1
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
2
|
Zhang XH, Liu J, Ding X, Chen XL. Chinese herbal medicines and its active ingredient wogonin can improve immune inflammation in psoriatic arthritis. Int Immunopharmacol 2025; 147:113984. [PMID: 39752753 DOI: 10.1016/j.intimp.2024.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
OBJECTIVE In China, Chinese herbal medicines (CHMs) have been widely used in the treatment of psoriatic arthritis (PsA), showing great therapeutic effects in clinical practice. However, due to the great heterogeneity of PsA and the diversity of CHM combination patterns, there is little high-level evidence-based medical research on the treatment of PsA with CHMs. This study aims to explore the beneficial effects of CHMs on the immune inflammation in PsA and its specific mechanism. METHODS The data mining method was performed to analyze the real-world data of 91 PsA clinical cases. Network pharmacology, molecular docking, and cellular experiments were used to explore the mechanism of CHMs and its active ingredient wogonin in improving PsA immune inflammation. RESULTS Data mining results showed that in PsA, immune inflammation was disturbed and relevant indexes were significantly correlated. After CHM treatment, the level of HCRP, C4, IL-12, IL-17, IL-23, TNF-α, TGF-β1, P65, P50, and IKBα was markedly improved, which was highly correlated with the application of CHMs. In addition, the core prescription containing 10 CHMs was screened, and the action mechanisms of the active ingredient wogonin on the immune inflammation in PsA were identified with network pharmacology and molecular docking. Cell experiments revealed that wogonin reduced M5-induced HaCaT cell viability and TNF-α and IL-1β expressions by blocking the PI3K/AKT pathway in a dose-dependent manner. CONCLUSION Our findings strongly confirmed the enormous promise of CHMs as a therapy for PsA and may provide support for developing drugs and targets for PsA treatment.
Collapse
Affiliation(s)
- Xian-Heng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xiao-Lu Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
3
|
Feng C, Cheng X, Na M, Zhang F, Duan J, Ji L, Jiang J. Green preparation of low-molecular-weight galactomannan from Gleditsia sinensis and mechanistic investigation on ameliorating nonalcoholic fatty liver disease. Food Res Int 2025; 201:115647. [PMID: 39849749 DOI: 10.1016/j.foodres.2024.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Galactomannan comes from a wide range of plant resources and has some biological activities, but its bioavailability is limited due to its large molecular weight and complex structure. In this study, three degradation methods (H2O2, ultrasound, and β-mannanase) combined with ethanol fractional precipitation (25 %, 50 %, and 75 %) were used to degrade and separate Gleditsia sinensis galactomannans (GSG), and the physicochemical properties and biological activities of GSG after degradation were analyzed. Comprehensive comparison indicates that H2O2 exhibits had a better degradation effect. After 4 h of degradation using 4 % H2O2, the yield of GSG precipitated with 50 % ethanol was 37.06 % (the yield of undigested GSG is 1.80 %). Simultaneously, the molecular weight (reduced from 225.25 to 36.87 kDa) and viscosity were significantly reduced under this condition, while the solubility was increased. In addition, the low-molecular-weight GSG (LGSG) obtained by 4 % H2O2/50 % ethanol showed the strongest free radical scavenging activity in vitro. Furthermore, the results of in vivo antioxidant assays showed that LGSG inhibited Aflatoxin B1-induced developmental toxicity by regulating gene expression in the Keap1/Nrf2 pathway. LGSG also promoted Nrf2-mediated expression of the lipid metabolism genes ppar-α and cpt1, while suppressing expression of the fatty acid synthesis genes fas and scd-1. Therefore, the liver recovered from lipid peroxidation induced nonalcoholic fatty liver disease (NAFLD). The present study introduces a method for green and efficient preparation of LGSG, indicates its potential as a nutritional product.
Collapse
Affiliation(s)
- Chi Feng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Mula Na
- Inner Mongolia Minzu Universities, Coll Anim Sci & Technol, Tongliao, Inner Mongolia 028000, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jiufang Duan
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Khan NM, Kaiser JM, Chihab S, Eng T, Drissi H. Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis. Biomed Pharmacother 2025; 183:117865. [PMID: 39862703 DOI: 10.1016/j.biopha.2025.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery. PTOA progression was evaluated using histological, molecular, and radiographic analyses, while secondary allodynia was measured longitudinally, and pain-related markers expression were analyzed in dorsal root ganglion (DRG). 3D radiographic imaging by µCT analysis revealed that DMF treatment attenuated cartilage degradation by decreasing cartilage lesions, surface roughness, and osteophyte formation in the proximal tibiae. Histological analysis showed that DMF markedly inhibited cartilage erosion and cartilage surface fibrillation. Gene expression and Luminex analysis indicated that DMF suppressed joint inflammation by inhibiting inflammatory cytokines. DMF mitigated allodynic pain behavior at 6 weeks and repressed pain mediator expression (Calca, Tac1, Trpv1) in lumbar DRGs. Additionally, DMF treatment inhibited inflammatory gene expression and cytokine secretion induced by IL1β stimulation of human articular chondrocytes in vitro. Mechanistically, DMF treatment reduced colony-stimulating factor 2 (CSF2 or GM-CSF) level in the synovial fluid in vivo and inhibited its expression in human OA chondrocytes. Furthermore, siRNA targeting of CSF2 reduced inflammatory gene expression in human chondrocytes. The findings suggest that DMF reduced inflammatory gene expression, inhibited cartilage degeneration, and mitigated PTOA development in rats. It also alleviated pain behavior indicating its potential as a disease-modifying therapy for PTOA.
Collapse
Affiliation(s)
- Nazir M Khan
- Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA.
| | - Jarred M Kaiser
- Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
| | - Samir Chihab
- Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
| | - Tracy Eng
- Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
| | - Hicham Drissi
- Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
5
|
Chihab S, Khan NM, Eng T, Doan T, Kaiser JM, Drissi H. Kartogenin Enhances Chondrogenic Differentiation of iPSC Derived MSCs (iMSCs) and Improves Outcomes in an Osteochondral Defect Model in Male Rats. J Orthop Res 2025. [PMID: 39800942 DOI: 10.1002/jor.26040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025]
Abstract
Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair. We hypothesized that treatment of iMSCs with TGFβ3 and KGN would enhance chondrogenic differentiation and that implanting these pellets into a rat OCD model would promote de novo cartilage regeneration and reduce pain behavior. We pellet cultured iMSCs derived from articular chondrocytes and treated with various conditions of TGFβ3 and KGN. We then assessed the in vivo performance of the pellets using a trochlear osteochondral defect in male Lewis rats. Co-treatment of iMSC pellets with TGFβ3 and KGN showed more pronounced chondrogenic differentiation than sequential treatment and exhibited stronger expression of chondrogenic genes. Implantation of the TGFβ3/KGN-treated iMSC pellets into OCD resulted in modest repair, as observed via gross morphology, effectively prevented the onset of joint hyperalgesia, and helped to maintain normal gait out to 12 weeks post-implantation compared to untreated OCD rats. Our study highlights the potential of KGN to enhance iMSC pellet chondrogenesis, offering a scaffold-free, cell-based therapy that could simplify clinical translation and improve outcomes for patients with cartilage injuries.
