1
|
Saed GM, Fletcher NM, Sharma H, Tullberg AS, Ittner E, Parris TZ, Pettersson D, Kovács A, Rönnerman EW, Dahm-Kähler P, Portela A, Garzone PD, Morris R, Helou K. Lemur tail kinase 3 serves as a predictor of patient outcomes and a target for the treatment of ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200864. [PMID: 39290318 PMCID: PMC11406030 DOI: 10.1016/j.omton.2024.200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Lemur tail kinase 3 (LMTK3) belongs to a family of tyrosine kinases that are known to correlate with tumor grade and patient survival in some cancers. Here, we validated LMTK3 as a specific target and a prognostic biomarker in ovarian cancer (OC). In samples from 204 stage I-II OC patients, immunohistochemical studies revealed a higher cytoplasmic-to-nuclear staining intensity of LMTK3, which correlated with worse overall survival (p < 0.001). Efficacy studies utilizing novel LMTK3 binding peptides (LMTK3BPs) showed that all chemosensitive and chemoresistant OC cells were killed without affecting normal cells (p < 0.005), with synergistic effects shown following cisplatin and docetaxel treatment. In an orthotopic xenograft mouse model of OC, we saw a 35% tumor reduction in response to intravenous injections of 2 mg/kg LMTK3BP given three times a week for 3 weeks. Furthermore, in vivo safety studies showed no signs of toxicity after LMTK3BP treatment, even at doses as high as 40 mg/kg. This study highlights LMTK3 as a predictor of patient clinical outcomes. More importantly, novel LMTK3BPs represent potential safe treatment options, either alone or in combination with therapies, for OC.
Collapse
Affiliation(s)
- Ghassan M Saed
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harvey Sharma
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Dahm-Kähler
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Portela
- Xenopat C/Feixa Llarga sn. Edifici Bioincubadora, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Fletcher NM, Kirsch-Mangu TK, Obeidat M, Morris R, Saed GM. The potential benefits of dinitrophenol combination with chemotherapy in the treatment of ovarian cancer. Minerva Obstet Gynecol 2024; 76:335-342. [PMID: 36255168 DOI: 10.23736/s2724-606x.22.05204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND 2,4-dinitrophenol (DNP), an uncoupling mitochondrial agent, has been identified as a source of oxidative stress and linked to the pathogenesis of ovarian cancer. In this study, we determine the cytotoxic effect of DNP alone or in combination with chemotherapies in ovarian cancer cells. METHODS We utilized human ovarian cancer cell lines SKOV-3 and MDAH-2774 with their chemoresistant counterparts. Cancer stem cells (CSCs) were isolated from SKOV-3 utilizing magnetic-activated cell sorting technique for CD44+/CD117+ cells. Human normal primary ovarian epithelial (NOEC) and HOSEpiC cell lines were used as a control. Cells were treated with and without chemotherapy (taxotere 0.3 µM or cisplatin 50 µM), with or without increasing doses of DNP (0.125, 0.25, or 0.5 mM) for 24 hours followed by evaluation of cell viability and IC50 utilizing MTT assay. For determination of synergism, Fa-combination Index plots were created using the CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA). All data were run in triplicates and analyzed by t-test. RESULTS DNP treatment of ovarian cancer and chemoresistant ovarian cancer cell lines as well as CSCs resulted in decreased cell viability in a dose dependent manner with no effect on normal cells. Combination of DNP with chemotherapy synergistically enhances cytotoxicity of chemotherapeutics in all ovarian cancer cells as compared to chemotherapy alone. CONCLUSIONS Our data indicates the potential of the addition of DNP to the arsenal of drugs available to treat ovarian cancer, whether alone or in combination with chemotherapies. The synergistic effects of DNP in reducing the required amount of chemotherapy, is critical for the alleviation of harmful side effects.
