1
|
Zeiss R, Schönfeldt-Lecuona C, Connemann BJ, Hafner S, Gahr M. Hepatotoxicity of antipsychotics: an exploratory pharmacoepidemiologic and pharmacodynamic study integrating FAERS data and in vitro receptor-binding affinities. Front Psychiatry 2024; 15:1479625. [PMID: 39469476 PMCID: PMC11513306 DOI: 10.3389/fpsyt.2024.1479625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Antipsychotic psychopharmacotherapy is associated with the risk of drug-induced liver injury (DILI). However, understanding specific risk factors remains challenging due to limited data. This study investigates the relationship between receptor binding affinities and occupancies of antipsychotics and their associated hepatotoxic risks. Methods A disproportionality analysis with calculation of the Reporting Odds Ratio (ROR) and the Information Component (IC) was conducted using data from the FDA Adverse Event Reporting System (FAERS) to identify signals related to the Standardised MedDRA Query "drug-related hepatic disorders", which served as a proxy for drug-induced hepatotoxicity. This was followed by a pharmacoepidemiologic-pharmacodynamic approach to investigate the relationship between the ROR and substance-related receptor binding affinities and occupancy, which was estimated based on in vitro receptor-binding profiles. Results Significant signals were identified for several antipsychotics, including chlorpromazine, loxapine, olanzapine, and quetiapine, with chlorpromazine and loxapine showing the highest RORs for DILI. Gender-specific analysis revealed a higher frequency of signals in female patients. Statistically significant negative correlations were identified between the ROR for drug-related hepatic disorders and the affinity for serotonin receptor 5-HT1A (r (17) = -0.68, p = 0.0012), while a positive correlation was observed for cholinergic receptors (r (17) = 0.46, p = 0.048). No significant correlations were found related to other receptors or drug properties. Conclusion Our findings suggest that the serotonin and probably the cholinergic system may play a role in the development of DILI related to antipsychotic medications. The identification of antipsychotics with a higher association with DILI, such as chlorpromazine, underscores the need for careful monitoring in clinical practice. However, our findings need further longitudinal studies to confirm causality. A better understanding of the associations may inform clinical decision-making, particularly in patients with an increased susceptibility to liver damage.
Collapse
Affiliation(s)
- René Zeiss
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | | | - Susanne Hafner
- Institute of Experimental and Clinical Pharmacology, Toxicity and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - Maximilian Gahr
- District Hospital for Psychiatry, Psychotherapy and Psychosomatic Medicine Schloss Werneck, Werneck, Germany
| |
Collapse
|
2
|
Kim J, Kim BK, Moh SH, Jang G, Ryu JY. Investigation of the General Molecular Mechanisms of Gallic Acid via Analyses of Its Transcriptome Profile. Int J Mol Sci 2024; 25:2303. [PMID: 38396979 PMCID: PMC10888745 DOI: 10.3390/ijms25042303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase β and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.
Collapse
Affiliation(s)
- Jiyeon Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Bo Kyung Kim
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| |
Collapse
|
3
|
Li ZC, Xu FF, Fu JT, Ouyang SX, Cao Q, Yan YY, Li DJ, Shen FM, Ni M. Sting mutation attenuates acetaminophen-induced acute liver injury by limiting NLRP3 activation. Int Immunopharmacol 2023; 125:111133. [PMID: 38149573 DOI: 10.1016/j.intimp.2023.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP), a widely used effective nonsteroidal anti-inflammatory drug, leads to acute liver injury at overdose worldwide. Evidence showed that the severity of liver injury associated with the subsequent involvement of inflammatory mediators and immune cells. The innate immune stimulator of interferon genes protein (STING) pathway was critical in modulating inflammation. Here, we show that STING was activated and inflammation was enhanced in the liver in APAP-overdosed C57BL/6J mice, and Sting mutation (Stinggt/gt) mice exhibited less liver damage. Multiplexing flow cytometry displayed that Sting mutation changed hepatic recruitment and replacement of macrophages/monocytes in APAP-overdosed mice, which was inclined to anti-inflammation. In addition, Sting mutation limited NLRP3 activation in the liver in APAP-overdosed mice, and inhibited the expression of inflammatory cytokines. Finally, MCC950, a potent and selective NLRP3 inhibitor, significantly ameliorated APAP-induced liver injury and inflammation. Besides, pretreatment of MCC950 in C57 mice resulted in changes of immune cells infiltration in the liver similar to Stinggt/gt mice. Our study revealed that STING played a crucial role in APAP-induced acute liver injury, possibly by maintaining liver immune cells homeostasis and inhibiting NLRP3 inflammasome activation, suggesting that inhibiting STING-NLRP3 pathway might be a potential therapeutic strategy for acute liver injury.
Collapse
Affiliation(s)
- Zi-Chen Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-Fang Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Tao Fu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Cao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yu-Ying Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Min Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Cheng K, Chahdi A, Larabee SM, Tolaymat M, Sundel MH, Drachenberg CB, Zhan M, Hu S, Said AH, Shang AC, Xie G, Alizadeh M, Moura NS, Bafford AC, Williams RT, Hanna NN, Raufman JP. Muscarinic receptor agonist-induced βPix binding to β-catenin promotes colon neoplasia. Sci Rep 2023; 13:16920. [PMID: 37805544 PMCID: PMC10560271 DOI: 10.1038/s41598-023-44158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
M3 muscarinic receptors (M3R) modulate β-catenin signaling and colon neoplasia. CDC42/RAC guanine nucleotide exchange factor, βPix, binds to β-catenin in colon cancer cells, augmenting β-catenin transcriptional activity. Using in silico, in vitro, and in vivo approaches, we explored whether these actions are regulated by M3R. At the invasive fronts of murine and human colon cancers, we detected co-localized nuclear expression of βPix and β-catenin in stem cells overexpressing M3R. Using immunohistochemistry, immunoprecipitation, proximity ligand, and fluorescent cell sorting assays in human tissues and established and primary human colon cancer cell cultures, we detected time-dependent M3R agonist-induced cytoplasmic and nuclear association of βPix with β-catenin. βPix knockdown attenuated M3R agonist-induced human colon cancer cell proliferation, migration, invasion, and expression of PTGS2, the gene encoding cyclooxygenase-2, a key player in colon neoplasia. Overexpressing βPix dose-dependently augmented β-catenin binding to the transcription factor TCF4. In a murine model of sporadic colon cancer, advanced neoplasia was attenuated in conditional knockout mice with intestinal epithelial cell deficiency of βPix. Expression levels of β-catenin target genes and proteins relevant to colon neoplasia, including c-Myc and Ptgs2, were reduced in colon tumors from βPix-deficient conditional knockout mice. Targeting the M3R/βPix/β-catenin axis may have therapeutic potential.