Collapse
Affiliation(s)
- Samir Chihab
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nazir M Khan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Tracy Eng
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Thanh Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Song Y, Zhao H, Yu R, Zhang Y, Zou Y, Liu X, Sun S. Wogonin suppresses proliferation, invasion and migration in gastric cancer cells via targeting the JAK-STAT3 pathway. Sci Rep 2024; 14:30803. [PMID: 39730467 DOI: 10.1038/s41598-024-81196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Wogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro. In addition, wogonin inhibited in vivo tumor growth in SGC-7901 xenograft mice. Transcriptomic analysis suggested that wogonin affected several signaling pathways closely related to tumor proliferation and metastasis, including the STAT3 signaling pathway. Further research indicated that wogonin may exert antitumor effects in GC cells by downregulating the JAK-STAT3 pathway. Altogether, our results demonstrate that wogonin exerts antitumor effects by perturbing JAK-STAT3 signaling in GC cells and that wogonin may be a potential therapeutic option for GC.
Collapse
Affiliation(s)
- Yang Song
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Hui Zhao
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Runze Yu
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yang Zhang
- Department of Pulmonary and Critial Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Shuna Sun
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
7
|
Jang JY, Lee SA, Kim DK, Lee SY, Kim CS. Chondroprotective Effect of Campylaephora hypnaeoides Extract in Primary Chondrocytes and Rat OA Model. Int J Mol Sci 2024; 25:13391. [PMID: 39769155 PMCID: PMC11677689 DOI: 10.3390/ijms252413391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Campylaephora hypnaeoides (C. hypnaeoides) was extracted using fermented ethanol. The effect of fermented ethanol extract of C. hypnaeoides (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly inhibited the accumulation of nitric oxide and prostaglandin E2, which was analyzed using the ELISA assay. In addition, protein expression levels of inflammatory-related factors, such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, tumor necrosis factor-alpha, and cartilage-degrading-related enzymes, such as matrix metalloproteinases-1, -3, and -13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 and -5 were significantly decreased in IL-1β-stimulated chondrocytes pretreated with FeCH, which were analyzed using western blot analysis. In addition, as a result of analyzing the content of collagen type II (Col II) and proteoglycan through western blot analysis and alcian blue staining, FeCH pretreatment prevented the degradation of Col II and proteoglycan. It was analyzed through western blot analysis that the chondroprotective effect of FeCH may be mediated through MAPKs and NF-κB-signaling mechanisms. In an in vivo study, an osteoarthritis experimental animal model with damaged medial meniscus (DMM) was utilized and orally administered daily for 8 weeks after surgery. At the study end point, knee joints were harvested and subjected to histological analysis with safranin O staining. As a result, articular cartilage was significantly protected in the FeCH group compared to the DMM group. These results suggest FeCH as a candidate material for the development of pharmaceutical materials for the treatment or prevention of degenerative arthritis.
Collapse
Affiliation(s)
- Ji Yun Jang
- Marine Healthcare Research and Evaluation Center, Chosun University, Wando 59146, Republic of Korea; (J.Y.J.); (S.-Y.L.)
| | - Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Do Kyung Kim
- Department of Oral Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Sook-Young Lee
- Marine Healthcare Research and Evaluation Center, Chosun University, Wando 59146, Republic of Korea; (J.Y.J.); (S.-Y.L.)
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
8
|
Khan NM, Wilderman A, Kaiser JM, Kamalakar A, Goudy SL, Cotney J, Drissi H. Enhanced osteogenic potential of iPSC-derived mesenchymal progenitor cells following genome editing of GWAS variants in the RUNX1 gene. Bone Res 2024; 12:70. [PMID: 39643619 PMCID: PMC11624199 DOI: 10.1038/s41413-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 12/09/2024] Open
Abstract
Recent genome-wide association studies (GWAS) identified 518 significant loci associated with bone mineral density (BMD), including variants at the RUNX1 locus (rs13046645, rs2834676, and rs2834694). However, their regulatory impact on RUNX1 expression and bone formation remained unclear. This study utilized human induced pluripotent stem cells (iPSCs) differentiated into osteoblasts to investigate these variants' regulatory roles. CRISPR/Cas9 was employed to generate mutant (Δ) iPSC lines lacking these loci at the RUNX1 locus. Deletion lines (Δ1 and Δ2) were created in iPSCs to assess the effects of removing regions containing these loci. Deletion lines exhibited enhanced osteogenic potential, with increased expression of osteogenic marker genes and Alizarin Red staining. Circularized chromosome conformation capture (4C-Seq) was utilized to analyze interactions between BMD-associated loci and the RUNX1 promoter during osteogenesis. Analysis revealed altered chromatin interactions with multiple gene promoters including RUNX1 isoform, as well as SETD4, a histone methyltransferase, indicating their regulatory influence. Interestingly, both deletion lines notably stimulated the expression of the long isoform of RUNX1, with more modest effects on the shorter isoform. Consistent upregulation of SETD4 and other predicted targets within the Δ2 deletion suggested its removal removed a regulatory hub constraining expression of multiple genes at this locus. In vivo experiments using a bone defect model in mice demonstrated increased bone regeneration with homozygous deletion of the Δ2 region. These findings indicate that BMD-associated variants within the RUNX1 locus regulate multiple effector genes involved in osteoblast commitment, providing valuable insights into genetic regulation of bone density and potential therapeutic targets.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Andrea Wilderman
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Jarred M Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Archana Kamalakar
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Goudy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA.
- Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
9
|
Yu Y, Dong G, Niu Y. Construction of ferroptosis-related gene signatures for identifying potential biomarkers and immune cell infiltration in osteoarthritis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:449-461. [PMID: 39258983 DOI: 10.1080/21691401.2024.2402298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Yali Yu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Guixiang Dong
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Yanli Niu
- School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
10
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
11
|
Ma J, Wang Z, Sun Y, Zheng R, Tan H, Zhang H, Jin Z, Wu Y, Sun Z. Phillyrin: A potential therapeutic agent for osteoarthritis via modulation of NF-κB and Nrf2 signaling pathways. Int Immunopharmacol 2024; 141:112960. [PMID: 39159565 DOI: 10.1016/j.intimp.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Osteoarthritis (OA) is the predominant cause of disability among elderly people worldwide and is characterized by cartilage degeneration and excessive bone formation. Phillyrin, derived from forsythia, is a key extract renowned for its pronounced antibacterial and anti-inflammatory effects. Forsythia, deeply integrated into traditional Oriental medicine, has historically been utilized for its various pharmacological effects, including antibacterial, anti-inflammatory, and hepato-protective properties. Nevertheless, the anti-inflammatory impact of phillyrin on the progression of osteoarthritis remains enigmatic. The objective of this research was to assess the anti-inflammatory and anti-aging properties of phillyrin in mouse chondrocytes induced by IL-1β, as well as to elucidate the fundamental mechanisms underlying the phenomenon at play. Additionally, the investigation extends to observing the impact of phillyrin by establishing a murine osteoarthritic model. The ultimate goal was to identify phillyrin as a potential antiosteoarthritic agent. This investigation employs a multifaceted approach. Initially, key action targets of phillyrin, along with its probable action pathways, were identified by molecular docking and network pharmacological techniques. These findings were subsequently confirmed through both in vivo and in vitro studies. Network pharmacological analysis revealed NFE2L2 (NRF2), NFKB1, TLR4, and SERPING1 as pivotal candidate targets for the treatment of osteoarthritis with phillyrin. Molecular docking revealed hydrogen bond interactions between phillyrin and Arg415, Arg483, Ser508, and Asn387 on the Nrf2 receptor, while electrostatic interactions occurred with residues Arg415 and Arg380. Experiments conducted in vitro indicated that phillyrin preconditioning hindered the IL-1β-induced expression of proinflammatory factors which included TNF-α, COX-2, IL-6, and iNOS. Furthermore, phillyrin counteracts the IL-1β-induced degradation of aggrecan and collagen II within the extracellular matrix (ECM). This protective action is caused by the inhibition of the NF-κB pathway by phillyrin. Additionally, the mitigation of chondrocyte aging by phillyrin was observed. Our investigation revealed that phillyrin mitigates inflammation and counteracts cartilage degeneration in osteoarthritis (OA) patients by suppressing inflammation in chondrocytes and impeding aging through suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hongye Tan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hanwen Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| | - Zeming Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
12
|
Zhang X, Li H, Chen L, Wu Y, Li Y. NRF2 in age-related musculoskeletal diseases: Role and treatment prospects. Genes Dis 2024; 11:101180. [PMID: 39281838 PMCID: PMC11400624 DOI: 10.1016/j.gendis.2023.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 09/18/2024] Open
Abstract
The NRF2 pathway is a metabolic- and redox-sensitive signaling axis in which the transcription factor controls the expression of a multitude of genes that enable cells to survive environmental stressors, such as oxidative stress, mainly by inducing the expression of cytoprotective genes. Basal NRF2 levels are maintained under normal physiological conditions, but when exposed to oxidative stress, cells activate the NRF2 pathway, which is crucial for supporting cell survival. Recently, the NRF2 pathway has been found to have novel functions in metabolic regulation and interplay with other signaling pathways, offering novel insights into the treatment of various diseases. Numerous studies have shown that targeting its pathway can effectively investigate the development and progression of age-related musculoskeletal diseases, such as sarcopenia, osteoporosis, osteoarthritis, and intervertebral disc degeneration. Appropriate regulation of the NRF2 pathway flux holds promise as a means to improve musculoskeletal function, thereby providing a new avenue for drug treatment of age-related musculoskeletal diseases in clinical settings. The review summarized an overview of the relationship between NRF2 and cellular processes such as oxidative stress, apoptosis, inflammation, mitochondrial dysfunction, ferroptosis, and autophagy, and explores the potential of targeted NRF2 regulation in the treatment of age-related musculoskeletal diseases.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Zhang A, Cong L, Nan C, Zhao Z, Liu L. 3D biological scaffold delivers Bergenin to reduce neuroinflammation in rats with cerebral hemorrhage. J Transl Med 2024; 22:946. [PMID: 39420402 PMCID: PMC11484212 DOI: 10.1186/s12967-024-05735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe form of stroke characterized by high incidence and mortality rates. Currently, there is a significant lack of effective treatments aimed at improving clinical outcomes. Our research team has developed a three-dimensional (3D) biological scaffold that incorporates Bergenin, allowing for the sustained release of the compound. METHODS This 3D biological scaffold was fabricated using a combination of photoinitiator, GEMA, silk fibroin, and decellularized brain matrix (dECM) to encapsulate Bergenin through advanced 3D bioprinting techniques. The kinetics of drug release were evaluated through both in vivo and in vitro studies. A cerebral hemorrhage model was established, and a 3D biological scaffold containing Bergenin was transplanted in situ. Levels of inflammatory response, oxidative stress, and apoptosis were quantified. The neurological function of rats with cerebral hemorrhage was assessed on days 1, 3, and 5 using the turning test, forelimb placement test, Longa score, and Bederson score. RESULTS The 3D biological scaffold incorporating Bergenin significantly enhances the maintenance of drug concentration in the bloodstream, leading to a marked reduction in inflammatory markers such as IL-6, iNOS, and COX-2 levels in a cerebral hemorrhage model, primarily through the inhibition of the NF-κB pathway. Additionally, the scaffold effectively reduces the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in primary cultured astrocytes, which in turn decreases the production of reactive oxygen species (ROS) and inhibits IL-6 production induced by hemin. Subsequent experiments reveal that the 3D biological scaffold containing Bergenin promotes the activation of the Nrf-2/HO-1 signaling pathway, both in vivo and in vitro, thereby preventing cell death. Moreover, the application of this 3D biological scaffold has been demonstrated to improve drug retention in the bloodstream. CONCLUSION This strategy effectively mitigates inflammation, oxidative stress, and cell death in rats with cerebral hemorrhage by inhibiting the NF-κB pathway while concurrently activating the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Lulu Cong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
14
|
Fang X, Zhao H, Xu T, Wu H, Sheng G. Anti-Inflammatory and Antioxidant Effects of Irigenen Alleviate Osteoarthritis Progression through Nrf2/HO-1 Pathway. Pharmaceuticals (Basel) 2024; 17:1268. [PMID: 39458910 PMCID: PMC11510601 DOI: 10.3390/ph17101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative disease globally, characterized by cartilage degradation and joint dysfunction. Current treatments are insufficient for halting OA progression. Irigenin (IRI), a flavonoid extracted from natural plants with anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating inflammation and oxidative stress in various diseases; however, its effects on OA remain unexplored. This study aims to evaluate the therapeutic effects of IRI on OA through in vivo and in vitro experiments and to elucidate the underlying molecular mechanisms. METHODS In vitro, chondrocytes were exposed to hydrogen peroxide (H2O2) to induce an oxidative stress environment and were then treated with IRI. Western blotting, RT-qPCR, immunofluorescence staining assays, flow cytometry, and apoptosis assays were employed to assess the effects of IRI on chondrocyte matrix homeostasis, inflammatory response, and apoptosis. In vivo, an OA rat model was treated with regular IRI injections, and therapeutic effects were evaluated using micro-CT, histological staining, and immunohistochemistry assays. RESULTS IRI treatment restored matrix homeostasis in chondrocytes and effectively suppressed H2O2-induced inflammation and apoptosis. Subsequent studies further revealed that IRI exerts its therapeutic effects by activating the Nrf2/HO-1 pathway. Inhibition of Nrf2 expression in chondrocytes partially blocked the anti-inflammatory and antioxidant effects of IRI. In the OA rat model, regular IRI injections effectively ameliorated cartilage degeneration. CONCLUSIONS This study identifies IRI as a promising strategy for OA treatment by modulating inflammation and apoptosis through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (X.F.); (H.Z.); (T.X.); (H.W.)
| |
Collapse
|
15
|
Lee SH, Shin MK, Sung JS. Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1166. [PMID: 39456419 PMCID: PMC11505541 DOI: 10.3390/antiox13101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging and obesity, there is currently no effective cure for the disease. In this context, this study investigated the therapeutic effects of tamarixetin, a flavonoid with antioxidative and anti-inflammatory properties, against OA pathology and elucidated the underlying molecular mechanism. In interleukin-1β (IL-1β)-treated chondrocytes, tamarixetin inhibited the OA phenotypes, restoring cell viability and chondrogenic properties while reducing hypertrophic differentiation and dedifferentiation. Tamarixetin alleviated oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation and inhibited mitogen-activated protein kinase and nuclear factor-κB (NF-κB). Furthermore, tamarixetin attenuated pyroptosis, a programmed cell death caused by excessive inflammation, by suppressing inflammasome activation. We confirmed that the chondroprotective effects of tamarixetin are mediated by the concurrent upregulation of Nrf2 signaling and downregulation of NF-κB signaling, which are key players in balancing antioxidative and inflammatory responses. Overall, our study demonstrated that tamarixetin possesses chondroprotective properties by alleviating IL-1β-induced cellular stress in chondrocytes, suggesting its therapeutic potential to relieve OA phenotype.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.-H.L.); (M.K.S.)
