was cloned. Subsequently, using porcine alveolar macrophages (PAMs), the target cells of PRRSV infection in vivo, we found that the recombinant pPRDX5 protein inhibited inflammatory responses induced by tumor necrosis factor alpha (TNF-α) or porcine reproductive and respiratory syndrome virus (PRRSV), a virus causing severe interstitial pneumonia in pigs. By contrast, knockdown of endogenous pPRDX5 with specific siRNA enhanced inflammatory responses induced by TNF-α or PRRSV. We also demonstrated that the involvement of pPRDX5 in inflammation regulation depended on its peroxidase activity. Taken together, these results showed that pPRDX5 is an anti-inflammatory molecule, which may play an important immune-regulation role in the pathogenicity of PRRSV.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
4
|
Macrophage polarization is involved in liver fibrosis induced by β 1-adrenoceptor autoantibody. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1100-1112. [PMID: 35983976 PMCID: PMC9828683 DOI: 10.3724/abbs.2022102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence suggests that liver injury can be induced by the over-expression of β 1-adrenergic receptors (β 1-ARs). High titers of autoantibodies specific to β 1-adrenergic receptors (β 1-AA) are detected in the sera of heart failure patients, potentially playing agonist-like roles. However, the role of β 1-AA in liver function has not been characterized. In this study, we collect the sera of primary biliary cholangitis (PBC) patients, a condition which easily develops into liver fibrosis, and analyze the relationship between PBC and β 1-AA. A passive immunization model is established to assess the effect of β 1-AA on the liver. Subsequently, the effect of β 1-AA on macrophages is investigated in vitro. Results show that PBC patients have a high titer and ratio of β 1-AA, compared to controls. Liver injury and fibrosis are induced by β 1-AA. In vitro experiments with ROS probe demonstrate that β 1-AA induces macrophages to produce ROS and secrete TNFα. These effects can be partially reversed by metoprolol, a blocker for β 1-AR. Results from the transwell and phagocytosis assays show that β 1-AA promotes macrophage migration and phagocytosis. FCM tests suggest that β 1-AA induces the alteration of M1 rather than M2 markers in macrophages. Finally, the Annexin V/PI assay indicates that macrophage culture supernatants stimulated by β 1-AA cause hepatocyte apoptosis. Overall, these results suggest that β 1-AA is involved in PBC. The β 1-AA-induced activation, phagocytosis and phenotypic modification of macrophages may play an important role in the development of hepatic fibrosis and injury.
Collapse
|
5
|
Chen J, Wei Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front Oncol 2022; 12:903800. [PMID: 35924148 PMCID: PMC9341216 DOI: 10.3389/fonc.2022.903800] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is one of the leading causes of mortality in females. Over the past decades, intensive efforts have been made to uncover the pathogenesis of breast cancer. Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity and acute stress. Moreover, a wide range of studies have identified the physiological and pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6 signaling pathway-targeted monoclonal antibodies have been developed for cancer and immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage drugs have demonstrated promising outcome in both preclinical and clinical trials. This review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated regulation of inflammation and immunity in cancer, especially in breast cancer.