Collapse
Affiliation(s)
- Kunrong Cheng
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ahmed Chahdi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shien Hu
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anan H Said
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aaron C Shang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Guofeng Xie
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 20201, USA
| | - Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrea C Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Richelle T Williams
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nader N Hanna
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA.
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Ivanović SR, Borozan N, Miladinović DĆ, Živković I, Borozan S. The relationship between the cholinergic mechanism of toxicity and oxidative stress in rats during subacute diazinon poisoning. Toxicol Appl Pharmacol 2023; 473:116598. [PMID: 37331382 DOI: 10.1016/j.taap.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Diazinon is an organophosphate pesticide (OP) that has significant potential for accidental and intentional poisoning of wildlife, domestic animals and humans. The aim of the study is to investigate the correlation between cholinesterase activity and oxidative stress parameters in liver and diaphragm by continuous monitoring as a function of time during prolonged use of diazinon. Wistar rats were treated orally with diazinon (55 mg/kg/day): 7, 14, 21 and 28 days. At the end of each period, blood, liver and diaphragm were collected to examine cholinesterase activity and enzymatic/non-enzymatic oxidative stress parameters: superoxide dismutase 1 (SOD1), catalase (CAT), thiobarbituric acid substances (TBARS), protein carbonyl groups. In all four time periods, there was a significant change in acetylcholinesterase (AChE) in erythrocytes and butyrylcholinesterase (BuChE) in blood plasma, CAT in liver and diaphragm and SOD1 in diaphragm. Parameters significantly altered during the cholinergic crisis included: cholinesterases and TBARS in liver and diaphragm and partially SOD1 in liver. Protein carbonyl groups in liver and diaphragm were significantly altered outside the cholinergic crisis. In the liver, there was a very strong negative correlation between BuChE and TBARS in all four time periods and BuChE and CAT on day 7. In the diaphragm, a very strong negative correlation was found between AChE and TBARS at days 7 and 14, and a very strong positive correlation between AChE and SOD1 at days 14, 21 and 28. A better understanding of the relationship between cholinergic overstimulation and oxidative stress may help to better assess health status in prolonged OPs intoxication.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| | | | | | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| |
Collapse
|
6
|
Xu W, Liu Y, Liu Q, Chen H, Lei L, Shen X, Liu L. Procyanidins Ameliorate Acetaminophen-induced Acute Liver Injury via Activating the Nrf-2/SOD-1 Signal Pathway. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221144812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Objectives An overdose of acetaminophen (APAP) usually leads to acute liver injury, and oxidative stress is one of the fundamental mechanisms used to characterize it. Procyanidins (PCs) can reduce the oxidative stress in the liver of mice. This study aimed to investigate the potential protective role of PCs against APAP-induced acute liver injury. Materials and Methods Experiments were performed on male Kunming mice in six groups: phosphate-buffered saline, PCs, APAP, and PCs pretreated with 10, 50, and 100 mg/kg. The mice were peritoneally injected with PCs 30 min before the administration of APAP. First, survival rates of mice were scored every 12 hr for three days in succession. Furthermore, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (T-Bil), total cholesterol (TC), triglyceride (TG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) were determined. Additionally, histological analysis and hepatic oxidative stress including the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) were assessed. Finally, the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD-1 was detected by Western blotting. Results The data indicated that PCs improved survival rates of APAP-induced liver injury in mice models. Moreover, PCs could reduce the elevated serum levels of ALT, AST, T-Bil, TC, TG, TNF-α, IL-1β, and IL-6 due to APAP exposure with a dose-dependent manner. Besides, PCs pretreatment attenuated hepatic histopathological damage and oxidative stress which manifested the increases of SOD and GSH, whereas the decrease of MDA. Furthermore, PCs enhanced the protein expression of Nrf2 and SOD-1 in the PCs pretreatment groups compared with the APAP group. Conclusion PCs ameliorated APAP-induced acute liver injury, and Nrf2 signaling pathway modulating antioxidative stress might be involved in it.
Collapse
Affiliation(s)
- Wanting Xu
- Department of Pediatrics, Chengdu Second People’s Hospital, Chengdu, People’s Republic of China
| | - Yan Liu
- Department of Pediatrics, Chengdu Second People’s Hospital, Chengdu, People’s Republic of China
| | - Qun Liu
- Department of Pediatrics, Chengdu Second People’s Hospital, Chengdu, People’s Republic of China
| | - Huan Chen
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Langhuan Lei
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaojia Shen
- Department of Pediatrics, Chengdu Second People’s Hospital, Chengdu, People’s Republic of China
| | - Li Liu
- Department of Pediatrics, Chengdu Second People’s Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Exp Biol Med (Maywood) 2023; 248:412-424. [PMID: 36670547 DOI: 10.1177/15353702221147563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetaminophen (APAP), a widely used antipyretic and analgesic drug in clinics, is relatively safe at therapeutic doses; however, APAP overdose may lead to fatal acute liver injury. Currently, N-acetylcysteine (NAC) is clinically used as the main antidote for APAP poisoning, but its therapeutic effect remains limited owing to rapid disease progression and the general diagnosis of advanced poisoning. As is well known, APAP-induced hepatotoxicity (AIH) is mainly caused by the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), and the toxic mechanisms of AIH are complicated. Several cellular processes are involved in the pathogenesis of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction. Mitochondrial oxidative stress and dysfunction are the major cellular events associated with APAP-induced liver injury. Many biomolecules involved in these biological processes are potential therapeutic targets for AIH. Therefore, there is an urgent need to comprehensively clarify the molecular mechanisms underlying AIH and to explore novel therapeutic strategies. This review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH.
