1
|
Ge W, Wang Z, Zhong X, Chen Y, Tang X, Zheng S, Xu X, Wang K. PLK2 inhibited oxidative stress and ameliorated hepatic ischemia-reperfusion injury through phosphorylating GSK3β. J Gastroenterol Hepatol 2024. [PMID: 39563073 DOI: 10.1111/jgh.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND AND AIM Hepatic ischemia-reperfusion (I/R) injury is the primary cause of liver dysfunction and liver failure, commonly occurring in liver transplantation, hepatectomy, and hemorrhagic shock. Polo-like kinase 2 (PLK2), a pivotal regulator of centriole duplication, plays a crucial role in cell proliferation and injury repair. However, the function of PLK2 in hepatic I/R remains unclear. METHODS The effect of PLK2 was investigated in the mouse hepatic I/R model and the hepatocyte hypoxia-reoxygenation (H/R) model. Liver injury was assessed by serum transaminase and hematoxylin and eosin staining. Cell apoptosis was analyzed using TUNEL analysis and immunoblotting. Inflammatory factors were evaluated by reverse transcription-quantitative polymerase chain reaction. Mice or cultured cells during the I/R or H/R were treated by overexpressing PLK2. ROS fluorescence staining was used to assess oxidative stress injury. RESULTS PLK2 was upregulated after hepatic I/R injury. Overexpressed PLK2 significantly improved liver enzyme levels and alleviated liver histological injury. Moreover, PLK2 decreased hepatocyte apoptosis and inhibited the expression of inflammatory factors in liver. Mechanistically, PLK2 increased the phosphorylation of GSK3β and enhanced expression of the antioxidant enzyme HO-1, leading to less ROS production. Inhibition of the HO-1 aggravated ROS generation and abolished the protective effect of PLK2. CONCLUSION Overall, these findings revealed that PLK2 enhanced HO-1 expression and reduced oxidative stress damage in hepatic I/R injury, and this protective effect related to GSK3β activity.
Collapse
Affiliation(s)
- Wenwen Ge
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xinyang Zhong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Tang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Xiao Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Chen YD, Lin XP, Ruan ZL, Li M, Yi XM, Zhang X, Li S, Shu HB. PLK2-mediated phosphorylation of SQSTM1 S349 promotes aggregation of polyubiquitinated proteins upon proteasomal dysfunction. Autophagy 2024; 20:2221-2237. [PMID: 39316746 PMCID: PMC11423667 DOI: 10.1080/15548627.2024.2361574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.
Collapse
Affiliation(s)
- Yun-Da Chen
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiu-Ping Lin
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Mi Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Mei Yi
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xu Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
3
|
Qin Q, Liu R, Li Z, Liu M, Wu X, Wang H, Yang S, Sun X, Yi X. Resolving candidate genes of duck ovarian tissue transplantation via RNA-Seq and expression network analyses. Poult Sci 2024; 103:103788. [PMID: 38692177 PMCID: PMC11070914 DOI: 10.1016/j.psj.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Rongxu Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Midi Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xian Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Huimin Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Shuailiang Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xuyang Sun
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, P. R. China.
| |
Collapse
|
4
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Kim DE, Byeon HE, Kim DH, Kim SG, Yim H. Plk2-mediated phosphorylation and translocalization of Nrf2 activates anti-inflammation through p53/Plk2/p21 cip1 signaling in acute kidney injury. Cell Biol Toxicol 2023; 39:1509-1529. [PMID: 35842499 PMCID: PMC10425522 DOI: 10.1007/s10565-022-09741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The Plk2 is a cellular stress-responsive factor that is induced in response to oxidative stress. However, the roles of Plk2 in acute kidney injury (AKI) have not been clarified. We previously found that Plk2 is an interacting factor of Nrf2 in response to cellular stress, since Plk2 is upregulated in the Nrf2-dependent network. Here, we show that the levels of p53, Plk2, p21cip1, and chromatin-bound Nrf2 were all upregulated in kidney tissues of mice or NRK52E cells treated with either cisplatin or methotrexate. Upregulation of Plk2 by p53 led to an increase of Nrf2 in both soluble and chromatin fractions in cisplatin-treated NRK52E cells. Consistently, depletion of Plk2 suppressed the levels of Nrf2. Of note, Plk2 directly phosphorylated Nrf2 at Ser40, which facilitated its interaction with p21cip1 and translocation into the nuclei for the activation of anti-oxidative and anti-inflammatory factors in response to AKI. Together, these findings suggest that Plk2 may serve as an anti-oxidative and anti-inflammatory regulator through the phosphorylation and activation of Nrf2 to protect kidney cells from kidney toxicants and that Plk2 and Nrf2 therefore work cooperatively for the protection and survival of kidney cells from harmful stresses.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Hye Eun Byeon
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, 10326, Gyeonggi-Do, Korea.
- College of Pharmacy, Seoul National University, Gwanakro 599, Seoul, 08826, Korea.