Collapse
Affiliation(s)
- Juan Chen
- Department of Medicine and Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, Hong Kong SAR, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| |
Collapse
|
6
|
Kwon YJ, Seo EB, Kim SK, Noh KH, Lee H, Joung YW, Shin HM, Jang YA, Kim YM, Lee JT, Ye SK. Chamaecyparis obtusa (Siebold & Zucc.) Endl. leaf extracts prevent inflammatory responses via inhibition of the JAK/STAT axis in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114493. [PMID: 34364971 DOI: 10.1016/j.jep.2021.114493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) has been used as folk medicine in East Asia and has been reported to alleviate inflammatory diseases. However, the detailed mechanisms for the anti-inflammatory effects of C. obtusa remain unclear. AIM OF THE STUDY Although the anti-inflammatory mechanisms of natural products have been studied for decades, it is still important to identify the potential anti-inflammatory effects of natural sources. In this study, we investigated the anti-inflammatory effects and underlying mechanism of C. obtusa leaf extracts. MATERIAL &METHODS The cell viability was determined by MTT and crystal violet staining. NO production in the supernatant was measured using Griess reagent. The cell lysates were analyzed by immunoblotting and RT-qPCR. Secreted cytokines were analyzed using ELISA kit and cytokine array kit. mRNA expression from the GSE9632 database set. Z-scores were calculated for each gene and visualized by heat map. RESULTS Among the extracts of C. obtusa obtained with different extraction methods, the 99% ethanol leaf extract (CO99EL) strongly inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and Janus kinase/signaling transducer and activator of transcription (JAK/STAT) phosphorylation in RAW264.7 cells. In addition, CO99EL strongly inhibited LPS-induced interleukin (IL)-1β, IL-6, IL-27, and C-C motif chemokine ligand (CCL)-1 production and directly inhibited LPS-induced JAK/STAT phosphorylation in RAW264.7 cells. CONCLUSIONS These findings demonstrate that CO99EL significantly prevents LPS-induced macrophage activation by inhibiting the JAK/STAT axis. Therefore, we suggest the use of C. obtusa extracts as therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Kum Hee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Yeo-Won Joung
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan, 38578, South Korea.
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea.
| | - Young-Ah Jang
- Convergence Research Center for Smart Healthcare of KS R & DB Foundation, Kyungsung University, Busan, 48434, South Korea.
| | - Yu Mi Kim
- Binotec Co., Ltd, Daegu, 42149, South Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, South Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
7
|
Park J, Lee EG, Yi HJ, Kim NH, Rhee SG, Woo HA. Ablation of Peroxiredoxin V Exacerbates Ischemia/Reperfusion-Induced Kidney Injury in Mice. Antioxidants (Basel) 2020; 9:antiox9080769. [PMID: 32824836 PMCID: PMC7464645 DOI: 10.3390/antiox9080769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) is one of the major causes of acute kidney injury (AKI) and associated with increased mortality and progression to chronic kidney injury (CKI). Molecular mechanisms underlying I/R injury involve the production and excessive accumulation of reactive oxygen species (ROS). Peroxiredoxin (Prx) V, a cysteine-dependent peroxidase, is located in the cytosol, mitochondria, and peroxisome and has an intensive ROS scavenging activity. Therefore, we focused on the role of Prx V during I/R-induced AKI using Prx V knockout (KO) mice. Ablation of Prx V augmented tubular damage, apoptosis, and declined renal function. Prx V deletion also showed higher susceptibility to I/R injury with increased markers for oxidative stress, ER stress, and inflammation in the kidney. Overall, these results demonstrate that Prx V protects the kidneys against I/R-induced injury.
Collapse
Affiliation(s)
- Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Eun Gyeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Ho Jin Yi
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul 120-750, Korea;
| | - Nam Hee Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea;
- Biochemistryand Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4654
| |
Collapse
|
8
|
Suttisuwan R, Phunpruch S, Saisavoey T, Sangtanoo P, Thongchul N, Karnchanatat A. Isolation and characterization of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein (Synechococcussp. VDW). FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rutairat Suttisuwan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok Thailand
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification. Mol Cell Biochem 2019; 461:91-102. [PMID: 31375973 PMCID: PMC6790197 DOI: 10.1007/s11010-019-03593-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/20/2019] [Indexed: 01/18/2023]
Abstract
Peroxiredoxins (Prdxs) are antioxidant enzymes that catalyse the breakdown of peroxides and regulate redox activity in the cell. Peroxiredoxin 5 (Prdx5) is a unique member of Prdxs, which displays a wider subcellular distribution and substrate specificity and exhibits a different catalytic mechanism when compared to other members of the family. Here, the role of a key metabolic integrator coenzyme A (CoA) in modulating the activity of Prdx5 was investigated. We report for the first time a novel mode of Prdx5 regulation mediated via covalent and reversible attachment of CoA (CoAlation) in cellular response to oxidative and metabolic stress. The site of CoAlation in endogenous Prdx5 was mapped by mass spectrometry to peroxidatic cysteine 48. By employing an in vitro CoAlation assay, we showed that Prdx5 peroxidase activity is inhibited by covalent interaction with CoA in a dithiothreitol-sensitive manner. Collectively, these results reveal that human Prdx5 is a substrate for CoAlation in vitro and in vivo, and provide new insight into metabolic control of redox status in mammalian cells.