Collapse
Affiliation(s)
- Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo 315040, China
| | - Zhaowei Zhang
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| |
Collapse
|
8
|
Nilotinib alleviated acetaminophen-induced acute hepatic injury in mice through inhibiting HIF-1alpha/VEGF-signaling pathway. Int Immunopharmacol 2022; 112:109268. [PMID: 36182876 DOI: 10.1016/j.intimp.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
Abstract
The current study inspects the impact of nilotinib (Nil) on liver damage caused by acetaminophen (APAP). Adult male mice were pre-treated with nilotinib (Nil,5 and 10 mg/kg) orally once daily for 7 days followed by a single intraperitoneal administration of acetaminophen (APAP, 200 mg/kg) on the 7th day. The results indicated that nilotinib significantly decreased APAP-induced elevation of biochemical markers (ALT, AST, ALP, LDH, ɤ GT, and total bilirubin). Additionally, nilotinib significantly increased hepatic GSH and SOD content, while decreased MDA content. Nil significantly suppressed the expression of HIF-1α and VEGF. Histopathological examination of hepatic tissue from Nil-treated mice revealed that Nil reduced acetaminophen-induced necrosis.
Collapse
|
9
|
Wang K, Yang L, Zhou J, Pan X, He Z, Liu J, Zhang Y. Smilax china L. Polysaccharide Alleviates Oxidative Stress and Protects From Acetaminophen-Induced Hepatotoxicity via Activating the Nrf2-ARE Pathway. Front Pharmacol 2022; 13:888560. [PMID: 35571121 PMCID: PMC9098950 DOI: 10.3389/fphar.2022.888560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
The alleviation of oxidative stress is considered an effective treatment for acetaminophen (APAP)-induced acute liver injury (AILI). However, it remains unknow whether the potential antioxidant Smilax china L. polysaccharide (SCLP) protects against AILI. In this study, in vitro and in vivo experiments were conducted to verify the hepatoprotective effect of SCLP against AILI and explore the potential mechanism. We found that SCLP relieved liver histopathological changes; reversed the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and reactive oxygen species (ROS); reversed the change in liver myeloperoxidase (MPO) activity; and enhanced liver antioxidant (GSH, GSH-Px, and t-SOD) levels in APAP-treated mice, thereby significantly reducing APAP-induced liver toxicity. SCLP rescued the cell viability and alleviated oxidative stress in H2O2-treated mouse AML12 (Alpha mouse liver 12) hepatocytes. The results of the mechanistic studies showed that SCLP upregulated nuclear factor E2 related factor (Nrf2) expression, promoted Nrf2 nuclear translocation, and enhanced the ability of Nrf2 to bind antioxidant response elements (AREs). Furthermore, SCLP activated Nrf2-ARE pathway, thus upregulating the expression of oxidative stress-related proteins heme oxygenase 1(HO-1), NAD(P)H quinone dehydrogenase 1(NQO-1) and glutamic acid cysteine ligase catalytic subunit (GCLC). In conclusion, this study confirmed the close correlation between liver protection by SCLP upon exposure to APAP and activated of the Nrf2-ARE pathway. These findings suggest that SCLP is an attractive therapeutic candidate drug for the treatment of AILI.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xianglin Pan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Yu Zhang,
| |
Collapse
|
10
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
11
|
Wang YQ, Geng XP, Wang MW, Wang HQ, Zhang C, He X, Liang SM, Xu DX, Chen X. Vitamin D deficiency exacerbates hepatic oxidative stress and inflammation during acetaminophen-induced acute liver injury in mice. Int Immunopharmacol 2021; 97:107716. [PMID: 33951559 DOI: 10.1016/j.intimp.2021.107716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Several experiments confirmed that vitamin D3 protected against acetaminophen (APAP)-induced acute liver injury (ALI). This research aimed to evaluate the influence of vitamin D deficiency (VDD) on APAP-induced ALI. In VDD and VDD + APAP groups, mice were fed with VDD diet. In APAP and VDD + APAP groups, mice were intraperitoneally injected with a sublethal dose of APAP (150 mg/kg). A sublethal dose of APAP caused a slight elevation of ALT and AST. Interestingly, APAP-induced elevation of ALT and AST was aggravated in VDD-fed mice. APAP-induced hepatic necrosis was exacerbated in VDD-fed mice. In addition, APAP-induced hepatocyte death, measured using TUNEL assay, was exacerbated in VDD-fed mice. Additional experiment showed that APAP-induced hepatic GSH depletion and lipid peroxidation were exacerbated in VDD-fed mice. Moreover, APAP-induced upregulation of antioxidant genes, such as hepatic heme oxygenase-1 (Ho-1), glutathione peroxidase (Gshpx), superoxide dismutase 1 (Sod1) and catalase enzymes (Cat), was aggravated in VDD-fed mice. Although a sublethal dose of APAP did not cause hepatic inflammation, hepatic proinflammatory cytokines and chemokines, such as Tnf-α, Kc, Mcp-1 and Mip2, were upregulated in VDD-fed mice treated with APAP. These results provide experimental data that VDD exacerbates hepatic oxidative stress and inflammation during APAP-induced ALI.
