1
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Nicolás-Morala J, Portillo-Esnaola M, Terrén S, Gutiérrez-Pérez M, Gilaberte Y, González S, Juarranz Á. In vitro 5-Fluorouracil resistance produces enhanced photodynamic therapy damage in SCC and tumor resistance in BCC. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112483. [PMID: 35679749 DOI: 10.1016/j.jphotobiol.2022.112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Non-melanoma skin cancer (NMSC) is the most common malignancy worldwide, with rising incidence in the recent years. It includes basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Several non-invasive therapies have been developed for its treatment such as topical 5-Fluorouracil (5FU) and photodynamic therapy (PDT), among others. Despite both are appropriated for NMSC treatment, recurrence cases have been reported. To prevent this, in this work we explore the potential of the combination of PDT and 5FU to treat SCC and BCC. First we evaluate the efficacy of PDT in cells resistant to 5FU. For this purpose, we use SCC-13 and CSZ-1 cells, obtained from a human SCC and a murine BCC, respectively. We first induced 5FU resistance in these cell lines by repeated treatments with the drug and then, the efficacy to PDT was evaluated. The results obtained indicated that SCC-5FU resistant cells were sensible to PDT administration, whereas BCC-5FU resistant cells were also resistant to PDT. The observed responses in both cell lines are in concordance to Protoporphyrin IX (PpIX) and reactive oxygen species (ROS) levels produced after the incubation with MAL and subsequent light exposure. The obtained data support the fact that PDT seems to be an appropriate therapeutic option to be administered after 5FU resistance in SCC. However, PDT would not be a choice therapy for resistant BCC cells to 5FU.
Collapse
Affiliation(s)
- Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), Madrid 28049, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain.
| | - Mikel Portillo-Esnaola
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), Madrid 28049, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Samuel Terrén
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), Madrid 28049, Spain
| | - María Gutiérrez-Pérez
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), Madrid 28049, Spain
| | | | - Salvador González
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain.
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), Madrid 28049, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain.
| |
Collapse
|
3
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
4
|
Wong JJW, Selbo PK. High aldehyde dehydrogenase activity does not protect colon cancer cells against TPCS 2a-sensitized photokilling. Photochem Photobiol Sci 2020; 19:308-312. [PMID: 32108197 DOI: 10.1039/c9pp00453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde dehydrogenases (ALDH) are detoxifying enzymes that are upregulated in cancer stem cells (CSCs) and may cause chemo- and ionizing radiation (IR) therapy resistance. By using the ALDEFLUOR assay, CD133 + human colon cancer cells HT-29, were FACSorted into three populations: ALDHbright, ALDHdim and unsorted (bulk) and treated with chemo-, radio- or photodynamic therapy (PDT) using the clinical relevant photosensitizer disulfonated tetraphenyl chlorin (TPCS2a/fimaporfin). Here we show that there is no difference in cytotoxic responses to TPCS2a-PDT in ALHDbright, ALDHdim or bulk cancer cells. Likewise, both 5-FU and oxaliplatin chemotherapy efficacy was not reduced in ALDHbright as compared to ALDHdim cancer cells. However, we found that ALHDbright HT-29 cells are significantly less sensitive to ionizing radiation compared to ALDHdim cells. This study demonstrates that the cytotoxic response to PDT (using TPCS2a as photosensitizer) is independent of ALDH activity in HT-29 cancer cells. Our results further strengthen the use of TPCS2a to target CSCs.