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea.
| |
Collapse
|
6
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
7
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
8
|
SENP6-Mediated deSUMOylation of VEGFR2 Enhances Its Cell Membrane Transport in Angiogenesis. Int J Mol Sci 2023; 24:ijms24032544. [PMID: 36768878 PMCID: PMC9916989 DOI: 10.3390/ijms24032544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis is a significant pathogenic characteristic of diabetic microangiopathy. Advanced glycation end products (AGEs) are considerably elevated in diabetic tissues and can affect vascular endothelial cell shape and function. Regulation of the vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling pathway is a critical mechanism in the regulation of angiogenesis, and VEGFR2 activity can be modified by post-translational changes. However, little research has been conducted on the control of small ubiquitin-related modifier (SUMO)-mediated VEGFR2 alterations. The current study investigated this using human umbilical vein endothelial cells (HUVECs) in conjunction with immunoblotting and immunofluorescence. AGEs increased Nrf2 translocation to the nucleus and promoted VEGFR2 expression. They also increased the expression of sentrin/SUMO-specific protease 6 (SENP6), which de-SUMOylated VEGFR2, and immunofluorescence indicated a reduction in VEGFR2 accumulation in the Golgi and increased VEGFR2 transport from the Golgi to the cell membrane surface via the coatomer protein complex subunit beta 2. VEGFR2 on the cell membrane was linked to VEGF generated by pericytes, triggering the VEGF signaling cascade. In conclusion, this study demonstrates that SENP6 regulates VEGFR2 trafficking from the Golgi to the endothelial cell surface. The SENP6-VEGFR2 pathway plays a critical role in pathological angiogenesis.
Collapse
|
9
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
10
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
11
|
Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:cells11121930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer’s dementia is the most common, while Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease—even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
|
12
|
Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int J Mol Sci 2022; 23:ijms23116216. [PMID: 35682892 PMCID: PMC9181156 DOI: 10.3390/ijms23116216] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
13
|
Wei X, Wu J, Li J, Yang Q. PLK2 targets GSK3β to protect against cisplatin-induced acute kidney injury. Exp Cell Res 2022; 417:113181. [PMID: 35523306 DOI: 10.1016/j.yexcr.2022.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Cisplatin-induced acute kidney injury (AKI), which is accompanied by a rapid decline in renal function and a high risk of death, is a complex critical illness with no effective or specific treatment. Polo-like kinase 2 (PLK2), a serine/threonine kinase, is involved in the progression of multiple diseases, including cancers, cardiac fibrosis, diabetic nephropathy, etc. Here, by integrating two Gene Expression Omnibus (GEO) datasets of cisplatin-induced AKI animal models, we identified PLK2 as a significantly up-regulated gene in AKI renal tissues, which was then verified in different AKI animal models and cell models. Suppressing PLK2 using siRNAs or inhibitors could enhance cisplatin-induced AKI by inducing severe apoptosis and oxidative stress damage, while enforced PLK2 expression could prevent renal dysfunction induced by cisplatin. We further discovered that PLK2 might phosphorylate glycogen synthase kinase 3β (GSK3β) in the pathogenesis of AKI. In conclusion, our results show that PLK2 play a protective role in cisplatin-induced AKI and may be a new protective target of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Xiaona Wei
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
15
|
Künzel SR, Hoffmann M, Weber S, Künzel K, Kämmerer S, Günscht M, Klapproth E, Rausch JS, Sadek MS, Kolanowski T, Meyer-Roxlau S, Piorkowski C, Tugtekin SM, Rose-John S, Yin X, Mayr M, Kuhlmann JD, Wimberger P, Grützmann K, Herzog N, Küpper JH, O’Reilly M, Kabir SN, Sommerfeld LC, Guan K, Wielockx B, Fabritz L, Nattel S, Ravens U, Dobrev D, Wagner M, El-Armouche A. Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation. Circ Res 2021; 129:804-820. [PMID: 34433292 PMCID: PMC8487716 DOI: 10.1161/circresaha.121.319425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K.)
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Silvio Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Mario Günscht
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Johanna S.E. Rausch
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Mirna S. Sadek
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Tomasz Kolanowski
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Stefanie Meyer-Roxlau
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Christopher Piorkowski
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Sems M. Tugtekin
- Department of Cardiac Surgery (S.M.T.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Stefan Rose-John
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel (S.R.-J.)
| | - Xiaoke Yin
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
| | - Manuel Mayr
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden (M.M.)
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Konrad Grützmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Natalie Herzog
- Brandenburg University of Technology, Senftenberg (N.H., J.-H.K.)
| | | | - Molly O’Reilly
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
| | - S. Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
| | - Laura C. Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
- Department of Cardiac Surgery (S.M.T.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel (S.R.-J.)
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
- Brandenburg University of Technology, Senftenberg (N.H., J.-H.K.)
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (B.W.)
- Department of Cardiology, University Hospitals Birmingham (L.F.)
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad Krotzingen, Freiburg im Breisgau (U.R.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université (S.N.)
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine (D.D.)