Collapse
Affiliation(s)
- Nicole M Fletcher
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Detroit, MI, USA
| | - Thea K Kirsch-Mangu
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Detroit, MI, USA
| | - Mohammed Obeidat
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Detroit, MI, USA
| | - Robert Morris
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Detroit, MI, USA
| | - Ghassan M Saed
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Detroit, MI, USA -
| |
Collapse
|
3
|
Saed GM. Is there a link between talcum powder, oxidative stress, and ovarian cancer risk? Expert Rev Anticancer Ther 2024; 24:485-491. [PMID: 38712572 DOI: 10.1080/14737140.2024.2352506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION The link between talcum powder use and cancer, particularly ovarian cancer, has been a topic of scientific research and legal debate for several years. Studies have suggested a potential association between long-term talcum powder use in the genital area and an increased risk of ovarian cancer. AREAS COVERED The following report includes up-to-date evidence to support the potential link between talcum powder use and the risk of developing ovarian cancer. The International Agency for Research on Cancer, which is part of the World Health Organization, classified talc-based body powder as possibly carcinogenic to humans when used in the female genital area. However, other studies have not consistently supported this association, and thus more research is needed to establish a clear and definitive link between talcum powder use and cancer. Despite this, recent molecular-level data have linked talc to alterations in redox balance, gene mutations, and inflammatory responses. Specifically, we have identified a role for talc to induce the pro-oxidant state, inhibit apoptosis, and more importantly induced cellular transformation in normal ovarian cells. EXPERT OPINION We presented unequivocal evidence to support our opinion that talc is not biologically inert and induces molecular changes that mimic the hallmarks of cancer.
Collapse
Affiliation(s)
- Ghassan M Saed
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Saed GM, Nawaz A, Alvero AA, Harper AK, Morris RT. Monomeric myeloperoxidase is a specific biomarker for early-stage ovarian cancer. Biomarkers 2023; 28:663-671. [PMID: 37982229 DOI: 10.1080/1354750x.2023.2284106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Background: Ovarian cancer cells are known to express myeloperoxidase (MPO), an oxidant-producing enzyme with a 150 kDa homodimer, consisting of two identical monomers connected by a disulfide bond. Here, we aim to validate monomeric MPO (mMPO) as a biomarker for the early detection of ovarian cancer.Methods: Human ovarian cancer cells, sera from patients at various stages, sera from non-cancer inflammatory gynecological diseases, and healthy volunteers were used. Monomeric and dimeric MPO were measured by ELISA. Receiver operating curves were used to compare the predictive powers of serum dimeric and monomeric MPO to discriminate between samples.Results: The expression of MPO was unique to ovarian cancer cells. Specifically, mMPO was found to be the only form of MPO in all ovarian cancer cell lines. Intriguingly, mMPO was detected in the sera from all patients with ovarian cancer at various stages, but not from healthy individuals. Serum mMPO discriminated between early-stage ovarian cancer, healthy controls, and benign inflammatory gynecologic disorders. In addition, mMPO discriminated between the early and late stages of the disease.Conclusion: This work highlights mMPO as a potential biomarker for early detection of ovarian cancer, which is critically needed.
Collapse
Affiliation(s)
- Ghassan M Saed
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Asad Nawaz
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ayesha A Alvero
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Amy K Harper
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Robert T Morris
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
5
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:biomedicines11051325. [PMID: 37238995 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
6
|
Melloni M, Sergi D, Simioni C, Passaro A, Neri LM. Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. BIOLOGY 2023; 12:449. [PMID: 36979141 PMCID: PMC10044993 DOI: 10.3390/biology12030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Microalgae represent a growing innovative source of nutraceuticals such as carotenoids and phenolic compound which are naturally present within these single-celled organisms or can be induced in response to specific growth conditions. The presence of the unfavourable allelic variant in genes involved in the control of oxidative stress, due to one or more SNPs in gene encoding protein involved in the regulation of redox balance, can lead to pathological conditions such as insulin resistance, which, in turn, is directly involved in the pathogenesis of type 2 diabetes mellitus. In this review we provide an overview of the main SNPs in antioxidant genes involved in the promotion of insulin resistance with a focus on the potential role of microalgae-derived antioxidant molecules as novel nutritional tools to mitigate oxidative stress and improve insulin sensitivity.