Collapse
Affiliation(s)
- Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital Oslo University Hospital Montebello, 0379, Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital Oslo University Hospital Montebello, 0379, Oslo, Norway
| |
Collapse
|
5
|
Wong JJW, Berstad MB, Fremstedal ASV, Berg K, Patzke S, Sørensen V, Peng Q, Selbo PK, Weyergang A. Photochemically-Induced Release of Lysosomal Sequestered Sunitinib: Obstacles for Therapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12020417. [PMID: 32053965 PMCID: PMC7072415 DOI: 10.3390/cancers12020417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Lysosomal accumulation of sunitinib has been suggested as an underlying mechanism of resistance. Here, we investigated if photochemical internalization (PCI), a technology for cytosolic release of drugs entrapped in endosomes and lysosomes, would activate lysosomal sequestered sunitinib. By super-resolution fluorescence microscopy, sunitinib was found to accumulate in the membrane of endo/lysosomal compartments together with the photosensitizer disulfonated tetraphenylchlorin (TPCS2a). Furthermore, the treatment effect was potentiated by PCI in the human HT-29 and the mouse CT26.WT colon cancer cell lines. The cytotoxic outcome of sunitinib-PCI was, however, highly dependent on the treatment protocol. Thus, neoadjuvant PCI inhibited lysosomal accumulation of sunitinib. PCI also inhibited lysosomal sequestering of sunitinib in HT29/SR cells with acquired sunitinib resistance, but did not reverse the resistance. The mechanism of acquired sunitinib resistance in HT29/SR cells was therefore not related to lysosomal sequestering. Sunitinib-PCI was further evaluated on HT-29 xenografts in athymic mice, but was found to induce only a minor effect on tumor growth delay. In immunocompetent mice sunitinib-PCI enhanced areas of treatment-induced necrosis compared to the monotherapy groups. However, the tumor growth was not delayed, and decreased infiltration of CD3-positive T cells was indicated as a possible mechanism behind the failed overall response.
Collapse
Affiliation(s)
- Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
| | - Maria Brandal Berstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
| | - Vigdis Sørensen
- Department of Core Facilities and Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway;
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway;
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (J.J.W.W.); (M.B.B.); (A.S.V.F); (K.B.); (S.B.); (P.K.S.)
- Correspondence: ; Tel.: +47-227-81-481
| |
Collapse
|
6
|
Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020; 12:cancers12010165. [PMID: 31936595 PMCID: PMC7016662 DOI: 10.3390/cancers12010165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.
Collapse
|
7
|
Olsen CE, Cheung LH, Weyergang A, Berg K, Vallera DA, Rosenblum MG, Selbo PK. Design, Characterization, and Evaluation of scFvCD133/rGelonin: A CD133-Targeting Recombinant Immunotoxin for Use in Combination with Photochemical Internalization. J Clin Med 2019; 9:jcm9010068. [PMID: 31888091 PMCID: PMC7019722 DOI: 10.3390/jcm9010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to develop and explore a novel CD133-targeting immunotoxin (IT) for use in combination with the endosomal escape method photochemical internalization (PCI). scFvCD133/rGelonin was recombinantly constructed by fusing a gene (scFvCD133) encoding the scFv that targets both non-glycosylated and glycosylated forms of both human and murine CD133/prominin-1 to a gene encoding the ribosome-inactivating protein (RIP) gelonin (rGelonin). RIP-activity was assessed in a cell-free translation assay. Selective binding and intracellular accumulation of scFvCD133/rGelonin was evaluated by flow cytometry and fluorescence microscopy. PCI of scFvCD133/rGelonin was explored in CD133high and CD133low cell lines and a CD133neg cell line, where cytotoxicity was evaluated by the MTT assay. scFvCD133/rGelonin exhibited superior binding to and a higher accumulation in CD133high cells compared to CD133low cells. No cytotoxic responses were detected in either CD133high or CD133low cells after 72 h incubation with <100 nM scFvCD133/rGelonin. Despite a severe loss in RIP-activity of scFvCD133/rGelonin compared to free rGelonin, PCI of scFvCD133/rGelonin induced log-fold reduction of viability compared to PCI of rGelonin. Strikingly, PCI of scFvCD133/rGelonin exceeded the cytotoxicity of PCI of rGelonin also in CD133low cells. In conclusion, PCI promotes strong cytotoxic activity of the per se non-toxic scFvCD133/rGelonin in both CD133high and CD133low cancer cells.
Collapse
Affiliation(s)
- Cathrine Elisabeth Olsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Lawrence H. Cheung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.H.C.); (M.G.R.)
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
| | - Daniel A. Vallera
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA;
| | - Michael G. Rosenblum
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.H.C.); (M.G.R.)
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway; (C.E.O.); (A.W.); (K.B.)