Collapse
Affiliation(s)
- Ya-Qi Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Xiao-Pan Geng
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Ming-Wei Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xue He
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Song B, Zhang C, Hu W, Guo C, Xia Z, Hu W, Qin M, Jiang W, Lv J, Xu D, Zhang S, Fang J. Nano-designed carbon monoxide donor SMA/CORM2 exhibits protective effect against acetaminophen induced liver injury through macrophage reprograming and promoting liver regeneration. J Control Release 2021; 331:350-363. [PMID: 33482271 DOI: 10.1016/j.jconrel.2021.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) induced liver injury is the most common drug-induced liver injury, accounting for the top cause of acute liver failure in the United State, however the therapeutic options for it is very limited. Excess generation of reactive oxygen species (ROS) and the subsequent inflammatory responses are the major factors of the liver injury. Carbon monoxide (CO) is an important gaseous molecule with versatile functions including anti-oxidation and anti-inflammation, and we previous reported the therapeutic potential of a nano-designed CO donor SMA/CORM2 in a dextran sulphate sodium (DSS) induced mouse colitis model. In this context, we investigated the effect of SMA/CORM2 in an APAP-induced mouse acute liver injury model and tackled the mechanisms involved. We found upregulation of heme oxygenase-1 (HO-1, endogenous CO generating enzyme) and the dynamic changes of macrophage polarization (pro-inflammatory M1/anti-inflammatory M2), which played important roles in the process of live injury. SMA/CORM2 treatment remarkably increased the CO levels in the liver and circulation, by which oxidative stresses in the liver were significantly reduced, and more importantly, it remarkably suppressed the expression of M1 macrophages but alternatively increased M2 polarization. Consequently the liver injury was significantly ameliorated, and the proliferation and regeneration were greatly promoted through the Pi3k/Akt/mTOR signaling pathway. The shift of macrophage polarization accompanied with the downregulated hypoxia-inducible factor-1α (HIF-1α) level. These findings suggested CO released from SMA/CORM2 manipulated the macrophage reprogramming toward M2 phenotype by inhibiting HIF-1α, which subsequently protected liver against inflammatory injury and benefited tissue repair. Moreover, compared to native CORM2, SMA/CORM2 exhibited superior bioavailability and protective effect. We thus anticipate the application of SMA/CORM2 as a therapeutic regimen for APAP induced liver injury as well as other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Wanxia Hu
- School of Health Management, Anhui Medical University, No.81, MeiShan Road, Hefei 230032, Anhui, China
| | - Mingqiang Qin
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Weiying Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jinwei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230022, China; MOE Key Laboratory of Population Health Across Life Cycle / Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
13
|
Song R, Jia Z, Xu Y, Zhang X, Wei R, Sun J. Saponification to improve the antioxidant activity of astaxanthin extracts from Penaeus sinensis (Solenocera crassicornis) by-products and intervention effect on Paracetamol-induced acute hepatic injury in rat. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
14
|
Jadeja RN, Jones MA, Fromal O, Powell FL, Khurana S, Singh N, Martin PM. Loss of GPR109A/HCAR2 induces aging-associated hepatic steatosis. Aging (Albany NY) 2020; 11:386-400. [PMID: 30659164 PMCID: PMC6366969 DOI: 10.18632/aging.101743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
GPR109A agonists have been used for the treatment of obesity however, the role of GPR109A in regulating aging-associated alterations in lipid metabolism is unknown. In this study we used Gpr109a-/- mice to investigate the effect of aging in the regulation of lipid accumulation. We observed that in mouse and human livers, in addition to Kupffer cells, GPR109A is expressed in hepatocytes. Over 12 months, compared to wild type (WT), Gpr109a-/- mice gained significantly more weight. Food intake and levels of serum lipids were similar among both groups. Compared to age-matched WT mice, 12-months old Gpr109a-/- mice had significantly increased liver weight, hepatic steatosis and serum markers of liver injury. The fatty liver phenotype in Gpr109a-/- mice was associated with increased hepatic expression of lipogenesis genes and decreased expression of lipolysis genes. Gpr109a-/- mice had significantly increased fat tissues, which was associated with significant increase in adipocyte diameter and surface area. Adipose tissue from Gpr109a-/- mice had increased expression of lipogenesis genes; however, expression of lipolytic genes was similar in both groups. Collectively, these results indicate that during aging, GPR109A modulates de novo lipid accumulation in liver and adipose tissue, and its dysregulation can lead to age-associated obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Malita A Jones
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ollya Fromal
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,Education Innovation Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sandeep Khurana
- Division of Gastroenterology, Hepatology and Nutrition and Weight Management, Geisinger Medical Center, Danville, PA 17822, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Luo L, Zhang G, Mao L, Wang P, Xi C, Shi G, Leavenworth JW. Group II muscarinic acetylcholine receptors attenuate hepatic injury via Nrf2/ARE pathway. Toxicol Appl Pharmacol 2020; 395:114978. [PMID: 32234387 DOI: 10.1016/j.taap.2020.114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Parasympathetic nervous system dysfunction is common in patients with liver disease. We have previously shown that muscarinic acetylcholine receptors (mAchRs) play an important role in the regulation of hepatic fibrosis and that the receptor agonists and antagonists affect hepatocyte proliferation. However, little is known about the impact of the different mAchR subtypes and associated signaling pathways on liver injury. Here, we treated the human liver cell line HL7702 with 10 mmol/L carbon tetrachloride (CCL4) to induce hepatocyte damage. We found that CCL4 treatment increased the protein levels of group I mAchRs (M1, M3, M5) but reduced the expression of group II mAchRs (M2, M4) and activated the Nrf2/ARE and MAPK signaling pathways. Although overexpression of M1, M3, or M5 led to hepatocyte damage with an intact Nrf2/ARE pathway, overexpression of M2 or M4 increased, and siRNA-mediated knockdown of either M2 or M4 decreased the protein levels of Nrf2 and its downstream target genes. Moreover, CCL4 treatment increased serum ALT levels more significantly, but only induced slight changes in the expression of mAchRs, NQO1 and HO1, while reducing the expression of M2 and M4 in liver tissues of Nrf2-/- mice compared to wild type mice. Our findings suggest that group II mAchRs, M2 and M4, activate the Nrf2/ARE signaling pathway, which regulates the expression of M2 and M4, to protect the liver from CCL4-induced injury.