Collapse
Affiliation(s)
- Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Medical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.M.); (D.S.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Simion L, Rotaru V, Cirimbei C, Stefan DC, Gherghe M, Ionescu S, Tanase BC, Luca DC, Gales LN, Chitoran E. Analysis of Efficacy-To-Safety Ratio of Angiogenesis-Inhibitors Based Therapies in Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:diagnostics13061040. [PMID: 36980348 PMCID: PMC10046967 DOI: 10.3390/diagnostics13061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Among new anti-angiogenesis agents being developed and ever-changing guidelines indications, the question of the benefits/safety ratio remains unclear. (2) Methods: We performed a systematic review combined with a meta-analysis of 23 randomized controlled trials (12,081 patients), evaluating overall survival (OS), progression free survival (PFS) and toxicity (grade ≥ 3 toxic effects, type, and number of all adverse effects. (3) Results: The analysis showed improvement of pooled-PFS (HR, 0.71; 95% CI, 0.64-0.78; I2 = 77%; p < 0.00001) in first-line (HR, 0.85; 95% CI, 0.78-0.93; p = 0.0003) or recurrent cancer (HR, 0.62; 95% CI, 0.56-0.70; p < 0.00001) and regardless of the type of anti-angiogenesis drug used (Vascular endothelial growth factor (VEGF) inhibitors, VEGF-receptors (VEGF-R) inhibitors or angiopoietin inhibitors). Improved OS was also observed (HR, 0.95; 95% CI, 0.90-0.99; p = 0.03). OS benefits were only observed in recurrent neoplasms, both platinum-sensitive and platinum-resistant neoplasms. Grade ≥ 3 adverse effects were increased across all trials. Anti-angiogenetic therapy increased the risk of hypertension, infection, thromboembolic/hemorrhagic events, and gastro-intestinal perforations but not the risk of wound-related issues, anemia or posterior leukoencephalopathy syndrome. (4) Conclusions: Although angiogenesis inhibitors improve PFS, there are little-to-no OS benefits. Given the high risk of severe adverse reactions, a careful selection of patients is required for obtaining the best results possible.
Collapse
Affiliation(s)
- Laurentiu Simion
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Vlad Rotaru
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Ciprian Cirimbei
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mirela Gherghe
- Nuclear Medicine Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Sinziana Ionescu
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Bogdan Cosmin Tanase
- Thoracic Surgery Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Dan Cristian Luca
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Laurentia Nicoleta Gales
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Medical Oncology Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Elena Chitoran
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
8
|
Harper AK, Kirsch-Mangu TK, Lutfi H, Morris RT, Saed GM. Binding of Intracellular Myeloperoxidase to αV/β1 Integrin Serves as a Mechanism of Survival in Epithelial Ovarian Cancer. Reprod Sci 2023; 30:291-300. [PMID: 35799017 DOI: 10.1007/s43032-022-01025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023]
Abstract
We were the first to report that epithelial ovarian cancer (EOC) cells and tissues express myeloperoxidase (MPO) that is known to play a role in immune surveillance and inflammation by myeloid cells. Additionally, we reported that MPO is colocalized with inducible nitric oxide synthase (iNOS), a key pro-oxidant enzyme, and plays a key role in regulating apoptosis in EOC cells. Whereas myeloid cells express MPO in a dimeric form, intriguingly, here we report the unique expression of only the monomeric form of MPO in EOC cells, tissues, and blood of an ovarian cancer patient. Additionally, we have identified a cell membrane receptor, αV/β1 integrin, that is uniquely expressed by both chemosensitive and chemoresistant EOC cells with significantly higher expression in chemoresistant EOC cells. More importantly, we have demonstrated that monoclonal antibodies against αV/β1 integrin induced cytotoxicity in EOC cells, but not in normal cells, that is also synergistic with conventional chemotherapies. Cytotoxicity of αV/β1 antibodies is due to conformational changes in αV/β1 integrin which prevents monomeric MPO binding to αV/β1 integrin inhibiting the activation of MPO, leading to increased apoptosis. Since normal epithelial cells and macrophages lack monomeric MPO and αV/β1 integrin system, targeting this unique MPO-dependent survival mechanism will selectively eliminate EOC cells and will be the target for developing specific ovarian cancer therapies.