- Correspondence: ; Tel.: +47-22781469
| |
Collapse
|
8
|
Jiang D, Xu M, Pei Y, Huang Y, Chen Y, Ma F, Lu H, Chen J. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Acta Biomater 2019; 88:406-421. [PMID: 30763634 DOI: 10.1016/j.actbio.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/22/2022]
Abstract
Emergence of drug resistance in tumors causes therapeutic failure or tumor relapse. Combination of chemotherapy and photodynamic therapy holds significant promise to treat drug-resistant tumors. However, stubborn hydrophobicity of photosensitizer (PS), low encapsulation efficiency and leaking problem of PS in organic carrier, and disparate physicochemical properties of PS and chemotherapeutics make the combination unachievable. Thus how to efficiently co-deliver the two functional agents to enable photo-chemotherapy seems to be one of the key challenges. Here, core-matched technology (CMT) was developed to realize efficient co-delivery of PS and chemotherapeutics, in which PS verteporfin (VP), tumor angiogenesis-targeting iNGR peptide and poly(lactic acid) (PLA) were respectively pre-modified with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and the conjugates self-assembled into iNGR-modified and VP conjugated nanoassemblies (iNGR-VP-NA) with chemotherapeutic agent docetaxel (DTX) loaded in the hydrophobic core. The obtained iNGR-VP-NA-DTX was characterized by mean size of 166.0 ± 9.2 nm and morphology of uniformly spherical shape. In vitro, with the assistance of laser, iNGR-VP-NA-DTX exhibited higher cellular uptake, stronger cytotoxicity in HUVEC cells, drug-resistant HCT-15 tumor cells and more effective inhibition of tube formation than iNGR-VP-NA-DTX without laser or VP-NA-DTX with laser. After intravenously injected into mice, through the near-infrared light emitted by VP, iNGR-VP-NA exhibited improved accumulation compared to VP-NA in drug-resistant HCT-15 tumor. Besides, iNGR-VP-NA-DTX with laser enhanced inhibition of angiogenesis and induced severe apoptosis and necrosis in tumor tissues along with minimal impact to normal areas. These evidences demonstrated that iNGR-VP-NA-DTX was of great potential to treat drug-resistant tumors via efficient angiogenesis-targeted photo-chemotherapy. STATEMENT OF SIGNIFICANCE: Combination of chemotherapy and photodynamic therapy is thought to be a potential approach to treat drug-resistant cancer. However, it is difficult to realize optimized photo-chemotherapy in one nano-system. Here, iNGR-modified nanoassemblies is created based on core-matched nanotechnology to realize targeted photo-chemotherapy. In this study, the improved co-loading of chemotherapy and photosensitizer in the nanoassemblies exerted a synergistic anti-tumor effect and the decoration with iNGR enhanced tumor-targeting efficiency. In the presence of laser irradiation, the nanoassemblies exhibited enhanced and targeted anti-tumor efficacy in drug-resistant HCT-15 tumor both in vitro and in vivo.
Collapse
|
9
|
Adigbli DK, Pye H, Seebaluck J, Loizidou M, MacRobert AJ. The intracellular redox environment modulates the cytotoxic efficacy of single and combination chemotherapy in breast cancer cells using photochemical internalisation. RSC Adv 2019; 9:25861-25874. [PMID: 35530074 PMCID: PMC9070005 DOI: 10.1039/c9ra04430b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022] Open
Abstract
The redox environment modulates photochemical internalization of an entrapped cytotoxic agent. Administration of light depicted by jagged arrow.