Collapse
Affiliation(s)
- Lin Luo
- School of Pharmacy, Nantong University, PR China..
| | | | - Liuliu Mao
- School of Pharmacy, Nantong University, PR China
| | - Pengbo Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Chenghao Xi
- School of Pharmacy, Nantong University, PR China
| | - Gaoyong Shi
- School of Pharmacy, Nantong University, PR China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA..
| |
Collapse
|
16
|
Chang L, Xu D, Zhu J, Ge G, Kong X, Zhou Y. Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives. Front Pharmacol 2020; 11:313. [PMID: 32218738 PMCID: PMC7078345 DOI: 10.3389/fphar.2020.00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury worldwide, and mitochondrial oxidative stress is considered the major event responsible for APAP-associated liver injury (ALI). Despite the identification of N-acetyl cysteine, a reactive oxygen species scavenger that is regarded as an effective clinical treatment, therapeutic effectiveness remains limited due to rapid disease progression and diagnosis at a late phase, which leads to the need to explore various therapeutic approaches. Since the early 1990s, a number of natural products and herbs have been found to have hepatoprotective effects against APAP-induced hepatotoxicity in terms of acute liver failure prevention and therapeutic amelioration of ALI. In this review, we summarize the hepatoprotective effects and mechanisms of medicinal plants, including herbs and fruit extracts, along with future perspectives that may provide guidance to improve the current status of herbal therapy against ALI.
Collapse
Affiliation(s)
- Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
M3 muscarinic receptor activation reduces hepatocyte lipid accumulation via CaMKKβ/AMPK pathway. Biochem Pharmacol 2019; 169:113613. [PMID: 31445019 DOI: 10.1016/j.bcp.2019.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Previously, we reported that hepatic muscarinic receptors modulate both acute and chronic liver injury, however, the role of muscarinic receptors in fatty liver disease is unclear. We observed in patients who underwent weight loss surgery, a decrease in hepatic expression of M3 muscarinic receptors (M3R). We also observed that fat loading of hepatocytes, increased M3R expression. Based on these observations, we tested the hypothesis that M3R regulate hepatocyte lipid accumulation. Incubation of AML12 hepatocytes with 1 mM oleic acid resulted in lipid accumulation that was significantly reduced by co-treatment with a muscarinic agonist (pilocarpine or carbachol), an effect blocked by atropine (a muscarinic antagonist). Similar treatment of Hepa 1-6 cells, a mouse hepatoblastoma cell line, showed comparable results. In both, control and fat-loaded AML12 cells, pilocarpine induced time-dependent AMPKα phosphorylation and significantly up-regulated lipolytic genes (ACOX1, CPT1, and PPARα). Compound C, a selective and reversible AMPK inhibitor, significantly blunted pilocarpine-mediated reduction of lipid accumulation and pilocarpine-mediated up-regulation of lipolytic genes. BAPTA-AM, a calcium chelator, and STO-609, a calcium/calmodulin-dependent protein kinase kinase inhibitor, attenuated agonist-induced AMPKα phosphorylation. Finally, M3R siRNA attenuated agonist-induced AMPKα phosphorylation as well as agonist-mediated reduction of hepatocyte steatosis. In conclusion, this proof-of-concept study demonstrates that M3R has protective effects against hepatocyte lipid accumulation by activating AMPK pathway and is a potential therapeutic target for non-alcoholic fatty liver disease.
Collapse
|
18
|
Cerles O, Gonçalves TC, Chouzenoux S, Benoit E, Schmitt A, Bennett Saidu NE, Kavian N, Chéreau C, Gobeaux C, Weill B, Coriat R, Nicco C, Batteux F. Preventive action of benztropine on platinum-induced peripheral neuropathies and tumor growth. Acta Neuropathol Commun 2019; 7:9. [PMID: 30657060 PMCID: PMC6337872 DOI: 10.1186/s40478-019-0657-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous cholinergic system plays a key role in neuronal cells, by suppressing neurite outgrowth and myelination and, in some cancer cells, favoring tumor growth. Platinum compounds are widely used as part of first line conventional cancer chemotherapy; their efficacy is however limited by peripheral neuropathy as a major side-effect. In a multiple sclerosis mouse model, benztropine, that also acts as an anti-histamine and a dopamine re-uptake inhibitor, induced the differentiation of oligodendrocytes through M1 and M3 muscarinic receptors and enhanced re-myelination. We have evaluated whether benztropine can increase anti-tumoral efficacy of oxaliplatin, while preventing its neurotoxicity.We showed that benztropine improves acute and chronic clinical symptoms of oxaliplatin-induced peripheral neuropathies in mice. Sensory alterations detected by electrophysiology in oxaliplatin-treated mice were consistent with a decreased nerve conduction velocity and membrane hyperexcitability due to alterations in the density and/or functioning of both sodium and potassium channels, confirmed by action potential analysis from ex-vivo cultures of mouse dorsal root ganglion sensory neurons using whole-cell patch-clamp. These alterations were all prevented by benztropine. In oxaliplatin-treated mice, MBP expression, confocal and electronic microscopy of the sciatic nerves revealed a demyelination and confirmed the alteration of the myelinated axons morphology when compared to animals injected with oxaliplatin plus benztropine. Benztropine also prevented the decrease in neuronal density in the paws of mice injected with oxaliplatin. The neuroprotection conferred by benztropine against chemotherapeutic drugs was associated with a lower expression of inflammatory cytokines and extended to diabetic-induced peripheral neuropathy in mice.Mice receiving benztropine alone presented a lower tumor growth when compared to untreated animals and synergized the anti-tumoral effect of oxaliplatin, a phenomenon explained at least in part by benztropine-induced ROS imbalance in tumor cells.This report shows that blocking muscarinic receptors with benztropine prevents peripheral neuropathies and increases the therapeutic index of oxaliplatin. These results can be rapidly transposable to patients as benztropine is currently indicated in Parkinson's disease in the United States.