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden (M.M.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (B.W.)
| | - Larissa Fabritz
- Department of Cardiology, University Hospitals Birmingham (L.F.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université (S.N.)
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad Krotzingen, Freiburg im Breisgau (U.R.)
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine (D.D.)
| | - Michael Wagner
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| |
Collapse
|
16
|
Fan Y, Wang J, He N, Feng H. PLK2 protects retinal ganglion cells from oxidative stress by potentiating Nrf2 signaling via GSK-3β. J Biochem Mol Toxicol 2021; 35:e22815. [PMID: 34047419 DOI: 10.1002/jbt.22815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress of retinal ganglion cells (RGCs) has been established as a main contributor to retinal degeneration in the pathogenesis of glaucoma. Polo-like kinase 2 (PLK2) has recently been reported to be a potent antioxidant protein that enhances cell survival in response to oxidative stress. To date, the involvement of PLK2 in RGC-associated oxidative stress is undermined. In the present work, we evaluated whether PLK2 regulates oxidative stress evoked by hydrogen peroxide (H2 O2 ) in RGCs. PLK2 expression was induced by H2 O2 stimulation in RGCs. Upregulation of PLK2 had a profoundly cytoprotective effect on H2 O2 -stimulated RGCs by attenuating cellular apoptosis and reactive oxygen species (ROS) level. Further data revealed that upregulation of PLK2 strikingly enhanced the activation of Nrf2 signaling. Moreover, PLK2 overexpression promoted glycogen synthase kinase (GSK)-3β phosphorylation, whereas PLK2 knockdown reduced the levels of GSK-3β phosphorylation. Notably, GSK-3β inhibition using a chemical inhibitor markedly abrogated the suppressive effects of PLK2 knockdown on Nrf2 activation. Repression of Nrf2 blocked the PLK2 overexpression-induced protective effects in H2 O2 -stimulated RGCs. Overall, this study elucidates that upregulation of PLK2 protects RGCs against H2 O2 -induced oxidative stress injury by upregulating Nrf2 activation via modulation of GSK-3β phosphorylation. These findings underline the pivotal role of PLK2 in mediating oxidative stress-evoked retinal degeneration in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Yazhi Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixiao Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Kant TA, Newe M, Winter L, Hoffmann M, Kämmerer S, Klapproth E, Künzel K, Kühnel MP, Neubert L, El-Armouche A, Künzel SR. Genetic Deletion of Polo-Like Kinase 2 Induces a Pro-Fibrotic Pulmonary Phenotype. Cells 2021; 10:617. [PMID: 33799608 PMCID: PMC8001503 DOI: 10.3390/cells10030617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.
Collapse
Affiliation(s)
- Theresa A. Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Manja Newe
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Mark P. Kühnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (M.P.K.); (L.N.)
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (M.P.K.); (L.N.)
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| |
Collapse
|
18
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
19
|
Insulin Resistance Promotes Parkinson's Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells 2020; 9:cells9030740. [PMID: 32192190 PMCID: PMC7140619 DOI: 10.3390/cells9030740] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Insulin resistance (IR), considered a hallmark of diabetes at the cellular level, is implicated in pre-diabetes, results in type 2 diabetes, and negatively affects mitochondrial function. Diabetes is increasingly associated with enhanced risk of developing Parkinson's disease (PD); however, the underlying mechanism remains unclear. This study investigated the probable culpability of IR in the pathogenesis of PD. Methods: Using MitoPark mice in vivo models, diabetes was induced by a high-fat diet in the in vivo models, and IR was induced by protracted pulse-stimulation with 100 nM insulin treatment of neuronal cells, in vitro to determine the molecular mechanism(s) underlying altered cellular functions in PD, including mitochondrial dysfunction and α-synuclein (SNCA) aberrant expression. Findings: We observed increased SNCA expression in the dopaminergic (DA) neurons of both the wild-type and diabetic MitoPark mice, coupled with enhanced degeneration of DA neurons in the diabetic MitoPark mice. Ex vivo, in differentiated human DA neurons, IR was associated with increased SNCA and reactive oxygen species (ROS) levels, as well as mitochondrial depolarization. Moreover, we demonstrated concomitant hyperactivation of polo-like kinase-2 (PLK2), and upregulated p-SNCA (Ser129) and proteinase K-resistant SNCA proteins level in IR SH-SY5Y cells, however the inhibition of PLK2 reversed IR-related increases in phosphorylated and total SNCA. Similarly, the overexpression of peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC)-1α suppressed ROS production, repressed PLK2 hyperactivity, and resulted in downregulation of total and Ser129-phosphorylated SNCA in the IR SH-SY5Y cells. Conclusions: These findings demonstrate that IR-associated diabetes promotes the development and progression of PD through PLK2-mediated mitochondrial dysfunction, upregulated ROS production, and enhanced SNCA signaling, suggesting the therapeutic targetability of PLK2 and/or SNCA as potential novel disease-modifying strategies in patients with PD.