| |
Collapse
|
16
|
Sheng W, Yue Y, Qi T, Qin H, Liu P, Wang D, Zeng H, Yu F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. J Inflamm Res 2024; 17:6619-6633. [PMID: 39329083 PMCID: PMC11424688 DOI: 10.2147/jir.s479186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Hui Zeng
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| |
Collapse
|
17
|
Li L, Gong J, Zhang W. Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis. Appl Biochem Biotechnol 2024; 196:6174-6188. [PMID: 38224394 DOI: 10.1007/s12010-023-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
The aim of this study was to investigate the alleviating effect of wogonin on intracerebral hemorrhage (ICH) and its mechanism. The hemin-treated PC-12 cells were constructed to mimic ICH in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis was used for cell viability measurement and flow cytometry was for pyroptosis detection. Enzyme-linked immunosorbent assay (ELISA) assay and western blot were used to detect the protein levels of pyroptosis-related proteins. The modification level of N6-methyladenosine (m6A) methylation was detected by quantitative real-time polymerase chain reaction (qRT-PCR) combined with m6A dot blot assays. Molecular docking experiments analyzed the binding of wogonin and METTL14 protein. The correlation between METTL14 and NLRP3 was confirmed by bioinformatics analysis and dual luciferase reporter gene detection. ICH was induced in mice injected with collagenase into the basal ganglia, and the neurobehavioral damage was evaluated. Triphenyltetrazolium chloride monohydrate (TTC) staining and neurological scores were used to assess brain damage in mice. The results demonstrated that wogonin alleviated neuronal cell pyroptosis, and was molecularly docked with METTL14. Overexpression of METTL14 partly reversed the protecting effects of wogonin on brain in vitro and in vivo. Furthermore, NLRP3 was methylated by METTL14. Taken together, wogonin inhibits neuronal pyroptosis and thus treats IHC by inhibiting METTL14 and its methylated NLRP3.
Collapse
Affiliation(s)
- Libo Li
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Jinbing Gong
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Wenjia Zhang
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China.
| |
Collapse
|
18
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
19
|
Gu X, Zhou H, Miao M, Hu D, Wang X, Zhou J, Teichmann AT, Yang Y, Wang C. Therapeutic Potential of Natural Resources Against Endometriosis: Current Advances and Future Perspectives. Drug Des Devel Ther 2024; 18:3667-3696. [PMID: 39188919 PMCID: PMC11345706 DOI: 10.2147/dddt.s464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Endometriosis (EMS) is defined as the appearance, growth, infiltration, and repeated bleeding of endometrioid tissue (glands and stroma) outside the uterus cavity, which can form nodules and masses. Endometriosis is a chronic inflammatory estrogen-dependent disease and occurs in women of reproductive age. This disorder may significantly affect the quality of life of patients. The pathogenic processes involved in the development and maintenance of endometriosis remain unclear. Current treatment options for endometriosis mainly include drug therapy and surgery. Drug therapy mainly ties to the use of non-steroidal anti-inflammatory drugs (NSAIDs) and hormonal drugs. However, these drugs may produce adverse effects when used for long-term treatment of endometriosis, such as nausea, vomiting gastrointestinal reactions, abnormal liver and kidney function, gastric ulcers, and thrombosis. Although endometriosis lesions can be surgically removed, the disease has a high recurrence rate after surgical resection, with a recurrence rate of 21.5% within 2 years and 40% to 50% within 5 years. Thus, there is an urgent need to develop alternative or additional therapies for the treatment of endometriosis. In this review, we give a systematic summary of therapeutic multiple component prescriptions (including traditional Chinese medicine and so on), bioactive crude extracts of plants/herbs and purified compounds and their newly found mechanisms reported in literature in recent years against endometriosis.
Collapse
Affiliation(s)
- Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Gynaecology and Obstetrics, Leshan People’s Hospital, Leshan, 614003, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinyue Wang
- The Basic Medical College, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, Chengdu Third People’s Hospital, Chengdu, 610014, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Chunyan Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
20
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
21
|
Guo C, Peng J, Cheng P, Yang C, Gong S, Zhang L, Zhang T, Peng J. Mechanistic elucidation of ferroptosis and ferritinophagy: implications for advancing our understanding of arthritis. Front Physiol 2024; 15:1290234. [PMID: 39022306 PMCID: PMC11251907 DOI: 10.3389/fphys.2024.1290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.
Collapse
Affiliation(s)
- Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Piaotao Cheng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Shouhang Gong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Joint Orthopaedic Research Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| |
Collapse
|
22
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
23
|
Ge J, Yang H, Yu N, Lin S, Zeng Y. Wogonin alleviates sepsis-induced acute lung injury by modulating macrophage polarization through the SIRT1-FOXO1 pathways. Tissue Cell 2024; 88:102400. [PMID: 38759522 DOI: 10.1016/j.tice.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/06/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Jinlin Ge
- Department of Respiratory and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Huanhuan Yang
- Department of Respiratory and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Ningning Yu
- Department of Respiratory and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Shengle Lin
- Department of Respiratory and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Yufeng Zeng
- Department of Respiratory and Critical Care Medicine, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
24
|
Qin H, Liu X, Ding Q, Liu H, Ma C, Wei Y, Lv Y, Wang S, Ren Y. Astaxanthin reduces inflammation and promotes a chondrogenic phenotype by upregulating SIRT1 in osteoarthritis. Knee 2024; 48:83-93. [PMID: 38555717 DOI: 10.1016/j.knee.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE To investigate the effects of astaxanthin (AST) on mouse osteoarthritis (OA) and lipopolysaccharide (LPS)-induced ATDC5 cell damage and to explore whether SIRT1 protein plays a role. METHODS In this study, some mouse OA models were constructed by anterior cruciate ligament transection (ACLT). Imaging, molecular biology and histopathology methods were used to study the effect of AST administration on traumatic OA in mice. In addition, LPS was used to stimulate ATDC5 cells to mimic the inflammatory response of OA. The effects of AST on the cell activity, inflammatory cytokines, matrix metalloproteinases and collagen type II levels were studied by CCK8 activity assay, reverse transcription polymerase chain reaction and protein imprinting. The role of SIRT1 protein was also detected. RESULTS In the mouse OA model, the articular surface collapsed, the articular cartilage thickness and cartilage matrix protein abundance were significantly decreased, while the expression of inflammatory cytokines and matrix metalloproteinases was increased; but AST treatment reversed these effects. Meanwhile, AST pretreatment could partially reverse LPS-induced ATDC5 cell damage and upregulate SIRT1 expression, but this protective effect of AST was attenuated by concurrent administration of the SIRT1 inhibitor Ex527. CONCLUSION AST can protect against the early stages of OA by affecting SIRT1 signalling, suggesting that AST might be a potential therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Haonan Qin