Collapse
|
19
|
Brown SA, Axenfeld E, Stonesifer EG, Hutson W, Hanish S, Raufman JP, Urrunaga NH. Current and prospective therapies for acute liver failure. Dis Mon 2018; 64:493-522. [DOI: 10.1016/j.disamonth.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Upadhyay KK, Jadeja RN, Thadani JM, Joshi A, Vohra A, Mevada V, Patel R, Khurana S, Devkar RV. Carbon monoxide releasing molecule A-1 attenuates acetaminophen-mediated hepatotoxicity and improves survival of mice by induction of Nrf2 and related genes. Toxicol Appl Pharmacol 2018; 360:99-108. [PMID: 30273691 DOI: 10.1016/j.taap.2018.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
Acute liver injury is frequently associated with oxidative stress. Here, we investigated the therapeutic potential of carbon monoxide releasing molecule A-1 (CORM A-1) in oxidative stress-mediated liver injury. Overnight-fasted mice were injected with acetaminophen (APAP; 300 mg/kg; intraperitoneally) and were sacrificed at 4 and 12 h. They showed elevated levels of serum transaminases, depleted hepatic glutathione (GSH) and hepatocyte necrosis. Mice injected with CORM A-1 (20 mg/kg) 1 h after APAP administration, had reduced serum transaminases, preserved hepatic GSH and reduced hepatocyte necrosis. Mice that received a lethal dose of APAP (600 mg/kg), died by 10 h; but those co-treated with CORM A-1 showed a 50% survival. Compared to APAP-treated mice, livers from those co-treated with CORM A-1, had upregulation of Nrf2 and ARE genes (HO-1, GCLM and NQO-1). APAP-treated mice had elevated hepatic mRNA levels of inflammatory genes (Nf-κB, TNF-α, IL1-β and IL-6), an effect blunted in those co-treated with CORM A-1. In tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells, CORM A-1 augmented cell viability, reduced oxidative stress, activated the nuclear factor erythroid 2-related factor 2 (Nrf2) and anti-oxidant response element (ARE) genes. The molecular docking profile of CO in the kelch domain of Keap1 protein suggested that CO released from CORM A-1 mediated Nrf2 activation. Collectively, these data indicate that CORM A-1 reduces oxidative stress by upregulating Nrf2 and related genes, and restoring hepatic GSH, to reduce hepatocyte necrosis and thus minimize liver injury that contributes to an overall improved survival rate.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912,USA
| | - Jaymesh M Thadani
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Apeksha Joshi
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Aliasgar Vohra
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Vishal Mevada
- Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Rajesh Patel
- Bioinformatics and Supercomputer lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India
| | - Sandeep Khurana
- Division of Gastroenterology, Hepatology and Nutrition and Weight Management, Geisinger Medical Center, Danville, PA 17822, USA
| | - Ranjitsinh V Devkar
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
21
|
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018; 17:274-283. [PMID: 29753208 PMCID: PMC6006912 DOI: 10.1016/j.redox.2018.04.019] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in many developed countries. Mitochondrial oxidative stress is considered to be the predominant cellular event in APAP-induced liver injury. Accordingly, N-acetyl cysteine, a known scavenger of reactive oxygen species (ROS), is recommended as an effective clinical antidote against APAP-induced acute liver injury (AILI) when it is given at an early phase; however, the narrow therapeutic window limits its use. Hence, the development of novel therapeutic approaches that can offer broadly protective effects against AILI is clearly needed. To this end, it is necessary to better understand the mechanisms of APAP hepatotoxicity. Up to now, in addition to mitochondrial oxidative stress, many other cellular processes, including phase I/phase II metabolism, endoplasmic reticulum stress, autophagy, sterile inflammation, microcirculatory dysfunction, and liver regeneration, have been identified to be involved in the pathogenesis of AILI, providing new targets for developing more effective therapeutic interventions against APAP-induced liver injury. In this review, we summarize intracellular and extracellular events involved in APAP hepatotoxicity, along with emphatic discussions on the possible therapeutic approaches targeting these different cellular events.