Collapse
Affiliation(s)
- Amy K Harper
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Thea K Kirsch-Mangu
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Hala Lutfi
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Robert T Morris
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Ghassan M Saed
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the Response of Immunotherapy and Chemotherapy in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6575534. [PMID: 36561981 PMCID: PMC9764017 DOI: 10.1155/2022/6575534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Background Ovarian cancer (OC) is one of the most frequently seen and fatal gynecological malignancies, and oxidative stress (OS) plays a critical role in the development and chemoresistance of OC. Materials and Methods OS-related genes (OSRGs) were obtained from the Molecular Signatures Database. Besides, gene expression profiles and clinical information from The Cancer Genome Atlas (TCGA) were selected to identify the prognostic OSRGs. Moreover, univariate Cox regression, LASSO, and multivariate Cox regression analyses were conducted sequentially to establish a prognostic signature, which was later validated in three independent Gene Expression Omnibus (GEO) datasets. Next, gene set enrichment analysis (GSEA) and tumor mutation burden (TMB) analysis were performed. Afterwards, immune checkpoint genes (ICGs) and the tumor immune dysfunction and exclusion (TIDE) algorithm, together with IMvigor210 and GSE78220 cohorts, were applied to comprehensively explore the role of OSRG signature in immunotherapy. Further, the CellMiner and Genomics of Drug Sensitivity in Cancer (GDSC) databases were also applied in investigating the significance of OSRG signature in chemotherapy. Results Altogether, 34 prognostic OSRGs were identified, among which 14 were chosen to establish the most valuable prognostic signature. The Kaplan-Meier (KM) analysis suggested that patients with lower OS-related risk score had better prognosis. The area under the curve (AUC) values were 0.71, 0.76, and 0.85 in 3, 5, and 7 years separately, and the stability of this prognostic signature was confirmed in three GEO datasets. As revealed by GSEA and TMB analysis results, OC patients in low-risk group might have better immunotherapeutic response, which was consistent with ICG expression and TIDE analyses. Moreover, both IMvigor210 and GSE78220 cohorts demonstrated that patients with lower OS-related risk score were more likely to benefit from anti-PD-1/L1 immunotherapy. In addition, the association between prognostic signature and drug sensitivity was explored. Conclusion According to our results in this work, OSRG signature can act as a powerful prognostic predictor for OC, which contributes to generating more individualized therapeutic strategies for OC patients.
Collapse
|
11
|
Chaiswing L, Yarana C, St. Clair W, Tovmasyan A, Batinic-Haberle I, Spasojevic I, St. Clair D. A Redox-active Mn Porphyrin, MnTnBuOE-2-PyP 5+, Synergizes with Carboplatin in Treatment of Chemoresistant Ovarian Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9664636. [PMID: 35898616 PMCID: PMC9313984 DOI: 10.1155/2022/9664636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
We have employed a redox-active MnP (MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis (N-n-butoxyethylpyridinium-2-yl) porphyrin) frequently identified as superoxide dismutase mimic or BMX-001, to explore the redox status of normal ovarian cell in relation to two ovarian cancer cell lines: OV90 human serous ovarian cancer cell and chemotherapy-resistant OV90 cell (OVCD). We identified that OVCD cells are under oxidative stress due to high hydrogen peroxide (H2O2) levels and low glutathione peroxidase and thioredoxin 1. Furthermore, OVCD cells have increased glycolysis activity and mitochondrial respiration when compared to immortalized ovarian cells (hTER7) and parental cancer cells (OV90). Our goal was to study how ovarian cell growth depends upon the redox state of the cell; hence, we used MnP (BMX-001), a redox-active MnSOD mimetic, as a molecular tool to alter ovarian cancer redox state. Interestingly, OVCD cells preferentially uptake MnP relative to OV90 cells which led to increased inhibition of cell growth, glycolytic activity, OXPHOS, and ATP, in OVCD