Collapse
Affiliation(s)
- Derick K. Adigbli
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Hayley Pye
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Jason Seebaluck
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | | |
Collapse
|
10
|
Gaio E, Conte C, Esposito D, Miotto G, Quaglia F, Moret F, Reddi E. Co-delivery of Docetaxel and Disulfonate Tetraphenyl Chlorin in One Nanoparticle Produces Strong Synergism between Chemo- and Photodynamic Therapy in Drug-Sensitive and -Resistant Cancer Cells. Mol Pharm 2018; 15:4599-4611. [PMID: 30148955 DOI: 10.1021/acs.molpharmaceut.8b00597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer therapies based on the combinations of different drugs and/or treatment modalities are emerging as important strategies for increasing efficacy and cure, decreasing unwanted toxicity, and overcoming drug resistance, provided that optimized drug concentration ratios are delivered into the target tissue. To these purposes, delivery systems such as nanoparticles (NPs) offer the unique opportunity to finely tune the drug loading and the release rate of drug combinations in the target tissues. Here, we propose double-layered polymeric NPs for the delivery of the chemotherapeutic docetaxel (DTX) and the photosensitizer disulfonate tetraphenyl chlorin (TPCS2a) coated with hyaluronic acid (HA), which allows cell targeting via CD44 receptors. The simultaneous delivery of the two drugs aims at killing DTX-sensitive (HeLa-P, MDA-MB-231) and DTX-resistant (HeLa-R) cancer cells by combining chemotherapy and photodynamic therapy (PDT). Using the Chou and Talalay method that analyses drug interactions and calculates combination index (CI) using the median-effect principle, we compared the efficiency of DTX chemotherapy combined with TPCS2a-PDT for drugs delivered in the standard solvents, coloaded in the same NP (DTX/TPCS2a-NP) or loaded in separate NPs (DTX-NPs + TPCS2a-NPs). Along with the drug interaction studies, we gained insight into cell death mechanisms after combo-therapy and into the extent of TPCS2a intracellular uptake and localization. In all cell lines considered, the analysis of the viability data revealed synergistic drug/treatment interaction especially when DTX and TPCS2a were delivered to cells coloaded in the same NPs despite the reduced PS uptake measured in the presence of the delivery systems. In fact, while the combinations of the free drugs or drugs in separate NPs gave slight synergism (CI < 1) only at doses killing more than 50% of the cells, the combination of drugs in one NPs gave high synergism also at doses killing 10-20% of the cells. Furthermore, the DTX dose in the combination DTX/TPCS2a-NPs could be reduced by ∼2.6- and 10.7-fold in HeLa-P and MDA-MB-231, respectively. Importantly, drug codelivery in NPs was very efficient in inducing cell mortality also in DTX resistant HeLa-R cells overexpressing P-glycoprotein 1 in which the dose of the chemotherapeutic can be reduced by more than 100 times using DTX/TPCS2a-NPs. Overall, our data demonstrate that the protocol for the preparation of HA-targeted double layer polymeric NPs allows to control the concentration ratio of coloaded drugs and the delivery of the transported drugs for obtaining a highly synergistic interaction combining DTX-chemotherapy and TPCS2a-PDT.
Collapse
Affiliation(s)
- Elisa Gaio
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Giovanni Miotto
- Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Francesca Moret
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Elena Reddi
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| |
Collapse
|
11
|
Olsen CE, Weyergang A, Edwards VT, Berg K, Brech A, Weisheit S, Høgset A, Selbo PK. Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent: Possible mechanisms and approaches for overcoming PDT-resistance. Biochem Pharmacol 2017; 144:63-77. [DOI: 10.1016/j.bcp.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
12
|
Norum OJ, Fremstedal ASV, Weyergang A, Golab J, Berg K. Photochemical delivery of bleomycin induces T-cell activation of importance for curative effect and systemic anti-tumor immunity. J Control Release 2017; 268:120-127. [PMID: 29042319 DOI: 10.1016/j.jconrel.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Photochemical internalization (PCI) is a technology to enhance intracellular drug delivery by light-induced translocation of endocytosed therapeutics into the cytosol. The aim of this study was to explore the efficacy of PCI-based delivery of bleomycin and the impact on systemic anti-tumor immunity. Mouse colon carcinoma cells (CT26.CL25), stably expressing the bacterial β-galactosidase, were inoculated into the legs of athymic or immuno-competent BALB/c mice strains. The mice were injected with the photosensitizer AlPcS2a and bleomycin (BLM) prior to tumor light exposure from a 670nm diode laser. Photochemical activation of BLM was found to induce synergistic inhibition of tumor growth as compared to the sum of the individual treatments. However, a curative effect was not observed in the athymic mice exposed to 30J/cm2 of light while >90% of the thymic mice were cured after exposure to only 15J/cm2 light. Cured thymic mice, re-challenged with CT26.CL25 tumor cells on the contralateral leg, rejected 57-100% of the tumor cells inoculated immediately and up to 2months after the photochemical treatment. T-cells from the spleen of PCI-treated mice were found to inhibit the growth of CT26.CL25 cells in naïve thymic mice with a 60% rejection rate. The results show that treatment of CT26.CL25 tumors in thymic mice by PCI of BLM induces a systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Ole-Jacob Norum