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Xingjing Liu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qirui Ding
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Huan Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Cheng Ma
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yifan Wei
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - You Lv
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Yongxin Ren
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
26
|
Cao L, Gao W, Yang H, Zeng R, Yin Z. Adipocyte enhancer binding protein 1 knockdown alleviates osteoarthritis through inhibiting NF-κB signaling pathway-mediated inflammation and extracellular matrix degradation. J Cell Commun Signal 2024; 18:e12022. [PMID: 38946719 PMCID: PMC11208125 DOI: 10.1002/ccs3.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammation promotes the degradation of the extracellular matrix, which contributes to the development of osteoarthritis (OA). Adipocyte enhancer binding protein 1 (AEBP1) participates in multiple pathological processes related to inflammatory diseases. However, the role of AEBP1 in OA development is unknown. We found a higher AEBP1 expression in articular cartilage of OA patients (n = 20) compared to their normal controls (n = 10). Thus, we inferred that AEBP1 might affect OA progression. Then mice with destabilization of the medial meniscus (DMM) surgery and chondrocytes with IL-1β treatment (10 ng/mL) were used to mimic OA. The increased AEBP1 expression was observed in models of OA. AEBP1 knockdown in chondrocytes reversed IL-1β-induced inflammation and extracellular matrix degradation, which was mediated by the inactivation of NF-κB signaling pathway and the increased IκBα activity. Co-immunoprecipitation assay indicated the interaction between AEBP1 and IκBα. Importantly, IκBα knockdown depleted the protective role of AEBP1 knockdown in OA. Moreover, AEBP1 knockdown in mice with OA showed similar results to those in chondrocytes. Collectively, our findings suggest that AEBP1 knockdown alleviates the development of OA, providing a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Le Cao
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopedicsFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Weilu Gao
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Haitao Yang
- Department of OrthopedicsFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Ran Zeng
- Department of Intensive Care UnitFuyang Hospital of Anhui Medical UniversityFuyangAnhuiChina
| | - Zongsheng Yin
- Department of OrthopedicsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
27
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Lee YT, Mohd Yunus MH, Yazid MD, Ugusman A. Unraveling the path to osteoarthritis management: targeting chondrocyte apoptosis for therapeutic intervention. Front Cell Dev Biol 2024; 12:1347126. [PMID: 38827524 PMCID: PMC11140145 DOI: 10.3389/fcell.2024.1347126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
29
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
30
|
Bartoszewska E, Molik K, Woźniak M, Choromańska A. Telomerase Inhibition in the Treatment of Leukemia: A Comprehensive Review. Antioxidants (Basel) 2024; 13:427. [PMID: 38671875 PMCID: PMC11047729 DOI: 10.3390/antiox13040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Leukemia, characterized by the uncontrolled proliferation and differentiation blockage of myeloid or lymphoid precursor cells, presents significant therapeutic challenges despite current treatment modalities like chemotherapy and stem cell transplantation. Pursuing novel therapeutic strategies that selectively target leukemic cells is critical for improving patient outcomes. Natural products offer a promising avenue for developing effective chemotherapy and preventive measures against leukemia, providing a rich source of biologically active compounds. Telomerase, a key enzyme involved in chromosome stabilization and mainly active in cancer cells, presents an attractive target for intervention. In this review article, we focus on the anti-leukemic potential of natural substances, emphasizing vitamins (such as A, D, and E) and polyphenols (including curcumin and indole-3-carbinol), which, in combination with telomerase inhibition, demonstrate reduced cytotoxicity compared to conventional chemotherapies. We discuss the role of human telomerase reverse transcriptase (hTERT), particularly its mRNA expression, as a potential therapeutic target, highlighting the promise of natural compounds in leukemia treatment and prevention.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
31
|
Jiang Y, Zhong S, Tan H, Fu Y, Lai J, Liu L, Weng J, Chen H, He S. Study on the mechanism of action of Saposhnikovia divaricata and its key phytochemical on rheumatoid arthritis based on network pharmacology and bioinformatics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117586. [PMID: 38104871 DOI: 10.1016/j.jep.2023.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikovia divaricata (Turcz.) Schischk (SD; called "fangfeng" in China) has been widely used in the clinical treatment of rheumatoid arthritis (RA) and has shown well therapeutic effects, but the specific mechanisms of action of its bioactive phytochemicals remain unclear. AIM OF THE STUDY This study aimed to investigate the molecular biological mechanism of SD in treating RA through a pharmacology-based strategy. The SD-specific core ingredient Prangenidin was screened for further in-depth study. MATERIALS AND METHODS The bioactive phytochemicals of SD and potential targets for the treatment of RA were screened by network pharmacology, and phytochemicals-related parameters such as pharmacology, and toxicology were evaluated. The protein interaction network was established to screen the core targets, and the correlation between the core targets and RA was further validated by bioinformatics strategy. Finally, molecular docking of core components and corresponding targets was performed. The in vitro experiments were performed to elucidate the regulation of Prangenidin on MH7A cells and on the PI3K/AKT pathway, and the in vivo therapeutic effect of Prangenidin was validated in collagen-induced arthritis (CIA) mice. RESULTS A total of 18 bioactive phytochemicals and 66 potential target genes intersecting with the screened RA disease target genes were identified from SD. Finally, core ingredients such as wogonin, beta-sitosterol, 5-O-Methylvisamminol, and prangenidin and core targets such as PTGS2, RELA, and AKT1 were obtained. The underlying mechanism of SD in treating RA might be achieved by regulating pathways such as PI3K/AKT, IL-17 pathway, apoptosis, and multiple biological processes to exert anti-inflammatory and immunomodulatory effects. Molecular docking confirmed that all core ingredients and key targets had great docking activity. Prangenidin inhibited viability, migration, and invasion, and induced apoptosis in MH7A cells. Prangenidin also reduced the production of IL-1β, IL-6, IL-8, MMP-1, and MMP-3. Molecular analysis showed that Prangenidin exerts its regulatory effect on MH7A cells by inhibiting PI3K/AKT pathway. Treatment with Prangenidin ameliorated synovial inflammation in the joints of mice with CIA. CONCLUSION Our findings provide insights into the therapeutic effects of SD on RA, successfully predicting the effective ingredients and potential targets, which could suggest a novel theoretical basis for further exploration of its molecular mechanisms. It also revealed that Prangenidin inhibited viability, migration, invasion, cytokine, and MMPs expression, and induced apoptosis in RA FLSs via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yong Jiang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Huangsheng Tan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yuanfei Fu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Juyi Lai
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Hanwei Chen
- Department of Radiology, Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, 511495, China.