Collapse
Affiliation(s)
- Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yazhen Huo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
22
|
Wang X, Liu J, Zhang X, Zhao S, Zou K, Xie J, Wang X, Liu C, Wang J, Wang Y. Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:90-97. [PMID: 29425659 DOI: 10.1016/j.phymed.2017.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Oxidative stress is concomitant with acetaminophen (APAP)-induced hepatotoxicity, which has been highlighted as therapeutic targets for such diseases. The berries of Seabuckthorn (Hippophae rhamnoides L.) have been traditionally used in Tibetan medicine for thousands of years. The effect of Seabuckthorn berry polysaccharide on drug- induced liver injury (DILI) has not yet been elucidated. PURPOSE This study aims to investigate the protective effects and mechanisms of Seabuckthorn polysaccharide (SP) against APAP-induced hepatotoxicity. STUDY DESIGN Sixty C57BL/6 mice were randomly divided into six groups (n = 10 per group), namely the control group (Ctrl), APAP-induced-liver injury group (APAP), NAC pretreated group (NAC), 100 mg/kg SP pretreated group (APAP/SP100), 200 mg/kg SP pretreated group (APAP/SP200) and 200 mg/kg SP pretreated group without APAP challenge (SP200). SP was given orally to mice for 30 consecutive days prior to APAP exposure (300 mg/kg). NAC (150 mg/kg) was administrated 1 h before APAP challenge. METHODS ALT and AST were detected 16 h after APAP treatment; Hepatic expression of GSH, SOD, NO, iNOS and GSH-Px were examined. The expression of p-JNK, Bcl-2/Bax, p62, Keap-1 and SOD-2 was detected by Western blotting. The expression of Nrf-2 and its target genes HO-1, GCLC and NQO-1 were analyzed by RT-PCR and Western blotting. RESULTS Pretreatment with SP led to decreased levels of ALT and AST in APAP mice, without affecting APAP metabolism. This was accompanied by diminished liver injuries, increased levels of GSH and GSH-Px, reduced NO and iNOS expression. SP increased the activity of SOD as well as SOD-2 expression in APAP mice. SP suppressed APAP-induced JNK phosphorylation and increased the ratio of Bcl-2/Bax. Furthermore, SP decreased the expression of Keap-1 and increased the nuclear expression of Nrf-2. The expression of Nrf-2 target gene HO-1 was increased by SP pretreatment in APAP mice. CONCLUSION SP alleviates APAP-induced hepatotoxicity. The protective effects of SP are associated with the activation of the Nrf-2/HO-1-SOD-2 signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jingran Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Xiaohui Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Shimin Zhao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kai Zou
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jiming Xie
- Clinical Laboratory, Inner Mongolia People's Hospital, Hohhot, 010010, PR China
| | - Xinxu Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chunyan Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jinling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| |
Collapse
|
23
|
Luo L, Xi C, Xu T, Zhang G, Qun E, Zhang W. Muscarinic receptor mediated signaling pathways in hepatocytes from CCL4 - induced liver fibrotic rat. Eur J Pharmacol 2017; 807:109-116. [DOI: 10.1016/j.ejphar.2017.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
|
24
|
Wong-Guerra M, Jiménez-Martin J, Pardo-Andreu GL, Fonseca-Fonseca LA, Souza DO, de Assis AM, Ramirez-Sanchez J, Del Valle RMS, Nuñez-Figueredo Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol Res 2017; 39:649-659. [PMID: 28398193 DOI: 10.1080/01616412.2017.1312775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Gilberto L Pardo-Andreu
- c Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | - Luis A Fonseca-Fonseca
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Diogo O Souza
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Jeney Ramirez-Sanchez
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Yanier Nuñez-Figueredo
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
25
|
Expression of muscarinic acetylcholine receptors in hepatocytes from rat fibrotic liver. ACTA ACUST UNITED AC 2017; 69:73-81. [DOI: 10.1016/j.etp.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023]
|
26
|
Zhao Z, Azad R, Yang JH, Siroky MB, Azadzoi KM. Progressive changes in detrusor function and micturition patterns with chronic bladder ischemia. Investig Clin Urol 2016; 57:249-59. [PMID: 27437534 PMCID: PMC4949689 DOI: 10.4111/icu.2016.57.4.249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022] Open
Abstract
Purpose Lower urinary tract symptoms (LUTS) are bothersome constellation of voiding symptoms in men and women as they age. Multiple factors and comorbidities are attributed to this problem but underlying mechanisms of nonobstructive nonneurogenic detrusor overactivity, detrusor underactivity and LUTS remain largely unknown. Our goal was to characterize detrusor function and voiding patterns in relation to muscarinic receptors expression, nerve fiber density, and neural ultrastructure in chronic bladder ischemia. Materials and Methods Iliac artery atherosclerosis and bladder ischemia were produced in male Sprague-Dawley rats. At 8 and 16 weeks after ischemia, micturition patterns and cystometrograms were recorded in conscious rats then bladder blood flow and nonvoiding spontaneous contractions were measured under general anesthesia. Bladder tissues were processed for Western blotting, immunostaining, and transmission electron microscopy. Results Bladder responses to ischemic insult depended on the duration of ischemia. Micturition patterns and cystometric changes at 8-week ischemia suggested detrusor overactivity, while voiding behavior and cystometrograms at 16-week ischemia implied abnormal detrusor function resembling underactivity. Upregulation of muscarinic M2 receptor was found after 8- and 16 weeks of ischemia. Downregulation of M3 and upregulation of M1 were detected at 16-week ischemia. Neural structural damage and marked neurodegeneration were found after 8 and 16 weeks of ischemia, respectively. Conclusions Prolonged ischemia may be a mediating variable in progression of overactive bladder to dysfunctional patterns similar to detrusor underactivity. The mechanism appears to involve differential expression of M1, M2, and M3 receptors, neural structural injury, and progressive loss of nerve fibers.
Collapse
Affiliation(s)
- Zuohui Zhao
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Roya Azad
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Jing-Hua Yang
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Mike B Siroky
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Kazem M Azadzoi
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7079487. [PMID: 27382429 PMCID: PMC4921628 DOI: 10.1155/2016/7079487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.
Collapse
|
28
|
Data regarding M1 muscarinic receptor-mediated modulation of hepatic catalase activity in response to oxidative stress. Data Brief 2015; 6:405-9. [PMID: 26862589 PMCID: PMC4707288 DOI: 10.1016/j.dib.2015.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 01/24/2023] Open
Abstract
We recently demonstrated the role of M1 muscarinic receptors (M1R) in modulating oxidative stress in liver and hepatocytes (Urrunaga et al., 2015) [1]. Here we provide data regarding the effect of a novel M1R agonist, VU0357017 (Lebois et al., 2010) [2], on H2O2-mediated hepatocyte injury, the effect of an M1R antagonist VU0255035 (Sheffler et al., 2009) [3] on catalase and super oxide dismutase (SOD) activities in H2O2–treated hepatocytes in vitro, and finally, the effect of M1R ablation on hepatic catalase activity in acetaminophen (APAP)-treated mice.