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway; Division of Orthopaedic Surgery, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str, F building, 02-097 Warsaw, Poland
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
13
|
Gaware VS, Håkerud M, Juzeniene A, Høgset A, Berg K, Másson M. Endosome Targeting meso-Tetraphenylchlorin-Chitosan Nanoconjugates for Photochemical Internalization. Biomacromolecules 2017; 18:1108-1126. [PMID: 28245649 DOI: 10.1021/acs.biomac.6b01670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four amphiphilic covalently linked meso-tetraphenylchlorin-chitosan nanoconjugates were synthesized and evaluated for use in photochemical internalization (PCI) in vitro and in vivo. The synthetic protocol for the preparation of two different hydrophobic chlorin photosensitizers, 5-(4-aminophenyl)-10,15,20-triphenylchlorin and 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin, was optimized. These monofunctional photosensitizers were covalently attached to carrier chitosan via silyl-protected 3,6-di-O-tert-butyldimethylsilyl-chitosan (Di-TBDMS-chitosan) with 0.10 degree of substitution per glucosamine (DS). Hydrophilic moieties such as trimethylamine and/or 1-methylpiperazine were incorporated with 0.9 DS to give fully water-soluble conjugates after removal of the TBDMS groups. A dynamic light scattering (DLS) study confirmed the formation of nanoparticles with a 140-200 nm diameter. These nanoconjugates could be activated at 650 nm (red region) light, with a fluorescence quantum yield (ΦF) of 0.43-0.45, and are thus suitable candidates for use in PCI. These nanoconjugates were taken up and localized in the endocytic vesicles of HCT116/LUC human colon carcinoma cells, and upon illumination they substantially enhanced plasmid DNA transfection. The nanoconjugates were also evaluated in preliminary in vivo experiments in tumor-bearing mice, showing that the nanoconjugates could induce a strong photodynamic therapy (PDT) and also PCI effects in treatment with bleomycin.
Collapse
Affiliation(s)
- Vivek S Gaware
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland.,PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Monika Håkerud
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway.,Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Asta Juzeniene
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Anders Høgset
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Kristian Berg
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
14
|
Sultan AA, Jerjes W, Berg K, Høgset A, Mosse CA, Hamoudi R, Hamdoon Z, Simeon C, Carnell D, Forster M, Hopper C. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial. Lancet Oncol 2016; 17:1217-29. [PMID: 27475428 DOI: 10.1016/s1470-2045(16)30224-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Photochemical internalisation, a novel minimally invasive treatment, has shown promising preclinical results in enhancing and site-directing the effect of anticancer drugs by illumination, which initiates localised chemotherapy release. We assessed the safety and tolerability of a newly developed photosensitiser, disulfonated tetraphenyl chlorin (TPCS2a), in mediating photochemical internalisation of bleomycin in patients with advanced and recurrent solid malignancies. METHODS In this phase 1, dose-escalation, first-in-man trial, we recruited patients (aged ≥18 to <85 years) with local recurrent, advanced, or metastatic cutaneous or subcutaneous malignancies who were clinically assessed as eligible for bleomycin chemotherapy from a single centre in the UK. Patients were given TPCS2a on day 0 by slow intravenous injection, followed by a fixed dose of 15 000 IU/m(2) bleomycin by intravenous infusion on day 4. After 3 h, the surface of the target tumour was illuminated with 652 nm laser light (fixed at 60 J/cm(2)). The TPCS2a starting dose was 0·25 mg/kg and was then escalated in successive dose cohorts of three patients (0·5, 1·0, and 1·5 mg/kg). The primary endpoints were safety and tolerability of TPCS2a; other co-primary endpoints were dose-limiting toxicity and maximum tolerated dose. The primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00993512, and has been completed. FINDINGS Between Oct 3, 2009, and Jan 14, 2014, we recruited 22 patients into the trial. 12 patients completed the 3-month follow-up period. Adverse events related to photochemical internalisation were either local, resulting from the local inflammatory process, or systemic, mostly as a result of the skin-photosensitising effect of TPCS2a. The most common grade 3 or worse adverse events were unexpected higher transient pain response (grade 3) localised to the treatment site recorded in nine patients, and respiratory failure (grade 4) noted in two patients. One dose-limiting toxicity was reported in the 1·0 mg/kg cohort (skin photosensitivity [grade 2]). Dose-limiting toxicities were reported in two of three patients at a TPCS2a dose of 1·5 mg/kg (skin photosensitivity [grade 3] and wound infection [grade 3]); thus, the maximum tolerated dose of TPCS2a was 1·0 mg/kg. Administration of TPCS2a was found to be safe and tolerable by all patients. No deaths related to photochemical internalisation treatment occurred. INTERPRETATION TPCS2a-mediated photochemical internalisation of bleomycin is safe and tolerable. We identified TPCS2a 0·25 mg/kg as the recommended treatment dose for future trials. FUNDING PCI Biotech.