Collapse
|
20
|
Kofoed RH, Betzer C, Ferreira N, Jensen PH. Glycogen synthase kinase 3 β activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of α-synuclein. Neurobiol Dis 2019; 136:104720. [PMID: 31881263 DOI: 10.1016/j.nbd.2019.104720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a currently incurable disease and the number of patients is expected to increase due to the extended human lifespan. α-Synuclein is a pathological hallmark of PD and variations and triplications of the gene encoding α-synuclein are strongly correlated with the risk of developing PD. Decreasing α-synuclein is therefore a promising therapeutic strategy for the treatment of PD. We have previously demonstrated that Polo-like kinase 2 (PLK-2) regulates α-synuclein protein levels by modulating the expression of α-synuclein mRNA. In this study, we further expand the knowledge on this pathway and show that it depends on down-stream modulation of Glycogen-synthase kinase 3 β (GSK-3β). We show that PLK-2 inhibition only increases α-synuclein levels in the presence of active GSK-3β in both cell lines and primary neuronal cultures. Furthermore, direct inhibition of GSK-3β decreases α-synuclein protein and mRNA levels in our cell model and overexpression of Leucine-rich repeat kinase 2, known to activate GSK-3β, increases α-synuclein levels. Finally, we show an increase in endogenous α-synuclein in primary neurons when increasing GSK-3β activity. Our findings demonstrate a not previously described role of endogenous GSK-3β activity in the PLK-2 mediated regulation of α-synuclein levels. This finding opens up the possibility of GSK-3β as a novel target for decreasing α-synuclein levels by the use of small molecule compounds, hereby serving as a disease modulating strategy.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Poul Henning Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| |
Collapse
|
21
|
Zhao D, Shun E, Ling F, Liu Q, Warsi A, Wang B, Zhou Q, Zhu C, Zheng H, Liu K, Zheng X. Plk2 Regulated by miR-128 Induces Ischemia-Reperfusion Injury in Cardiac Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:458-467. [PMID: 31902745 PMCID: PMC6948232 DOI: 10.1016/j.omtn.2019.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Ischemia-reperfusion (I/R) injury occurs during cardiac surgery and is the major factor leading to heart dysfunction and heart failure. Our previous study showed that gene and microRNA expression profiles are altered in heart grafts with extended I/R injury. In this study, we, for the first time, demonstrated that I/R injury upregulates the expression of Polo-like kinase 2 (Plk2) but decreases miR-128 expression in heart cells both in vitro and in vivo. Silencing Plk2 using small interfering RNA (siRNA) protects cells from Antimycin A-induced cell apoptosis/death. Silencing Plk2 also decreases phosphorylated p65 expression but increases Angiopoietin 1 expression. In addition, Plk2 is negatively regulated by miR-128. miR-128 exerts a protective effect on cell apoptosis similar to Plk2 siRNA in response to I/R stress. Methylation inhibitor 5-azacytidine (5-AZ) increases the expression of miR-128 and subsequently reduces Plk2 expression and cell apoptosis. In conclusion, this study demonstrated that Plk2 regulated by miR-128 induces cell apoptosis/death in response to I/R stress through activation of the nuclear factor κB (NF-κB) signal pathway. miR-128 and Plk2 are new targets for preventing cardiac I/R injury or oxidative stress-mediated injury.
Collapse
Affiliation(s)
- Duo Zhao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Cardiovascular Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Edward Shun
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Fengjun Ling
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Qing Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ayesha Warsi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Bowen Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Qinfeng Zhou
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Hao Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China.
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
22
|
Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease. Aging (Albany NY) 2019; 11:9424-9441. [PMID: 31697645 PMCID: PMC6874433 DOI: 10.18632/aging.102394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.
Collapse
|
23
|
Site-specific phosphorylation of Fbxw7 by Cdk5/p25 and its resulting decreased stability are linked to glutamate-induced excitotoxicity. Cell Death Dis 2019; 10:579. [PMID: 31371703 PMCID: PMC6675790 DOI: 10.1038/s41419-019-1818-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine protein kinase that regulates brain development and neurodegeneration. Cdk5 is activated by p25 that is generated from calpain-dependent cleavage of p35. The generation of p25 is responsible for the aberrant hyper-activation of Cdk5, which causes neurodegeneration. Using in vitro assays, we discovered that F-box/WD repeat-containing protein 7 (Fbxw7) is a new substrate of Cdk5. Additionally, Cdk5-dependent phosphorylation of Fbxw7 was detected in the presence of p25, and two amino acid residues (S349 and S372) were determined to be major phosphorylation sites. This phosphorylation was eventually linked to decreased stability of Fbxw7. Using a culture model of cortical neurons challenged with glutamate, we confirmed that decreased stability of Fbxw7 was indeed Cdk5-dependent. Furthermore, diminished levels of Fbxw7 led to increased levels of transcription factor AP-1 (c-Jun), a known substrate of Fbxw7. Given that previous reports demonstrate that c-Jun plays a role in accelerating neuronal apoptosis in these pathological models, our data support the concepts of a molecular cascade in which Cdk5-mediated phosphorylation of Fbxw7 negatively regulates Fbxw7 expression, thereby contributing to neuronal cell death following glutamate-mediated excitotoxicity.