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China; Department of Spine Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
32
|
Li B, Xiu M, He L, Zhou S, Yi S, Wang X, Cao W, Liu Y, He J. Protective effect of San Huang Pill and its bioactive compounds against ulcerative colitis in Drosophila via modulation of JAK/STAT, apoptosis, Toll, and Nrf2/Keap1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117578. [PMID: 38104873 DOI: 10.1016/j.jep.2023.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San Huang Pill (SHP) is a prescription in Dunhuang Ancient Medical Prescription, which has the efficacy of heat-clearing and dampness-drying, and is a traditional formula for the treatment of gastrointestinal diseases. However, its efficacy and mechanism in treating ulcerative colitis (UC) are still unclear. AIM OF THE STUDY To investigate the protective effects of SHP and its bioactive compounds against Dextran Sulfate Sodium (DSS)-induced intestinal damage using the Drosophila melanogaster model, and to detect the molecular mechanism of SHP in the treatment of UC. METHODS Survival rate, locomotion, feeding, and excretion were used to explore the anti-inflammatory effects of SHP. The pharmacotoxicity of SHP was measured using developmental analysis. Intestinal integrity, intestinal length, intestinal acid-base homeostasis, and Tepan blue assay were used to analyze the protective effect of SHP against DSS-induced intestinal damage. The molecular mechanism of SHP was detected using DHE staining, immunofluorescence, real-time PCR, 16 S rRNA gene sequencing, and network pharmacology analysis. Survival rate, intestinal length, and integrity analysis were used to detect the protective effect of bioactive compounds of SHP against intestinal damage. RESULTS SHP supplementation significantly increased the survival rate, restored locomotion, increased metabolic rate, maintained intestinal morphological integrity and intestinal homeostasis, protected intestinal epithelial cells, and alleviated intestinal oxidative damage in adult flies under DSS stimulation. Besides, administration of SHP had no toxic effect on flies. Moreover, SHP supplementation remarkably decreased the expression levels of genes related to JAK/STAT, apoptosis, and Toll signaling pathways, increased the gene expressions of the Nrf2/Keap1 pathway, and also reduced the relative abundance of harmful bacteria in DSS-treated flies. Additionally, the ingredients in SHP (palmatine, berberine, baicalein, wogonin, rhein, and aloeemodin) had protection against DSS-induced intestinal injury, such as prolonging survival rate, increasing intestinal length, and maintaining intestinal barrier integrity. CONCLUSION SHP had a strong anti-inflammatory function, and remarkably alleviated DSS-induced intestinal morphological damage and intestinal homeostatic imbalance in adult flies by regulating JAK/STAT, apoptosis, Toll and Nrf2/Keap1 signaling pathways, and also gut microbial homeostasis. This suggests that SHP may be a potential complementary and alternative medicine herb therapy for UC, which provides a basis for modern pharmacodynamic evaluation of other prescriptions in Dunhuang ancient medical prescription.
Collapse
Affiliation(s)
- Botong Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Li He
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wangjie Cao
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Xu J, Ruan Z, Guo Z, Hou L, Wang G, Zheng Z, Zhang X, Liu H, Sun K, Guo F. Inhibition of SAT1 alleviates chondrocyte inflammation and ferroptosis by repressing ALOX15 expression and activating the Nrf2 pathway. Bone Joint Res 2024; 13:110-123. [PMID: 38447596 PMCID: PMC10917474 DOI: 10.1302/2046-3758.133.bjr-2023-0250.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Aims Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA.
Collapse
Affiliation(s)
- Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Fang S, Zhang B, Xiang W, Zheng L, Wang X, Li S, Zhang T, Feng D, Gong Y, Wu J, Yuan J, Wu Y, Zhu Y, Liu E, Ni Z. Natural products in osteoarthritis treatment: bridging basic research to clinical applications. Chin Med 2024; 19:25. [PMID: 38360724 PMCID: PMC10870578 DOI: 10.1186/s13020-024-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Collapse
Affiliation(s)
- Shunzheng Fang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Rehabilitation Center, Key Specialty of Neck and Low Back Pain Rehabilitation, Strategic Support Force Xingcheng Special Duty Sanatorium, Liaoning, 125100, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Fourth Hospital of Wuhan, Wuhan, 430000, Hubei, China
| | - Xiaodong Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jinhui Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jing Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yizhen Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Enli Liu
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|
35
|
Jo HG, Baek CY, Song HS, Lee D. Network Pharmacology and Experimental Verifications to Discover Scutellaria baicalensis Georgi's Effects on Joint Inflammation, Destruction, and Pain in Osteoarthritis. Int J Mol Sci 2024; 25:2127. [PMID: 38396803 PMCID: PMC10889325 DOI: 10.3390/ijms25042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
- Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae-Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.); (C.-Y.B.)
| |
Collapse
|
36
|
Zhang JB, Wang F, Tang YT, Pang MZ, Li D, Liu CF. Inhibition of GluN2D-Containing NMDA Receptors Protects Dopaminergic Neurons against 6-OHDA-Induced Neurotoxicity via Activating ERK/NRF2/HO-1 Signaling. ACS Chem Neurosci 2024; 15:572-581. [PMID: 38277219 DOI: 10.1021/acschemneuro.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| |
Collapse
|
37
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
38
|
Cheng Z, Tu J, Wang K, Li F, He Y, Wu W. Wogonin alleviates NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/SIRT1. Brain Res Bull 2024; 207:110886. [PMID: 38253131 DOI: 10.1016/j.brainresbull.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Cerebral ischemia-reperfusion (IR) is the main pathophysiological process after stroke and can seriously impair neurological function. Wogonin, a natural flavonoid extracted from the roots of Scutellaria baicalensis, has potent anti-inflammatory properties. In this study, we investigated the protective mechanism of wogonin against middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) model-induced cerebral IR injury through adenosine 5'-monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome axis. Our results showed that wogonin (20 mg/kg, intraperitoneal injection) effectively reduced infarct size, attenuated brain edema, improved neurological deficits, and alleviated histopathological damage. In addition, wogonin reduced microglial cell activation and inflammatory factors, including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, in brain tissue and serum after cerebral IR injury. Wogonin also effectively activated the AMPK/SIRT1 signaling pathway and inhibited NLPR3 inflammasome-related molecules upregulation in cerebral IR injury as well as in OGD/R-stimulated HT-22 cells. Furthermore, inhibition of the AMPK/SIRT1 signaling pathway by Compound C, an AMPK inhibitor, significantly reversed the protective effect of wogonin on OGD/R-induced NLRP3 inflammasome. Meanwhile, the protective effect of wogonin against brain IR injury was also reversed in the presence of compound C. These results suggest that wogonin ameliorates cerebral IR injruy-induced inflammation by inhibiting NLRP3 inflammasome through the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Zhijuan Cheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Kai Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Fang Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Yuan He
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China.
| |
Collapse
|
39
|
ZHANG Q, CHEN D, ZHU G, ZHANG S, FENG X, MA C, ZHANG Y. Efficacy of Tounongsan decoction on pyogenic liver abscess: network pharmacology and clinical trial validation. J TRADIT CHIN MED 2024; 44:145-155. [PMID: 38213249 PMCID: PMC10774731 DOI: 10.19852/j.cnki.jtcm.20231110.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To elucidate the molecular mechanisms governing the effect of Tounongsan decoction (, TNS) on the pyogenic liver abscess. METHODS Based on oral bioavailability and drug-likeness, the main active components of TNS were screened using the Traditional Chinese Medicine Systems Pharmacology platform. The GeneCard and UniProt databases were used to establish a database of pyogenic liver abscess targets. The interactive network map of drug-ingredients-target-disease was constructed using Cytoscape software (Version 3.7.2). A protein-protein interaction network was constructed using the STRING database, and the related protein interaction relationships were analyzed. biological process of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for the core targets. Finally, a clinical trial was performed to verify the reliability of the network pharmacology. RESULTS Forty active components of TNS decoction were obtained, and 61 potential targets and 11 proteins were identified. Pathways involved in the treatment of pyogenic liver abscess include the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT), advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), and tumor necrosis factor (TNF) signaling pathways. The results of network pharmacology analysis combined with clinical trials validated that TNS decoction could alleviate the inflammatory response of pyogenic liver abscesses by decreasing interleukin 6 (IL-6) levels. CONCLUSIONS TNS decoction has the characteristics of being multi-system, multi-component, and multi-target. Active ingredients in TNS, such as quercetin, kaempferol, fisetin, and β-sitosterol, have strong potential to be candidate drugs for treating pyogenic liver abscesses. The possible mechanism of TSN decoction includes regulating immune and inflammatory responses and reducing IL-6 production to control inflammatory development.