Collapse
|
10
|
Choi HI, Kim DH, Park JS, Kim IJ, Kim CS, Bae EH, Ma SK, Lee TH, Kim SW. Peroxiredoxin V (PrdxV) negatively regulates EGFR/Stat3-mediated fibrogenesis via a Cys48-dependent interaction between PrdxV and Stat3. Sci Rep 2019; 9:8751. [PMID: 31217524 PMCID: PMC6584630 DOI: 10.1038/s41598-019-45347-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR)/signal transducer and activator of transcription 3 (Stat3) signaling pathway has been reported to be associated with renal fibrosis. We have recently demonstrated that peroxiredoxin V (PrdxV) acted as an antifibrotic effector by inhibiting the activity of Stat3 in TGF-β-treated NRK49F cells. However, the underlying mechanism of PrdxV remains poorly understood. To investigate molecular mechanism of PrdxV, we used a transgenic mouse model expressing PrdxV siRNA (PrdxVsi mice) and performed unilateral ureteral obstruction (UUO) for 7 days. 209/MDCT cells were transiently transfected with HA-tagged WT PrdxV and C48S PrdxV. Transgenic PrdxVsi mice displayed an exacerbated epithelial-to-mesenchymal transition (EMT) as well as an increase in oxidative stress induced by UUO. In the UUO kidney of the PrdxVsi mouse, knockdown of PrdxV increased Tyr1068-specific EGFR and Stat3 phosphorylation, whereas overexpression of WT PrdxV in 209/MDCT cells showed the opposite results. Immunoprecipitation revealed the specific interaction between WT PrdxV and Stat3 in the absence or presence of TGF-β stimulation, whereas no PrdxV-EGFR or C48S PrdxV-Stat3 interactions were detected under any conditions. In conclusion, PrdxV is an antifibrotic effector that sustains renal physiology. Direct interaction between PrdxV and Stat3 through Cys48 is a major molecular mechanism.
Collapse
Affiliation(s)
- Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Tae-Hoon Lee
- Department of Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University and Korea Mouse Phenotype Center, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
11
|
Vaz C, Reales-Calderon JA, Pitarch A, Vellosillo P, Trevisan M, Hernáez ML, Monteoliva L, Gil C. Enrichment of ATP Binding Proteins Unveils Proteomic Alterations in Human Macrophage Cell Death, Inflammatory Response, and Protein Synthesis after Interaction with Candida albicans. J Proteome Res 2019; 18:2139-2159. [PMID: 30985132 DOI: 10.1021/acs.jproteome.9b00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophages are involved in the primary human response to Candida albicans. After pathogen recognition, signaling pathways are activated, leading to the production of cytokines, chemokines, and antimicrobial peptides. ATP binding proteins are crucial for this regulation. Here, a quantitative proteomic and phosphoproteomic approach was carried out for the study of human macrophage ATP-binding proteins after interaction with C. albicans. From a total of 547 nonredundant quantified proteins, 137 were ATP binding proteins and 59 were detected as differentially abundant. From the differentially abundant ATP-binding proteins, 6 were kinases (MAP2K2, SYK, STK3, MAP3K2, NDKA, and SRPK1), most of them involved in signaling pathways. Furthermore, 85 phosphopeptides were quantified. Macrophage proteomic alterations including an increase of protein synthesis with a consistent decrease in proteolysis were observed. Besides, macrophages showed changes in proteins of endosomal trafficking together with mitochondrial proteins, including some involved in the response to oxidative stress. Regarding cell death mechanisms, an increase of antiapoptotic over pro-apoptotic signals is suggested. Furthermore, a high pro-inflammatory response was detected, together with no upregulation of key mi-RNAs involved in the negative feedback of this response. These findings illustrate a strategy to deepen the knowledge of the complex interactions between the host and the clinically important pathogen C. albicans.