Collapse
|
24
|
Cardiac sympathetic innervation in the MPTP non-human primate model of Parkinson disease. Clin Auton Res 2019; 29:415-425. [PMID: 31338635 DOI: 10.1007/s10286-019-00620-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces degeneration of dopaminergic neurons and reproduces the motor features of Parkinson disease (PD); however, the effect of MPTP on extranigral structures has been poorly studied. The aim of this research was to study the cardiac sympathetic innervation of control and MPTP-treated monkeys in order to describe the influence of MPTP toxicity on cardiac tissue. METHODS Eight monkeys were included in the study and divided into two groups, four monkeys serving as controls and four forming the MPTP group. Sections from the anterior left ventricle were immunohistochemically examined to characterize the sympathetic fibers of cardiac tissue. The intensity of immunoreactivity in the nerve fibers was quantitatively analyzed using ImageJ software. RESULTS As occurs in PD, the sympathetic peripheral nervous system is affected in MPTP-treated monkeys. The percentage of tyrosine hydroxylase immunoreactive fibers in the entire fascicle area was markedly lower in the MPTP group (24.23%) than the control group (35.27%) (p < 0.05), with preservation of neurofilament immunoreactive fibers in the epicardium of MPTP-treated monkeys. Alpha-synuclein deposits were observed in sections of the anterior left ventricle of MPTP-treated monkeys but not in control animals, whereas phosphorylated synuclein aggregates were not observed in either controls or MPTP-treated monkeys. CONCLUSION The peripheral autonomic system can also be affected by neurotoxins that specifically inhibit mitochondrial complex I.
Collapse
|
25
|
Wang R, Wang Y, Qu L, Chen B, Jiang H, Song N, Xie J. Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochem Int 2019; 125:127-135. [DOI: 10.1016/j.neuint.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022]
|
26
|
Matsuo K, Cheng A, Yabuki Y, Takahata I, Miyachi H, Fukunaga K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019; 150:164-174. [PMID: 30930168 DOI: 10.1016/j.neuropharm.2019.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Accumulation and aggregation of α-synuclein (αSyn) triggers dopaminergic (DAergic) neuronal loss in Parkinson's disease (PD). This pathological event is partly facilitated by the presence of long-chain polyunsaturated fatty acids (LC-PUFAs), including arachidonic acid. The intracellular transport and metabolism of LC-PUFAs are mediated by fatty acid-binding proteins (FABPs). We previously reported that heart-type FABP (FABP3) interacts with αSyn, thereby promoting αSyn oligomerization in DAergic neurons in the substantia nigra pars compacta (SNpc) following 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. This αSyn oligomerization is prevented in Fabp3 gene knock out mice. We document a novel FABP3 ligand, MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)butanoic acid), that inhibits αSyn accumulation in DA neurons, thereby inhibiting the oligomerization of αSyn, loss of DAergic neurons, and PD-like motor deficits in MPTP-treated mice. Chronic oral administration of MF1 (0.3 or 1.0 mg/kg/day) significantly improved motor impairments and inhibited MPTP-induced accumulation and oligomerization of αSyn in the SNpc, and in turn prevented loss of tyrosine hydroxylase (TH)-positive cells in the SNpc. MF1 administration (0.1, 0.3, or 1.0 mg/kg/day) also restored MPTP-induced cognitive impairments. Although chronic administration of l-DOPA (3,4-dihydroxl-l-phenylalanine; 25 mg/kg/day, i.p.) also improved motor deficits, it failed to improve the cognitive impairments. In addition, l-DOPA failed to inhibit DAergic neuronal loss and αSyn pathologies in the SNpc. In summary, the novel FABP3 ligand MF1 rescues MPTP-induced behavioural and neuropathological features, suggesting that MF1 may be a disease-modifying drug candidate for synucleinopathies.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ibuki Takahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
27
|
Joo MS, Shin SB, Kim EJ, Koo JH, Yim H, Kim SG. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21 cip1. FASEB J 2019; 33:7953-7969. [PMID: 30897343 DOI: 10.1096/fj.201802744r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long noncoding RNA (lncRNA) capable of controlling antioxidative capacity remains to be investigated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a central molecule for cellular defense that increases antioxidative capacity. We identified a novel lncRNA named Nrf2-activating lncRNA (Nrf2-lncRNA) transcribed from an upstream region of the microRNA 122 gene (MIR122). Nrf2-lncRNA existed in the cytoplasm, suggestive of its function as a competing endogenous RNA [ceRNA, microRNA (miRNA) sponge]. Nrf2-lncRNA served as a ceRNA for polo-like kinase (Plk) 2 and cyclin-dependent kinase inhibitor 1 (p21cip1) through binding of miRNA 128 and miRNA 224, inducing Plk2/Nrf2/p21cip1 complexation for Nrf2 activation in the cells under p53-activating conditions (i.e., DNA damage and serum deprivation). Nrf2-lncRNA expression was suppressed with the initiation of apoptosis, being a rheostat for cell fate determination. Nrf2-lncRNA levels correlated with the recurrence-free postsurgery survival rate of patients with hepatocellular carcinoma. Collectively, Nrf2-lncRNA promotes Plk2 and p21cip1 translation by competing for specific miRNAs and activating Nrf2 under surviving conditions from oxidative stress, implying that Nrf2-lncRNA serves as a fine-tuning rheostat for cell fate decision.-Joo, M. S., Shin, S.-B., Kim, E. J., Koo, J. H., Yim, H., Kim, S. G. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21cip1.