Collapse
Affiliation(s)
- Ahmed A Sultan
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK
| | - Waseem Jerjes
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Kristian Berg
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | - Charles A Mosse
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rifat Hamoudi
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Zaid Hamdoon
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK
| | - Celia Simeon
- Cancer Clinical Trials Unit, University College London Hospitals, London, UK
| | - Dawn Carnell
- Head and Neck Unit, University College London Hospitals, London, UK
| | - Martin Forster
- Head and Neck Unit, University College London Hospitals, London, UK; UCL Cancer Institute, London, UK
| | - Colin Hopper
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK; Head and Neck Unit, University College London Hospitals, London, UK; UCL Cancer Institute, London, UK.
| |
Collapse
|
15
|
Martinez de Pinillos Bayona A, Moore CM, Loizidou M, MacRobert AJ, Woodhams JH. Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation. Int J Cancer 2015; 138:1049-57. [PMID: 25758607 PMCID: PMC4973841 DOI: 10.1002/ijc.29510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Photochemical internalisation (PCI) is a technique for improving cellular delivery of certain bioactive agents which are prone to sequestration within endolysosomes. There is a wide range of agents suitable for PCI‐based delivery including toxins, oligonucleotides, genes and immunoconjugates which demonstrates the versatility of this technique. The basic mechanism of PCI involves triggering release of the agent from endolysosomes within the target cells using a photosensitiser which is selectively retained with the endolysosomal membranes. Excitation of the photosensitiser by visible light leads to disruption of the membranes via photooxidative damage thereby releasing the agent into the cytosol. This treatment enables the drugs to reach their intended subcellular target more efficiently and improves their efficacy. In this review we summarise the applications of this technique with the main emphasis placed on cancer chemotherapy.
Collapse
Affiliation(s)
| | - Caroline M Moore
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Marilena Loizidou
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Josephine H Woodhams
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| |
Collapse
|
16
|
Weyergang A, Berstad MEB, Bull-Hansen B, Olsen CE, Selbo PK, Berg K. Photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochem Photobiol Sci 2015; 14:1465-75. [DOI: 10.1039/c5pp00029g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance to chemotherapy, molecular targeted therapy as well as radiation therapy is a major obstacle for cancer treatment.