Collapse
Affiliation(s)
- Qi ZHANG
- 1 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; Zhuzhou Orthopaedic Hospital of Traditional Chinese Medicine, Zhuzhou 412300, China
| | - Dexuan CHEN
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Guixiang ZHU
- 3 Department of General Surgery, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing 210029, China
| | - Shihu ZHANG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao FENG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Chaoqun MA
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yi ZHANG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
40
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
41
|
Ren Q, Liu Z, Wu L, Yin G, Xie X, Kong W, Zhou J, Liu S. C/EBPβ: The structure, regulation, and its roles in inflammation-related diseases. Biomed Pharmacother 2023; 169:115938. [PMID: 38000353 DOI: 10.1016/j.biopha.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation, a mechanism of the human body, has been implicated in many diseases. Inflammatory responses include the release of inflammatory mediators by activating various signaling pathways. CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor in the C/EBP family, contains the leucine zipper (bZIP) domain. The expression of C/EBPβ is mediated at the transcriptional and post-translational levels, such as phosphorylation, acetylation, methylation, and SUMOylation. C/EBPβ has been involved in inflammatory responses by mediating several signaling pathways, such as MAPK/NF-κB and IL-6/JAK/STAT3 pathways. C/EBPβ plays an important role in the pathological development of inflammation-related diseases, such as osteoarthritis, pneumonia, hepatitis, inflammatory bowel diseases, and rheumatoid arthritis. Here, we comprehensively discuss the structure and biological effects of C/EBPβ and its role in inflammatory diseases.
Collapse
Affiliation(s)
- Qun Ren
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhaowen Liu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
42
|
Xu K, Li J, Wen R, Chang B, Cheng Y, Yi X. Role of SIRT3 in bone homeostasis and its application in preventing and treating bone diseases. Front Pharmacol 2023; 14:1248507. [PMID: 38192409 PMCID: PMC10773770 DOI: 10.3389/fphar.2023.1248507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Bone homeostasis refers to the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and the maintenance of stable bone mass. SIRT3 is a class of mitochondrial protein deacetylase that influences various mitochondrial functions and is involved in the mechanisms underlying resistance to aging; regulation of bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts; and development of osteoporosis, osteoarthritis, and other bone diseases. Moreover, exercise affects bones through SIRT3. Thus, studies on SIRT3 may provide insights for the treatment of bone diseases. Although SIRT3 can exert multiple effects on bone, the specific mechanism by which it regulates bone homeostasis remains unclear. By evaluating the relevant literature, this review discusses the structure and function of SIRT3, reveals the role and associated mechanisms of SIRT3 in regulating bone homeostasis and mediating bone health during exercise, and highlights the potential pharmacological value of SIRT3 in treating bone diseases.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
43
|
Khan NM, Diaz-Hernandez ME, Martin WN, Patel B, Chihab S, Drissi H. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ 2023; 11:e16553. [PMID: 38077417 PMCID: PMC10704986 DOI: 10.7717/peerj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Osteoarthritis (OA) is a debilitating joints disease affecting millions of people worldwide. As OA progresses, chondrocytes experience heightened catabolic activity, often accompanied by alterations in the extracellular environment's osmolarity and acidity. Nevertheless, the precise mechanism by which chondrocytes perceive and respond to acidic stress remains unknown. Recently, there has been growing interest in pH-sensing G protein-coupled receptors (GPCRs), such as GPR68, within musculoskeletal tissues. However, function of GPR68 in cartilage during OA progression remains unknown. This study aims to identify the role of GPR68 in regulation of catabolic gene expression utilizing an in vitro model that simulates catabolic processes in OA. Methods We examined the expression of GPCR by analyzing high throughput RNA-Seq data in human cartilage isolated from healthy donors and OA patients. De-identified and discarded OA cartilage was obtained from joint arthroplasty and chondrocytes were prepared by enzymatic digestion. Chondrocytes were treated with GPR68 agonist, Ogerin and then stimulated IL1β and RNA isolation was performed using Trizol method. Reverse transcription was done using the cDNA synthesis kit and the expression of GPR68 and OA related catabolic genes was quantified using SYBR® green assays. Results The transcriptome analysis revealed that pH sensing GPCR were expressed in human cartilage with a notable increase in the expression of GPR68 in OA cartilage which suggest a potential role for GPR68 in the pathogenesis of OA. Immunohistochemical (IHC) and qPCR analyses in human cartilage representing various stages of OA indicated a progressive increase in GPR68 expression in cartilage associated with higher OA grades, underscoring a correlation between GPR68 expression and the severity of OA. Furthermore, IHC analysis of Gpr68 in murine cartilage subjected to surgically induced OA demonstrated elevated levels of GPR68 in knee cartilage and meniscus. Using IL1β stimulated in vitro model of OA catabolism, our qPCR analysis unveiled a time-dependent increase in GPR68 expression in response to IL1β stimulation, which correlates with the expression of matrix degrading proteases suggesting the role of GPR68 in chondrocytes catabolism and matrix degeneration. Using pharmacological activator of GPR68, our results further showed that GPR68 activation repressed the expression of MMPs in human chondrocytes. Conclusions Our results demonstrated that GPR68 was robustly expressed in human cartilage and mice and its expression correlates with matrix degeneration and severity of OA progression in human and surgical model. GPR68 activation in human chondrocytes further repressed the expression of MMPs under OA pathological condition. These results identify GPR68 as a possible therapeutic target in the regulation of matrix degradation during OA.
Collapse
Affiliation(s)
- Nazir M. Khan
- Orthopaedics, Emory University, Atlanta, GA, United States
| | | | | | - Bhakti Patel
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Samir Chihab
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Hicham Drissi
- Orthopaedics, Emory University, Atlanta, GA, United States
| |
Collapse
|
44
|
Cao N, Wang D, Liu B, Wang Y, Han W, Tian J, Xiang L, Wang Z. Silencing of STUB1 relieves osteoarthritis via inducing NRF2-mediated M2 macrophage polarization. Mol Immunol 2023; 164:112-122. [PMID: 37992540 DOI: 10.1016/j.molimm.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES Shifting macrophages towards an anti-inflammatory state is key in treating osteoarthritis (OA) by reducing inflammation and tissue damage. However, the underlying mechanisms guiding this shift remain largely undefined. STUB1, an E3 ubiquitin ligase, known for its regulatory role in macrophage polarization. This study aims to explore the function and underlying action mechanisms of STUB1 in OA. METHODS An in vivo OA model was established in rats. Hematoxylin-Eosin and safranin O-fast green staining were performed to reveal the hispathological injuries in knee-joint tissues. Immunohistochemistry and flow cytometry were performed to detect the distribution of M1 and M2 macrophages. The inflammatory response (TNF-α and IL-6 levels) was evaluated by ELISA. In vitro, the interaction between STUB1 and NFR2 was determined by CO-IP and pull-down assays. After treated with LPS (an in vitro model of OA), the viability and apoptosis of chondrocytes were measured by CCK-8 and flow cytometry, respectively. RESULTS Silencing STUB1 alleviated OA in rats, as indicated by reduced subchondral bone thickness, knee synovitis score, histopathological damages, and inflammatory response. STUB1 silencing also decreased M1 macrophages and increased M2 macrophages in both in vivo and in vitro settings. NRF2 was identified as a target of STUB1, with STUB1 mediating its ubiquitination. Silencing NRF2 reversed the effects of STUB1 silencing on inducing M2 macrophage polarization. Furthermore, silencing STUB1 upregulated NRF2 expression in LPS-treated chondrocytes, promoting cell viability and inhibiting apoptosis. CONCLUSION Silencing STUB1 induces M2 macrophage polarization by inhibiting NRF2 ubiquitination, thereby contributing to the mitigation of OA.