Collapse
Affiliation(s)
- Min Sung Joo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sol-Bi Shin
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun Jung Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hyungshin Yim
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
Guo N, Zhang N, Yan L, Lian Z, Wang J, Lv F, Wang Y, Cao X. Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium. Mol Med Rep 2018; 18:1955-1962. [PMID: 29901145 PMCID: PMC6072198 DOI: 10.3892/mmr.2018.9161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/07/2018] [Indexed: 11/14/2022] Open
Abstract
Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia-reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co-expression network analysis, hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co-expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto-oncogene, non-receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.
Collapse
Affiliation(s)
- Nan Guo
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Nan Zhang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Liqiu Yan
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Zheng Lian
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jiawang Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Fengfeng Lv
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
29
|
Xie Y, Liu Y, Li Q, Chen J. Polo-like kinase 2 promotes chemoresistance and predicts limited survival benefit from adjuvant chemotherapy in colorectal cancer. Int J Oncol 2018; 52:1401-1414. [PMID: 29568868 PMCID: PMC5873899 DOI: 10.3892/ijo.2018.4328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignances worldwide. Chemoresistance remains a major issue in the field of CRC treatment. The present study aimed to investigate the potential role of polo-like kinase 2 (Plk2) in chemoresistance in CRC. The associations between Plk2 and clinicopathological factors, as well as chemotherapeutic benefit were analyzed with a publicly available CRC dataset. The correlation between Plk2 expression and chemosensitivity was further confirmed in CRC cells. Moreover, knockdown and exogenous overexpression experiments of Plk2 were carried out to uncover the potential role of Plk2 in regulating the chemoresistance of CRC cells. We found that the expression of Plk2 was significantly associated with proximally located tumors. In addition, it was found that high expression ofPlk2 was associated with deficient mismatch repair status, B-raf serine/threonine kinase proto-oncogeneand Kirsten rat sarcoma viral oncogene homolog mutations. By contrast, tumor protein 53 mutation was correlated with a low expression level of Plk2. A higher expression level of Plk2 significantly predicted a poorer outcome in patients with CRC. However, the prognostic significance was only observed in patients who received adjuvant chemotherapy. In CRC cells, higher levels of Plk2 were associated with increased resistance to chemotherapeutic agents. Knocking down the expression of Plk2 resulted in elevated cellular apoptosis induced by oxaliplatin. By contrast, exogenous overexpression of Plk2 exerted an anti-apoptotic effect and enhanced the resistance of CRC cells to chemotherapeutic agents. In conclusion, a high expression of Plk2 was associated with chemoresistant traits of CRC through inhibiting apoptosis. These results suggested that Plk2 may serve as a predictive marker for chemoresistance and a novel target in CRC treatment.
Collapse
Affiliation(s)
- Yuquan Xie
- Department of Oncology, The First People's Hospital of Jingmen City, Jingmen, Hubei 448000, P.R. China
| | - Ying Liu
- Department of Oncology, The First People's Hospital of Jingmen City, Jingmen, Hubei 448000, P.R. China
| | - Qiubo Li
- Department of Oncology, The First People's Hospital of Jingmen City, Jingmen, Hubei 448000, P.R. China
| | - Jianming Chen
- Department of Oncology, The First People's Hospital of Jingmen City, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
30
|
Shen T, Li Y, Chen Z, Liang S, Guo Z, Wang P, Wu Q, Ba G, Fu Q. CHOP negatively regulates Polo-like kinase 2 expression via recruiting C/EBPα to the upstream-promoter in human osteosarcoma cell line during ER stress. Int J Biochem Cell Biol 2017; 89:207-215. [DOI: 10.1016/j.biocel.2017.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/09/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
|
31
|
Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS. PLK2 Plays an Essential Role in High D-Glucose-Induced Apoptosis, ROS Generation and Inflammation in Podocytes. Sci Rep 2017; 7:4261. [PMID: 28655909 PMCID: PMC5487358 DOI: 10.1038/s41598-017-00686-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/08/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of hyperglycemia. Currently, there is no effective therapeutic intervention for DKD. In this study, we sought to provide a set of gene profile in diabetic kidneys. We identified 338 genes altered in diabetes-induced DKD glomeruli, and PLK2 exhibited the most dramatic change. Gene set enrichment analysis (GSEA) indicated multiple signaling pathways are involved DKD pathogenesis. Here, we investigated whether PLK2 contributes to podocyte dysfunction, a characteristic change in the development of DKD. High D-glucose (HDG) significantly increased PLK2 expression in mouse podocytes. Suppressing PLK2 attenuated HDG-induced apoptosis and inflammatory responses both in vitro and in vivo. NAC, an antioxidant reagent, rescued HDG and PLK2 overexpression-induced kidney injuries. In summary, we demonstrated that silencing PLK2 attenuates HDG-induced podocyte apoptosis and inflammation, which may serve as a future therapeutic target in DKD.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Ping-Ping Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Tian-Lun Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Xiao-Xu Zheng
- Department of Medicine, the George Washington University, Washington, DC20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|