Collapse
|
29
|
Rachakonda V, Jadeja RN, Urrunaga NH, Shah N, Ahmad D, Cheng K, Twaddell WS, Raufman JP, Khurana S. M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 2015; 5:14110. [PMID: 26374068 PMCID: PMC4571652 DOI: 10.1038/srep14110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cholinergic nervous system regulates liver injury. However, the role of M1 muscarinic receptors (M1R) in modulating chronic liver injury is uncertain. To address this gap in knowledge we treated M1R-deficient and WT mice with azoxymethane (AOM) for six weeks and assessed liver injury responses 14 weeks after the last dose of AOM. Compared to AOM-treated WT mice, M1R-deficient mice had attenuated liver nodularity, fibrosis and ductular proliferation, α-SMA staining, and expression of α1 collagen, Tgfβ-R, Pdgf-R, Mmp-2, Timp-1 and Timp-2. In hepatocytes, these findings were associated with reductions of cleaved caspase-3 staining and Tnf-α expression. In response to AOM treatment, M1R-deficient mice mounted a vigorous anti-oxidant response by upregulating Gclc and Nqo1 expression, and attenuating peroxynitrite generation. M1R-deficient mouse livers had increased expression of Trail-R2, a promotor of stellate cell apoptosis; dual staining for TUNNEL and α-SMA revealed increased stellate cells apoptosis in livers from M1R-deficient mice compared to those from WT. Finally, pharmacological inhibition of M1R reduced H2O2-induced hepatocyte apoptosis in vitro. These results indicate that following liver injury, anti-oxidant response in M1R-deficient mice attenuates hepatocyte apoptosis and reduces stellate cell activation, thereby diminishing fibrosis. Therefore, targeting M1R expression and activation in chronic liver injury may provide therapeutic benefit.
Collapse
Affiliation(s)
- Vikrant Rachakonda
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Nirish Shah
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Daniel Ahmad
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - William S Twaddell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
30
|
Jadeja RN, Urrunaga NH, Dash S, Khurana S, Saxena NK. Withaferin-A Reduces Acetaminophen-Induced Liver Injury in Mice. Biochem Pharmacol 2015; 97:122-32. [PMID: 26212553 PMCID: PMC5909697 DOI: 10.1016/j.bcp.2015.07.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Withaferin-A (WA) has anti-oxidant activities however, its therapeutic potential in acetaminophen (APAP) hepatotoxicity is unknown. We performed a proof-of-concept study to assess the therapeutic potential of WA in a mouse model that mimics APAP-induced liver injury (AILI) in humans. Overnight fasted C57BL/6NTac (5-6 wk. old) male mice received 200 mg/kg APAP intraperitoneally (i.p.). After 1 h mice were treated with 40 mg/kg WA or vehicle i.p., and euthanized 4 and 16 h later; their livers were harvested and serum collected for analysis. At 4 h, compared to vehicle-treated mice, WA-treated mice had reduced serum ALT levels, hepatocyte necrosis and intrahepatic hemorrhage. All APAP-treated mice had reduced hepatic glutathione (GSH) levels however, reduction in GSH was lower in WA-treated when compared to vehicle-treated mice. Compared to vehicle-treated mice, livers from WA-treated mice had reduced APAP-induced JNK activation, mitochondrial Bax translocation, and nitrotyrosine generation. Compared to vehicle-treated mice, WA-treated mice had increased hepatic up-regulation of Nrf2, Gclc and Nqo1, and down-regulation of Il-6 and Il-1β. The hepatoprotective effect of WA persisted at 16 h. Compared to vehicle-treated mice, WA-treated mice had reduced hepatocyte necrosis and hepatic expression of Il-6, Tnf-α and Il-1β, increased hepatic Gclc and Nqo1 expression and GSH levels, and reduced lipid peroxidation. Finally, in AML12 hepatocytes, WA reduced H₂O₂-induced oxidative stress and necrosis by preventing GSH depletion. Collectively, these data show mechanisms whereby WA reduces necrotic hepatocyte injury, and demonstrate that WA has therapeutic potential in AILI.
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Section of Gastroenterology and Hepatology, Digestive Health Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - Nathalie H Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Suchismita Dash
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sandeep Khurana
- Section of Gastroenterology and Hepatology, Digestive Health Center, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Neeraj Kumar Saxena
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
31
|
Du K, Xie Y, McGill MR, Jaeschke H. Pathophysiological significance of c-jun N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 2015; 11:1769-79. [PMID: 26190663 DOI: 10.1517/17425255.2015.1071353] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US. Although substantial progress regarding the mechanisms of APAP hepatotoxicity has been made in the past several decades, therapeutic options are still limited and novel treatments are clearly needed. c-jun N-terminal Kinase (JNK) has emerged as a promising therapeutic target in recent years. AREAS COVERED Early studies established the critical role of JNK activation and mitochondrial translocation in APAP hepatotoxicity. However, this concept has also been challenged. Initial studies failed to reproduce the protection of JNK deficiency in APAP toxicity and concerns over off-target effects of JNK inhibitors and even in knock-out mice are increasing. Interestingly, recent studies have even shown that liver injury can be altered with or without effects on JNK activation. The current review addresses these discrepancies and tries to explain or reconcile some of the conflicting results. EXPERT OPINION JNK is a potential therapeutic target for APAP poisoning. However, controversies still exist regarding its actual role in APAP hepatotoxicity. Future studies are warranted for more in-depth testing of specific inhibitors in well-defined preclinical models and human hepatocytes before JNK can be considered a relevant therapeutic target for APAP poisoning.
Collapse
Affiliation(s)
- Kuo Du
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Yuchao Xie
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Mitchell R McGill
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Hartmut Jaeschke
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| |
Collapse
|
32
|
Affiliation(s)
- Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| | - Silvana Andreescu
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810
| |
Collapse
|