Collapse
Affiliation(s)
- Catarina Vaz
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS , 28034 Madrid , Spain
| | - Jose Antonio Reales-Calderon
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS , 28034 Madrid , Spain
| | - Aida Pitarch
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS , 28034 Madrid , Spain
| | - Perceval Vellosillo
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Marco Trevisan
- Laboratorio de Proteómica Cardiovascular , Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , 28029 Madrid , Spain
| | - María Luisa Hernáez
- Unidad de Proteómica , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Lucía Monteoliva
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS , 28034 Madrid , Spain
| | - Concha Gil
- Departamento de Microbiologı́a y Parasitología, Facultad de Farmacia , Universidad Complutense de Madrid , 28040 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS , 28034 Madrid , Spain.,Unidad de Proteómica , Universidad Complutense de Madrid , 28040 Madrid , Spain
| |
Collapse
|
12
|
De Armas MI, Esteves R, Viera N, Reyes AM, Mastrogiovanni M, Alegria TGP, Netto LES, Tórtora V, Radi R, Trujillo M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic Biol Med 2019; 130:369-378. [PMID: 30391677 DOI: 10.1016/j.freeradbiomed.2018.10.451] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Collapse
Affiliation(s)
- María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Romina Esteves
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Thiago G P Alegria
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
13
|
Chang CC, Sia KC, Chang JF, Lin CM, Yang CM, Huang KY, Lin WN. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int J Med Sci 2019; 16:167-179. [PMID: 30662340 PMCID: PMC6332489 DOI: 10.7150/ijms.24068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
The proliferation and adipogenesis of preadipocytes played important roles in the development of adipose tissue and contributed much to the processes of obesity. On the other hand, lipopolysaccharide (LPS), also known as endotoxin, is a key outer membrane component of gram-negative bacteria in the gut microbiota, and has a dominant role in linking inflammation to high-fat diet-induced metabolic syndrome. Studies suggested the potential roles of LPS in hepatic steatosis and in obese mice models. However, the molecular mechanisms underlying LPS-regulated obesity remained largely unknown. Here we reported that LPS stimulated expression of cyosolic phospholipase A2 (cPLA2), one of inflammation regulators of obesity, in the preadipocytes. Pretreatment the inhibitors of JAK2, STAT3, STAT5 or AMPK significantly reduced LPS-increased mRNA and protein expression of cPLA2 together with phosphorylation of JAK2, STAT3, STAT5 and AMPK, separately. Similarly, transfection of siRNA against JAK2 or AMPK abolished expression of cPLA2 and phosphorylation of JAK2 or AMPK together with downregulated expression of JAK2 and AMPK protein. LPS enhanced activation of STAT3 and STAT5 via JAK2-dependent manner in the preadipocytes. Transfection of JAK2 or AMPK siRNA further proofed the independence of JAK2 and AMPK in LPS-treated preadipocytes. In addition, LPS-increased DNA synthesis, cell numbers and cell viability of preadipocytes were attenuated by AACOCF3, AG490, BML-275, cPLA2 siRNA, JAK2 siRNA or AMPK siRNA. Attenuation JAK2/STAT or AMPK-dependent cPLA2 expression reduced LPS-mediated adipogenesis of preadipocytes. Stimulation of arachidonic acid or AMPK activator, A-769662, increased cell numbers and cell viability and promoted differentiation of preadipocytes. Collectively, these results indicated that LPS increased preadipocytes proliferation and adipogenesis via JAK/STAT and AMPK-dependent cPLA2 expression. The mechanisms of LPS-stimulated cPLA2 expression may be a link between bacteria and obesity and provides the molecular basis for preventing metabolic syndrome or hyperplasic obesity.