32
|
Rodríguez-Nogales C, Garbayo E, Martínez-Valbuena I, Sebastián V, Luquin MR, Blanco-Prieto MJ. Development and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein. Int J Pharm 2017; 514:142-149. [PMID: 27863657 DOI: 10.1016/j.ijpharm.2016.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/20/2022]
Abstract
Polo like kinase 2 (PLK2), a serine/threonine serum inducible kinase, has been proposed to be the major factor responsible for phosphorylating alpha-synuclein (α-syn) at Serine-129 (Ser-129) in Parkinson's disease (PD). A suitable strategy to gain insights into PLK2's biological effects might be to increase PLK2 intracellular levels with the aim of reproducing the slow progressive neuronal changes that occur in PD. The goal of this study was to develop and characterize a novel drug delivery system (DDS) for PLK2 cytosolic delivery using Total recirculating one machine system (TROMS), a technique capable of encapsulating fragile molecules while maintaining their native properties. A protocol for nanoparticle (NP) preparation using TROMS was set up. NPs showed a mean diameter of 257±15.61nm and zeta potential of -16±2mV, suitable for cell internalization. TEM and SEM images showed individual, spherical, dispersed NPs. The drug entrapment efficacy was 61.86±3.9%. PLK2-NPs were able to enter SH-SY5Y cells and phosphorylate α-syn at Ser-129, demonstrating that the enzyme retained its activity after the NP manufacturing process. This is the first study to develop a DDS for continuous intracellular delivery of PLK2. These promising results indicate that this novel nanotechnology approach could be used to elucidate the biological effects of PLK2 on dopaminergic neurons.
Collapse
Affiliation(s)
- C Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain
| | - E Garbayo
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | | | - V Sebastián
- Chemical & Environmental Engineering Department & Nanoscience Institute of Aragon, University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - M R Luquin
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain; Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
33
|
Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? JOURNAL OF PARKINSONS DISEASE 2017; 6:39-51. [PMID: 27003784 PMCID: PMC4927808 DOI: 10.3233/jpd-160779] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal accumulation of proteinaceous intraneuronal inclusions called Lewy bodies (LBs) is the neurpathological hallmark of Parkinson’s disease (PD) and related synucleinopathies. These inclusions are mainly constituted of a presynaptic protein, α-synuclein (α-syn). Over the past decade, growing amounts of studies reported an aberrant accumulation of phosphorylated α-syn at the residue S129 (pS129) in the brain of patients suffering from PD, as well as in transgenic animal models of synucleinopathies. Whereas only a small fraction of α-syn (<4%) is phosphorylated in healthy brains, a dramatic accumulation of pS129 (>90%) has been observed within LBs, suggesting that this post-translational modification may play an important role in the regulation of α-syn aggregation, LBs formation and neuronal degeneration. However, whether phosphorylation at S129 suppresses or enhances α-syn aggregation and toxicity in vivo remains a subject of active debate. The answer to this question has important implications for understanding the role of phosphorylation in the pathogenesis of synucleinopathies and determining if targeting kinases or phosphatases could be a viable therapeutic strategy for the treatment of these devastating neurological disorders. In the present review, we explore recent findings from in vitro, cell-based assays and in vivo studies describing the potential implications of pS129 in the regulation of α-syn physiological functions, as well as its implication in synucleinopathies pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Abid Oueslati
- Correspondence to: Abid Oueslati, Centre de Recherche du CHU de Québec-Université Laval, Axe Neuroscience et Départe-ment de Médecine Moléculaire de l’Université Laval, Québec G1V4G2, Canada. Tel.: +1 4185254444/Ext 49119; Fax: +1 4186542125; E-mail:
| |
Collapse
|
34
|
Hu ZB, Liao XH, Xu ZY, Yang X, Dong C, Jin AM, Lu H. PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells. Cancer Med 2015; 5:74-87. [PMID: 26625870 PMCID: PMC4708894 DOI: 10.1002/cam4.558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
TAp73, a member of the p53 tumor suppressor family, can substitute for p53 function, especially in p53‐null and p53‐mutant cells. However, TAp73 enrichment and phosphorylation change its transcriptional activity. Previously, we found that the antitumor function of TAp73 was reactivated by dephosphorylation. Polo‐like kinase 2 (PLK2) plays an important role in bone development. Using a biological information database and phosphorylation prediction software, we hypothesized that PLK2 phosphorylates TAp73 and inhibits TAp73 function in osteosarcomas. Actually,we determined that PLK2 physically binds to and phosphorylates TAp73 when TAp73 protein abundance is up‐regulated by cisplatin. PLK2‐phosphorylated TAp73 at residue Ser48 within the TA domain; phosphorylation of TAp73 was abolished by mutating this residue. Moreover, PLK2 inhibition combined with cisplatin treatment in osteosarcoma Saos2 cells up‐regulated p21 and puma mRNA expression to a greater extent than cisplatin treatment alone. Inhibiting PLK2 in TAp73‐enriched Saos2 cells resulted in inhibited cell proliferation, increased apoptosis, G1 phase arrest, and decreased cell invasion. However, these changes did not occur in TAp73 knockdown Saos2 cells. In conclusion, these findings reveal a novel PLK2 function in the phosphorylation of TAp73, which prevents TAp73 activity in osteosarcoma cells. Thereby, this research provides an insight into the clinical treatment of malignant tumors overexpressing TAp73.