cells. These effects were further increased when MnP was combined with carboplatin. The effects were discussed with regard to the elevation in H2O2 levels, increased oxidative stress, and reduced Nrf2 levels and its downstream targets when cells were exposed to either MnP or MnP/carboplatin. It is significant to emphasize that MnP protects normal ovarian cell line, hTER7, against carboplatin toxicity. Our data demonstrate that the addition of MnP-based redox-active drugs may be used (via increasing excessively the oxidative stress of serous ovarian cancer cells) to improve cancer patients' chemotherapy outcomes, which develop resistance to platinum-based drugs.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | | | - William St. Clair
- Department of Radiation Oncology, University of Kentucky, Kentucky, USA
| | - Artak Tovmasyan
- Translational Neuroscience at Barrow Neurological Institute, AZ, USA
| | | | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Pharmacokinetics/Pharmacodynamics Core Laboratory, Duke University School of Medicine, Durham, NC, USA
| | - Daret St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
13
|
Mittal D, Biswas L, Verma AK. Redox resetting of cisplatin-resistant ovarian cancer cells by cisplatin-encapsulated nanostructured lipid carriers. Nanomedicine (Lond) 2021; 16:979-995. [PMID: 33970681 DOI: 10.2217/nnm-2020-0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To sensitize cisplatin (Cis)-resistant ovarian cancer cells toward Cis using Cis-loaded nanostructured lipid carriers (CisNLCs). Materials & methods: CisNLCs were synthesized and characterized using dynamic light scattering, Fourier transform IR and x-ray diffraction (XRD). Sensitivity of PA-1 and CaOV3 cells to Cis and its biotoxicity were assessed. Further, expression of the Cis-resistance markers GSTPi and ATP7B, and apoptotic markers Bax, Bcl2 and Cas9 were quantified by real-time PCR. Results: The size of synthesized CisNLCs was approximately 179.3 ± 2.32 nm and surface charge was -33.9 ± 1.47 mV. IC50 was 210 μg/ml in PA-1 and 500 μg/ml in CaOV3. CisNLCs modulated reactive oxygen species levels in CaOV3 cells. Reduced GSTPi and decreased Cis efflux via ATP7B sequestration caused Cis to accumulate in cytoplasm, thereby augmenting apoptosis in cells. Conclusion: CisNLCs sensitize CaOV3 by redox resetting, indicating their immense therapeutic potential.
Collapse
Affiliation(s)
- Disha Mittal
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Largee Biswas
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Anita Kamra Verma
- Department of Zoology, Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
14
|
Nikolova E, Tonev D, Zhelev N, Neychev V. Prospects for Radiopharmaceuticals as Effective and Safe Therapeutics in Oncology and Challenges of Tumor Resistance to Radiotherapy. Dose Response 2021; 19:1559325821993665. [PMID: 33716590 PMCID: PMC7923993 DOI: 10.1177/1559325821993665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid advances in nuclear medicine have resulted in significant advantages for the field of oncology. The focus is on the application of radiopharmaceuticals as therapeuticals. In addition, the latest developments in cell biology (the understanding of the cell structure, function, metabolism, genetics, signaling, transformation) have given a strong scientific boost to radiation oncology. In this regard, the article discusses what is soon going to be a new jump in radiation oncology based on the already accumulated considerable knowledge at the cellular level about the mechanisms of cell transformation and tumor progression, cell response to radiation, cell resistance to apoptosis and radiation and cell radio-sensitivity. The mechanisms of resistance of tumor cells to radiation and the genetically determined individual sensitivity to radiation in patients (which creates the risk of radiation-induced acute and late side effects) are the 2 major challenges to overcome in modern nuclear medicine. The paper focuses on these problems and makes a detailed summary of the significance of the differences in the ionizing properties of radiopharmaceuticals and the principle of their application in radiation oncology that will shed additional light on how to make the anti-cancer radiotherapies more efficient and safe, giving some ideas for optimizations.