Collapse
Affiliation(s)
- Chao-Chien Chang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jia-Feng Chang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, En-Chu-Kong Hospital, New Taipei City, Taiwan
| | - Chia-Mo Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan.,Division of Chest Medicine, Shin Kong Hospital, Taipei, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Ramesh A, Varghese S, Jayakumar ND, Malaiappan S. Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients - A case-control study. J Periodontol 2018; 89:1241-1248. [PMID: 30044495 DOI: 10.1002/jper.17-0445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Growing evidence suggests that oxidative stress forms a key component in the etiopathogenesis of periodontitis. Studies have shown potential antioxidants responsible for combating the pro-oxidants which stress the periodontium. But, peroxiredoxin-sulfiredoxin system is the least explored in periodontal disease. METHODS A case-control study was conducted on 30 participants who fulfilled the inclusion criteria from the Department of Periodontics, Saveetha Dental College and Hospital, Chennai, India. The patients were divided into two groups: 1) Group A- healthy controls (n = 18), 2) Group B- patients with generalized chronic periodontitis (n = 17). Following clinical examination, gingival tissue samples were procured from both the groups and subjected to protein quantification by Lowry method. The samples with adequate protein concentration (n = 30) from the two groups were further analyzed by enzyme-linked immunosorbent assay for estimation of sulfiredoxin levels. RESULTS Sulfiredoxin levels were significantly higher in the gingival tissues of chronic periodontitis patients (171.20 ± 16.97 ng/mL) than in healthy controls (131.20 ± 22.87) with P < 0.001. Also, the levels of sulfiredoxin in gingival tissue of periodontitis patients positively correlated with site-specific probing depth (r = 0.67; P = 0.007) and clinical attachment level (r = 0.55; P = 0.035). CONCLUSIONS The present study was a novel attempt to estimate the levels of sulfiredoxin which was significantly elevated in the diseased sites of patients with chronic periodontitis. Future studies are required to probe the role of sulfiredoxin in the etiopathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Asha Ramesh
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Sheeja Varghese
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Nadathur D Jayakumar
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Sankari Malaiappan
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| |
Collapse
|
15
|
Lu D, Wang W, Liu J, Qi L, Zhuang R, Zhuo J, Zhang X, Xu X, Zheng S. Peroxiredoxins in inflammatory liver diseases and ischemic/reperfusion injury in liver transplantation. Food Chem Toxicol 2018; 113:83-89. [PMID: 29360557 DOI: 10.1016/j.fct.2018.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/05/2023]
Abstract
Peroxiredoxins (Prxs) belong to the superfamily of thiol-dependent peroxidases, and remove reactive oxygen species (ROS) and other oxidative stress products. The expression and activity of Prxs can be substantially affected by stimuli from the microenvironment, and in turn regulate cytokine secretion in the context of inflammation in both peroxidase-dependent and -independent pathways. Prxs translocate to mitochondria and are hyperoxidized during acute liver damage, and attenuate intracellular ROS accumulation through their peroxidase activity. In particularly, Prx1 modulates the microenvironment in liver injuries by reducing adhesion molecule expression in vascular endothelial cells and inhibiting the inflammatory response and adhesion of macrophages. Prxs have potent prosurvival effects against ROS in ischemic/reperfusion (I/R) injury, but Prxs released from necrotic cells increase secretion of inflammatory cytokines by macrophages through TLR2 and 4 activation, which promotes cell death. Prxs can be used as biomarkers to evaluate I/R injury and predict graft survival in liver transplantation. Prxs are modulated in various types of chronic hepatitis and hepatosteatosis, and mediate disease progression. Alcohol administration increases oxidization and inactivation of Prxs in mice because of oxidative stress. In conclusion, Prxs are essential mediators and biomarkers in inflammatory liver diseases and I/R injury.