Collapse
Affiliation(s)
- Zheng Bo Hu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Hong Liao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510280, China
| | - Zun Ying Xu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Yang
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Chao Dong
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - An Min Jin
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hai Lu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong, 510665, China
| |
Collapse
|
35
|
Rodríguez-Nogales C, Garbayo E, Carmona-Abellán MM, Luquin MR, Blanco-Prieto MJ. Brain aging and Parkinson's disease: New therapeutic approaches using drug delivery systems. Maturitas 2015; 84:25-31. [PMID: 26653838 DOI: 10.1016/j.maturitas.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022]
Abstract
The etiology and pathogenesis of Parkinson's disease (PD) is unknown, aging being the strongest risk factor for brain degeneration. Understanding PD pathogenesis and how aging increases the risk of disease would aid the development of therapies able to slow or prevent the progression of this neurodegenerative disorder. In this review we provide an overview of the most promising therapeutic targets and strategies to delay the loss of dopaminergic neurons observed both in PD and aging. Among them, handling alpha-synuclein toxicity, enhancing proteasome and lysosome clearance, ameliorating mitochondrial disruptions and modifying the glial environment are so far the most promising candidates. These new and conventional drugs may present problems related to their labile nature and to the difficulties in reaching the brain. Thus, we highlight the latest types of drug delivery system (DDS)-based strategies for PD treatment, including DDS for local and systemic drug delivery. Finally, the ongoing challenges for the discovery of new targets and the opportunities for DDS-based therapies to improve and efficacious PD therapy will be discussed.
Collapse
Affiliation(s)
- C Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Spain
| | - E Garbayo
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - M M Carmona-Abellán
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research (CIMA), University of Navarra, Spain
| | - M R Luquin
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain; Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research (CIMA), University of Navarra, Spain
| | - M J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
36
|
Hu Z, Xu Z, Liao X, Yang X, Dong C, Luk K, Jin A, Lu H. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73. Onco Targets Ther 2015; 8:3475-88. [PMID: 26640387 PMCID: PMC4662374 DOI: 10.2147/ott.s90302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background TAp73, a member of the p53 tumor suppressor family, is frequently overexpressed in malignant tumors in humans. TAp73 abundance and phosphorylation modification result in variations in transcriptional activity. In a previous study, we found that the antitumor function of TAp73 was reactivated by dephosphorylation in head and neck squamous cell carcinomas. Polo-like kinase 2 (PLK2) displayed a close relationship with the p53 family in affecting the fate of cells. Herein, we investigate the hypothesis that PLK2 phosphorylates TAp73 and inhibits TAp73 function. Materials and methods Head and neck squamous cell carcinoma cell lines and osteosarcoma cell lines were used as natural models of the different expression levels of TAp73. Phosphorylation predictor software Scansite 3.0 and the predictor GPS-polo 1.0 were used to analyze the phosphorylation sites. Coimmunoprecipitation, phosphor-tag Western blot, metabolic labeling, and indirect immunofluorescence assays were used to determine the interactions between PLK2 and TAp73. TAp73 activity was assessed by Western blot and reverse transcription polymerase chain reaction, which we used to detect P21 and PUMA, both downstream genes of TAp73. The physiological effects of PLK2 cross talk with TAp73 on cell cycle progress and apoptosis were observed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Results PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects. Conclusion These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73) which suppresses TAp73 functions. PLK2 promotes the survival of human tumor cells, a novel insight into the workings of malignant tumors characterized by TAp73 overexpression, and one that could speed the development of therapies.
Collapse
Affiliation(s)
- ZhengBo Hu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - ZunYing Xu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - XiaoHong Liao
- The State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao Yang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Cao Dong
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - KuaDi Luk
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - AnMin Jin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai Lu
- Department of Orthopedics, the Third Affiliated Hospital of the Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; Academy of Orthopedics, Guangdong Province, People's Republic of China
| |
Collapse
|
37
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|