Collapse
Affiliation(s)
- Ekaterina Nikolova
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitar Tonev
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.,Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Vladimir Neychev
- University of Central Florida, College of Medicine, Orlando, FL, USA
| |
Collapse
|
15
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
16
|
Zhang W, Liu Y, Zhou X, Zhao R, Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin Genet 2020; 97:827-834. [PMID: 32040210 DOI: 10.1111/cge.13717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Gynecological cancers pose a significant threat to women's health worldwide, with cervical cancer, ovarian cancer, and endometrial cancer having high incidences. Current gynecological cancer treatment methods mainly include surgery, chemotherapy, radiotherapy, and chemoradiotherapy. The CRISPR-Cas9 gene editing technology as a new therapeutic method has shown tremendous effect in the treatment of other cancers, promoting research on its potential therapeutic effect in gynecological cancer. In this article, we reviewed the current research status of CRISPR-Cas9 technology in gynecological cancer, focusing on the importance of studying the mechanism of CRISPR-Cas9 in gynecological cancer treatment, thereby laying a foundation for further research on its clinical application.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|
18
|
Yan L, Ding B, Liu H, Zhang Y, Zeng J, Hu J, Yao W, Yu G, An R, Chen Z, Ye Z, Xing J, Xiao K, Wu L, Xu H. Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. Theranostics 2019; 9:8377-8391. [PMID: 31754403 PMCID: PMC6857066 DOI: 10.7150/thno.37628] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
SMYD2 is a histone methyltransferase that has been reported to be an important epigenetic regulator. This study aims to investigate SMYD2 as a prognostic indicator of clear cell renal cell carcinoma (ccRCC) and explore its role in tumorigenesis and multi-drug resistance. Methods: Tumor specimens, clinicopathologic information, and prognostic outcomes of 186 ccRCC patients from three hospitals in China were collected for SMYD2 immunohistochemistry staining, Kaplan-Meier analysis, and Cox proportional hazards-regression analysis. MicroRNA (miRNA)-microarray profiling identified differentially expressed miRNAs in renal cancer cells subjected to SMYD2 knockdown or treatment with the SMYD2 inhibitor AZ505. The effects of SMYD2 and candidate SMYD2-mediated miRNAs on renal cancer cell proliferation, migration, clonogenicity, and tumorigenicity were determined via cell-function assays and murine xenograft experiments. The half-inhibitory concentrations (IC50) of five antineoplastic drugs (cisplatin, doxorubicin, fluorouracil, docetaxel, and sunitinib) in AZ505-treated and control cells were calculated, and the effects of SMYD2 inhibition on P-glycoprotein (P-gP) expression and multiple-drug resistance were verified. Results: SMYD2 was overexpressed and acted as an oncogene in ccRCC. High SMYD2 expression correlated with a high TNM stage (P = 0.007) and early tumor relapse (P = 0.032). SMYD2 independently predicted a worse overall survival (P = 0.022) and disease-free survival (P = 0.048). AZ505 inhibited the binding of SMYD2 to the miR-125b promoter region (based on chromatin immunoprecipitation assays) and suppressed ccRCC cell migration and invasion by inhibiting the SMYD2/miR-125b/DKK3 pathway. SMYD2 and miR-125b inhibition acted synergistically with anticancer drugs via P-gP suppression in vitro and in vivo. Conclusions: These findings suggested that SMYD2 plays an important role in ccRCC development and could be a potential biomarker for the treatment and prognosis of RCC.
Collapse
|
19
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
20
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
21
|
Fletcher NM, Harper AK, Memaj I, Fan R, Morris RT, Saed GM. Molecular Basis Supporting the Association of Talcum Powder Use With Increased Risk of Ovarian Cancer. Reprod Sci 2019; 26:1603-1612. [DOI: 10.1177/1933719119831773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genital use of talcum powder and its associated risk of ovarian cancer is an important controversial topic. Epithelial ovarian cancer (EOC) cells are known to manifest a persistent prooxidant state. Here we demonstrated that talc induces significant changes in key redox enzymes and enhances the prooxidant state in normal and EOC cells. Using real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, levels of CA-125, caspase-3, nitrate/nitrite, and selected key redox enzymes, including myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GSR), were determined. TaqMan genotype analysis utilizing the QuantStudio 12K Flex was used to assess single-nucleotide polymorphisms in genes corresponding to target enzymes. Cell proliferation was determined by MTT proliferation assay. In all talc-treated cells, there was a significant dose-dependent increase in prooxidant iNOS, nitrate/nitrite, and MPO with a concomitant decrease in antioxidants CAT, SOD, GSR, and GPX ( P < .05). Remarkably, talc exposure induced specific point mutations that are known to alter the activity in some of these key enzymes. Talc exposure also resulted in a significant increase in inflammation as determined by increased tumor marker CA-125 ( P < .05). More importantly, talc exposure significantly induced cell proliferation and decreased apoptosis in cancer cells and to a greater degree in normal cells ( P < .05). These findings are the first to confirm the cellular effect of talc and provide a molecular mechanism to previous reports linking genital use to increased ovarian cancer risk.