Collapse
Affiliation(s)
- Nan Cao
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Danni Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Bin Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Yu Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Jing Tian
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China.
| | - Zheng Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning Province, China.
| |
Collapse
|
45
|
Chun JM, Nam H, Lee JH, Seo YH, Kim HS, Moon BC, Park JH. Chondroprotective effects of Protaetia brevitarsis seulensis larvae as an edible insect on osteoarthritis in mice. Food Sci Nutr 2023; 11:7887-7899. [PMID: 38107146 PMCID: PMC10724628 DOI: 10.1002/fsn3.3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic joint inflammatory disease characterized by progressive destruction of the articular cartilage, bone remodeling, and excessive chronic pain. Most therapeutic approaches do not rescue the progression of OA effectively or provide relief of symptoms. Protaetia brevitarsis seulensis larva (PBSL), which is attracting attention, is an edible insect with very high nutritional value and herbal medicine for the treatment of blood stasis, hepatic disease, and various inflammatory diseases. However, the effect of PBSL on OA has not yet been investigated. This study aimed to demonstrate the effects of PBSL water extract on the progression of OA using monosodium iodoacetate (MIA)-induced mice and SW1353 chondrocytes or murine macrophages. We injected MIA into the intraarticular area of mice following pretreatment with either saline or PBSL (200 mg/kg) for 2 weeks, and then locomotor activity, microcomputed tomography and histopathological analysis, quantitative reverse transcriptase-polymerase chain reaction analysis, and western blot analysis were performed. To determine the molecular effects of PBSL, we used interleukin-1β (IL-1β)-induced SW1353 chondrosarcoma or lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with PBSL diminished the symptoms of OA. Physical activity, articular cartilage damage, and the generation of microfractures were rescued by pretreatment with PBSL in the mouse model. Pretreatment with PBSL suppressed the progress of OA through the regulation of articular cartilage degradation genes and inflammation in both in vivo and in vitro models. Our results demonstrated that PBSL has value as edible insect that can be used in the development of functional foods for OA.
Collapse
Affiliation(s)
- Jin Mi Chun
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Hyeon‐Hwa Nam
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Ji Hye Lee
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
- School of Korean MedicinePusan National UniversityBusan‐siRepublic of Korea
| | - Young Hye Seo
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| |
Collapse
|
46
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
47
|
Saha S, Rebouh NY. Anti-Osteoarthritis Mechanism of the Nrf2 Signaling Pathway. Biomedicines 2023; 11:3176. [PMID: 38137397 PMCID: PMC10741080 DOI: 10.3390/biomedicines11123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease and the primary pathogenic consequence of OA is inflammation, which can affect a variety of tissues including the synovial membrane, articular cartilage, and subchondral bone. The development of the intra-articular microenvironment can be significantly influenced by the shift of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes. By regulating macrophage inflammatory responses, the NF-κB signaling route is essential in the therapy of OA; whereas, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears to manage the relationship between oxidative stress and inflammation. Additionally, it has been demonstrated that under oxidative stress and inflammation, there is a significant interaction between transcriptional pathways involving Nrf2 and NF-κB. Studying how Nrf2 signaling affects inflammation and cellular metabolism may help us understand how to treat OA by reprogramming macrophage behavior because Nrf2 signaling is thought to affect cellular metabolism. The candidates for treating OA by promoting an anti-inflammatory mechanism by activating Nrf2 are also reviewed in this paper.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Nazih Y. Rebouh
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
48
|
Lu L, Li Y, Dong Q, Fang J, Chen A, Lan Z, Ye Y, Yan J, Liang Q. Wogonin inhibits oxidative stress and vascular calcification via modulation of heme oxygenase-1. Eur J Pharmacol 2023; 958:176070. [PMID: 37739306 DOI: 10.1016/j.ejphar.2023.176070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Vascular calcification (VC) is highly prevalent and increases the morbidity and mortality of cardiovascular diseases. However, the underlying mechanism remains unclear and there is no effective treatment so far. Interestingly, using systems pharmacology approach, we have predicted that Wogonin (Wog) exhibited potential activity against VC. Then we validated the effect of Wog on VC using human and rat vascular smooth muscle cells (VSMCs), rat arterial rings and vitamin D3-overloaded mouse models. Our results showed that Wog dose-dependently inhibited calcification of VSMCs and rat arterial rings. Consistently, alizarin red staining and calcium content assay confirmed that Wog inhibited aortic calcification in vitamin D3-overloaded mice. Moreover, by constructing the protein regulating network of Wog in suppressing VC, we found heme oxygenase-1 (HMOX-1) was regulated by Wog. Additionally, pathway enrichment analysis revealed that inhibition of reactive oxygen species (ROS) pathway participated in the inhibitory role of Wog in VC and HMOX-1 was also involved in this process. Notably, our study revealed that Wog treatment promoted HMOX-1 expression, and reduced ROS levels in VSMCs. Interestingly, both inhibition of HMOX-1 by ZnPP9 and knockdown of HMOX-1 by siRNA independently eliminated the inhibitory effect of Wog on VC. Finally, administration of Wog suppressed aortic calcification in vitamin D3-overloaded mice and this effect was counteracted by ZnPP9,suggesting the crucial role of HMOX-1 in the inhibitory effect of Wog on VC. Collectively, this study combines systems pharmacology-based strategy and experiments to identify the therapeutic potential of Wog for VC via upregulating HMOX-1 and reducing oxidative stress.
Collapse
Affiliation(s)
- Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Qian Dong
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Wang W, Wang SK, Wang Q, Zhang Z, Li B, Zhou ZD, Zhang JF, Lin C, Chen TX, Jin Z, Tang YZ. Diclofenac and eugenol hybrid with enhanced anti-inflammatory activity through activating HO-1 and inhibiting NF-κB pathway in vitro and in vivo. Eur J Med Chem 2023; 259:115669. [PMID: 37517204 DOI: 10.1016/j.ejmech.2023.115669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
A series of diclofenac hybrid molecules were synthesized and evaluated for their NO-inhibitory ability in LPS-induced RAW 264.7 macrophage cells. Among them, compound 1 showed the highest NO-inhibitory ability (approximately 66%) and no significant cytotoxicity. Compound 1 exhibited superior NF-κB-inhibitory ability compared to diclofenac through the activation of Nrf2/HO-1 signaling pathway in RAW 264.7. 20 mg/kg compound 1 resulted in remarkable colitis improvement in dextran sulfate sodium (DSS)-induced mice model by up-regulating HO-1 and down-regulating phosphorylation level of NF-κB p65. Moreover, 50 mg/kg dose of compound 1 showed a lower ulcerogenic potential compared to diclofenac in rats. The diclofenac-eugenol hybrid (compound 1) may serve as a novel anti-inflammatory agent based on its role in inhibiting the NF-κB signaling pathway and activating HO-1 expression with no toxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jian-Feng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ting-Xiao Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|