Collapse
Affiliation(s)
- Di Lu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingfeng Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling Qi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Runzhou Zhuang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianyong Zhuo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuanyu Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
16
|
IL-17 contributes to the pathogenesis of obliterative bronchiolitis via regulation of M1 macrophages polarization in murine heterotopic trachea transplantation models. Int Immunopharmacol 2017; 52:51-60. [DOI: 10.1016/j.intimp.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
17
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
18
|
Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca 2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med 2016; 99:392-404. [PMID: 27585948 DOI: 10.1016/j.freeradbiomed.2016.08.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/24/2016] [Accepted: 08/28/2016] [Indexed: 12/30/2022]
Abstract
Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca2+ homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca2+/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca2+/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junghyung Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Unbin Chae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
19
|
Choi HI, Ma SK, Bae EH, Lee J, Kim SW. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells. PLoS One 2016; 11:e0149266. [PMID: 26872211 PMCID: PMC4752225 DOI: 10.1371/journal.pone.0149266] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/30/2016] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS) and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5) is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β) for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT) and double mutant Prdx5 (DM), converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA), declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.
Collapse
Affiliation(s)
- Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Knoops B, Argyropoulou V, Becker S, Ferté L, Kuznetsova O. Multiple Roles of Peroxiredoxins in Inflammation. Mol Cells 2016; 39:60-4. [PMID: 26813661 PMCID: PMC4749876 DOI: 10.14348/molcells.2016.2341] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium
| | - Vasiliki Argyropoulou
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium
| | - Sarah Becker
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium
| | - Laura Ferté
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium
| | - Oksana Kuznetsova
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium
| |
Collapse
|
21
|
|
22
|
Ahn SH, Yang HY, Tran GB, Kwon J, Son KY, Kim S, Dinh QT, Jung S, Lee HM, Cho KO, Lee TH. Interaction of peroxiredoxin V with dihydrolipoamide branched chain transacylase E2 (DBT) in mouse kidney under hypoxia. Proteome Sci 2015; 13:4. [PMID: 25670924 PMCID: PMC4323032 DOI: 10.1186/s12953-014-0061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022] Open
Abstract
Background Peroxiredoxin V (Prdx V) plays a major role in preventing oxidative damage as an effective antioxidant protein within a variety of cells through peroxidase activity. However, the function of Prdx V is not limited to peroxidase enzymatic activity per se. It appears to have unique function in regulating cellular response to external stimuli by directing interaction with signaling protein. In this study, we identified Prdx V interacting partners in mouse kidney under hypoxic stress using immunoprecipitation and shotgun proteomic analysis (LC-MS/MS). Results Immunoprecipitation coupled with nano-UPLC-MSE shotgun proteomics was employed to identify putative interacting partners of Prdx V in mouse kidney in the setting of hypoxia. A total of 17 proteins were identified as potential interacting partners of Prdx V by a comparative interactomics analysis in kidney under normoxia versus hypoxia. Dihydrolipoamide branched chain transacylase E2 (DBT) appeared to be a prominent candidate protein displaying enhanced interaction with Prdx V under hypoxic stress. Moreover, hypoxic kidney exhibited altered DBT enzymatic activity compared to normoxia. An enhanced colocalization of these two proteins under hypoxic stress was successfully observed in vitro. Furthermore, peroxidatic cysteine residue (Cys48) of Prdx V is likely to be responsible for interacting with DBT. Conclusions We identified several proteins interacting with Prdx V under hypoxic condition known to induce renal oxidative stress. In hypoxic condition, we observed an enhanced interaction of Prdx V and DBT protein as well as increased DBT enzymatic activity. The results from this study will contribute to enhance our understanding of Prdx V’s role in hypoxic stress and may suggest new directions for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0061-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Hee Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Gia Buu Tran
- Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph Kwon
- Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Kyu-Yeol Son
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Suhee Kim
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea
| | - Quoc Thuong Dinh
- Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Seunggon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Mi Lee
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 500-757 Republic of Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|