Collapse
Affiliation(s)
- Nicole M. Fletcher
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Amy K. Harper
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ira Memaj
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rong Fan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert T. Morris
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
22
|
Zhang S, Chang Y, Gong Y, Gao Y, Guo Q, Wang Y, Zhao Y, Wang Z. Comprehensive analysis of microRNA‐messenger RNA regulatory network in gemcitabine‐resistant bladder cancer cells. J Cell Biochem 2018; 120:6347-6360. [PMID: 30304549 DOI: 10.1002/jcb.27922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Su Zhang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yong‐Yan Chang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Wen Gong
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yan‐Jun Gao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Qi Guo
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Han Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - You‐Li Zhao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Zhi‐Ping Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| |
Collapse
|
23
|
Rodenhizer D, Dean T, D'Arcangelo E, McGuigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthc Mater 2018; 7:e1701174. [PMID: 29350495 DOI: 10.1002/adhm.201701174] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery.
Collapse
Affiliation(s)
- Darren Rodenhizer
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Teresa Dean
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry & Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| |
Collapse
|
24
|
Saed GM, Fletcher NM, Diamond MP, Morris RT, Gomez-Lopez N, Memaj I. Novel expression of CD11b in epithelial ovarian cancer: Potential therapeutic target. Gynecol Oncol 2018; 148:567-575. [PMID: 29329880 DOI: 10.1016/j.ygyno.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study was to determine the expression, and effect of targeting CD11b with a monoclonal antibody in ovarian cancer cells. METHODS CD11b expression was determined in epithelial ovarian cancer (EOC) cell lines and tissues by immunofluorescence and flow cytometry. Cytotoxicity of the CD11b antibody and synergism with chemothearapeutic drugs were determined by the MTT Cell Proliferation Assay in human macrophages, normal ovarian epithelial cells, and in both sensitive and chemoresistant EOC cell lines. Cell migration was assessed with a scratch assay and in vivo effects of the CD11b antibody was assessed with a nude mouse ovarian cancer xenograft model. Data was analyzed with either t-tests or one-way ANOVA. RESULTS CD11b was unexpectedly expressed in several EOC lines and tissues, but not normal tissues. Targeting CD11b with its monoclonal antibody resulted in intriguing cytotoxic effects in sensitive and chemoresistant EOC lines, while surprisingly not affecting normal cells. More importantly, the cytotoxicity of the CD11b antibody when combined with chemotherapeutic drugs (cisplatin or docetaxel) was significantly synergistic, in both sensitive and chemoresistant EOC cells. The anti-tumorigenic effect of the CD11b antibody was confirmed in an ovarian cancer nude mouse xenograft model. CONCLUSION Here we identify CD11b as a novel target, which selectively induces cytotoxicity in ovarian cancer cells.
Collapse
Affiliation(s)
- Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, BA-7300, Augusta, GA 30912, United States.
| | - Robert T Morris
- Karmanos Cancer Center, 4100 John R, Detroit, MI 48201, United States.
| | - Nardhy Gomez-Lopez
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, United States.
| | - Ira Memaj
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| |
Collapse
|
25
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|
27
|
Saed GM, Diamond MP, Fletcher NM. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol Oncol 2017; 145:595-602. [PMID: 28237618 DOI: 10.1016/j.ygyno.2017.02.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023]
Abstract
Clinical and epidemiological investigations have provided evidence supporting the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS), collectively known as oxidative stress, in the etiology of cancer. Exogenous factors such as chronic inflammation, infection and hypoxia are major sources of cellular oxidative stress. Specifically, oxidative stress plays an important role in the pathogenesis, neoangiogenesis, and dissemination of local or distant ovarian cancer, as it is known to induce phenotypic modifications of tumor cells by cross talk between tumor cells and the surrounding stroma. Subsequently, the biological significance of the relationship between oxidative stress markers and various stages of epithelial ovarian cancer highlights potential therapeutic interventions as well as provides urgently needed early detection biomarkers. In the light of our scientific research and the most recent experimental and clinical observations, this review provides the reader with up to date most relevant findings on the role of oxidative stress in the pathogenesis of ovarian cancer and the possible therapeutic implications.
Collapse
Affiliation(s)
- Ghassan M Saed
- The Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Michael P Diamond
- The Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
| | - Nicole M Fletcher
- The Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|