Collapse
Affiliation(s)
- Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Maria E. B. Berstad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Bente Bull-Hansen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine E. Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Pål K. Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
17
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
18
|
Jung KA, Choi BH, Kwak MK. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol 2014; 87:465-76. [PMID: 25534417 DOI: 10.1124/mol.114.096065] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overexpression of BCRP/ABCG2, a xenobiotic efflux transporter, is associated with anticancer drug resistance in tumors. Proto-oncogene c-MET induces cancer cell proliferation, motility, and survival, and its aberrant activation was found to be a prognostic factor in advanced ovarian cancers. In the present study, we investigated the potential crossresistance of doxorubicin-resistant ovarian cancer cells to the pheophorbide a (Pba)-based photodynamic therapy (PDT), and suggest c-MET and BCRP/ABCG2 overexpression as an underlying molecular mechanism. The doxorubicin-resistant A2780 cell line (A2780DR), which was established by incubating A2780 with stepwise increasing concentrations of doxorubicin, showed low levels of cellular Pba accumulation and reactive oxygen species generation, and was more resistant to PDT cytotoxicity than A2780. In a microarray analysis, BCRP/ABCG2 was found to be the only drug transporter whose expression was upregulated in A2780DR; this increase was confirmed by Western blot and immunocytochemical analyses. As functional evidence, the treatment with a BCRP/ABCG2-specific inhibitor reversed A2780DR resistance to both doxorubicin and PDT. We identified that c-MET increase is related to BCRP/ABCG2 activation. The c-MET downstream phosphoinositide 3-kinase (PI3K)/AKT signaling was activated in A2780DR and the inhibition of PI3K/AKT or c-MET repressed resistance to doxorubicin and PDT. Finally, we showed that the pharmacological and genetic inhibition of c-MET diminished levels of BCRP/ABCG2 in A2780DR. Moreover, c-MET inhibition could repress BCRP/ABCG2 expression in breast carcinoma MDA-MB-231 and colon carcinoma HT29, resulting in sensitization to doxorubicin. Collectively, our results provide a novel link of c-MET overexpression to BCRP/ABCG2 activation, suggesting that this mechanism leads to crossresistance to both chemotherapy and PDT.
Collapse
Affiliation(s)
- Kyeong-Ah Jung
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Bo-Hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| |
Collapse
|
19
|
Bostad M, Kausberg M, Weyergang A, Olsen CE, Berg K, Høgset A, Selbo PK. Light-Triggered, Efficient Cytosolic Release of IM7-Saporin Targeting the Putative Cancer Stem Cell Marker CD44 by Photochemical Internalization. Mol Pharm 2014; 11:2764-76. [DOI: 10.1021/mp500129t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | - Anders Høgset
- PCI Biotech
AS, Strandveien 55, N-1366 Lysaker, Norway
| | | |
Collapse
|
20
|
Bull-Hansen B, Cao Y, Berg K, Skarpen E, Rosenblum MG, Weyergang A. Photochemical activation of the recombinant HER2-targeted fusion toxin MH3-B1/rGel; Impact of HER2 expression on treatment outcome. J Control Release 2014; 182:58-66. [PMID: 24637464 DOI: 10.1016/j.jconrel.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
Abstract
HER2 is overexpressed in 20-30% of breast tumors and is associated with aggressiveness and increased risk of recurrence and death. The HER2 protein is internalized as a part of its activity, and may therefore be utilized as a target for the specific intracellular delivery of drugs. Photochemical internalization (PCI) is a novel technology now undergoing clinical evaluation for its ability to improve the release into the cytosol of drugs entrapped in the endo/lysosomal compartment. PCI employs an amphiphilic photosensitizer which localizes in the membranes of endo/lysosomes. Subsequent light exposure (visible light) causes destabilization of the endo/lysosomal membranes. PCI has been proven highly effective for improving the cytosolic delivery of targeted toxins based on type I ribosome inactivating protein toxins such as gelonin. We examined the impact of the level of target antigen expression on PCI efficacy. Four human breast cancer cell lines (MDA-MB-231, BT-20, Zr-75-1 and SK-BR-3) covering a wide range of HER2 expression were included in the present study. PCI of the HER2-targeted fusion toxin MH3-B1/rGel was found to be highly effective in all four cell lines. The increase in PCI-mediated efficacy was not directly correlated with the cellular levels of HER2 as assessed by western blots, the overall uptake of MH3-B1/rGel as measured by flow cytometry, the amount of MH3-B1/rGel localized to endo/lysosomes assessed by confocal microscopy or the cell sensitivity to the photochemical treatment itself (photosensitizer and light without MH3-B1/rGel). However, correcting the PCI efficacy for the baseline cellular sensitivity to rGel revealed a linear correlation (R(2)=0.80) with HER2 expression. The present report therefore concludes the cellular sensitivity to the toxin as an important parameter for PCI efficacy and also indicates PCI of a HER2-targeted fusion toxin as an attractive treatment alternative for breast cancer patients with both HER2-low and -high expression.
Collapse
Affiliation(s)
- Bente Bull-Hansen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Yu Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Ellen Skarpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Michael G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway.
| |
Collapse
|