1
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
2
|
Guan Y, Gajewska J, Floryszak‐Wieczorek J, Tanwar UK, Sobieszczuk‐Nowicka E, Arasimowicz‐Jelonek M. Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology. MOLECULAR PLANT PATHOLOGY 2024; 25:e13497. [PMID: 39034655 PMCID: PMC11261156 DOI: 10.1111/mpp.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Ewa Sobieszczuk‐Nowicka
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Magdalena Arasimowicz‐Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
3
|
Atanasova L, Marchetti-Deschmann M, Nemes A, Bruckner B, Rehulka P, Stralis-Pavese N, Łabaj PP, Kreil DP, Zeilinger S. Mycoparasitism related targets of Tmk1 indicate stimulating regulatory functions of this MAP kinase in Trichoderma atroviride. Sci Rep 2023; 13:19976. [PMID: 37968441 PMCID: PMC10651915 DOI: 10.1038/s41598-023-47027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.
Collapse
Affiliation(s)
- Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Albert Nemes
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Bianca Bruckner
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Pavel Rehulka
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
- Department of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Nancy Stralis-Pavese
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Paweł P Łabaj
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - David P Kreil
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
| | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Shen S, Zhang C, Meng Y, Cui G, Wang Y, Liu X, He Q. Sensing of H2O2-induced oxidative stress by the UPF factor complex is crucial for activation of catalase-3 expression in Neurospora. PLoS Genet 2023; 19:e1010985. [PMID: 37844074 PMCID: PMC10578600 DOI: 10.1371/journal.pgen.1010985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
UPF-1-UPF-2-UPF-3 complex-orchestrated nonsense-mediated mRNA decay (NMD) is a well-characterized eukaryotic cellular surveillance mechanism that not only degrades aberrant transcripts to protect the integrity of the transcriptome but also eliminates normal transcripts to facilitate appropriate cellular responses to physiological and environmental changes. Here, we describe the multifaceted regulatory roles of the Neurospora crassa UPF complex in catalase-3 (cat-3) gene expression, which is essential for scavenging H2O2-induced oxidative stress. First, losing UPF proteins markedly slowed down the decay rate of cat-3 mRNA. Second, UPF proteins indirectly attenuated the transcriptional activity of cat-3 gene by boosting the decay of cpc-1 and ngf-1 mRNAs, which encode a well-studied transcription factor and a histone acetyltransferase, respectively. Further study showed that under oxidative stress condition, UPF proteins were degraded, followed by increased CPC-1 and NGF-1 activity, finally activating cat-3 expression to resist oxidative stress. Together, our data illustrate a sophisticated regulatory network of the cat-3 gene mediated by the UPF complex under physiological and H2O2-induced oxidative stress conditions.
Collapse
Affiliation(s)
- Shuangjie Shen
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanhao Meng
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guofei Cui
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Li H, Li C, Yang LZ, Liu J. Integrative analysis of histone acetyltransferase KAT2A in human cancer. Cancer Biomark 2023; 38:443-463. [PMID: 38007639 DOI: 10.3233/cbm-220464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The high incidence of mutations and the crucial roles of KAT2A in cancer development have received increased attention. Nevertheless, a systematic comparison of the heterogeneity and dynamics across different cancer types has not been conducted. Hence, a deep analysis using public databases was performed to clarify the contributions of KAT2A and its correlation with tumorigenesis. The raw data regarding KAT2A expression in cancer patients and healthy controls were obtained from The Cancer Genome Atlas (TCGA). Sexually dimorphic manner, genomic alterations, and expression pattern of KAT2A, as well as the association of the KAT2A with survival, were retrieved from UALCAN, cBioportal, and TISIDB databases. Additionally, the Protein-Protein Interaction (PPI) analysis was conducted using the STRING database. The human protein atlas was used to obtain the staining results of protein levels in cancer and normal samples. The correlation between KAT2A and its potential target drugs was determined using TISIDB and HISTome2. Compared to the normal tissues, CHOL and TGCT tumors presented significantly high KAT2A expression, which was positively correlated with BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRP, LIHC, LUAD, LUSC, READ, STAD, and THCA. However, no significant difference was detected between normal and tumor tissues for the sex difference pattern of KAT2A expression. The PPI analysis indicated that TADA3, CCDC101, TRRAP, SUPT3H, MYC, TADA2A, and USP22 levels were positively correlated with KAT2A expression, while TADA2B and ATXN7 were negatively correlated. A positive link of KAT2A with cancer isotypes and significant connections of the KAT2A expression to poor overall and disease-free survival were also observed. Further validation was conducted using immunohistochemistry (IHC) staining, qPCR, and Western blot. Some potential HAT inhibitory drugs of KAT2A were also determined, but more work and clinical trials are required before their application.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chun Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lu-Zong Yang
- Department of Anesthesia, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Kang H, Fan T, Wu J, Zhu Y, Shen WH. Histone modification and chromatin remodeling in plant response to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:986940. [PMID: 36262654 PMCID: PMC9574397 DOI: 10.3389/fpls.2022.986940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Li Y, Song Z, Wang E, Dong L, Bai J, Wang D, Zhu J, Zhang C. Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Front Microbiol 2022; 13:980615. [PMID: 36016791 PMCID: PMC9395700 DOI: 10.3389/fmicb.2022.980615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a primary cause of death in patients with hematological malignancies and transplant recipients, invasive aspergillosis (IA) is a condition that warrants attention. IA infections have been increasing, which remains a significant cause of morbidity and mortality in immunocompromised patients. During the past decade, antifungal drug resistance has emerged, which is especially concerning for management given the limited options for treating azole-resistant infections and the possibility of failure of prophylaxis in those high-risk patients. Histone posttranslational modifications (HPTMs), mainly including acetylation, methylation, ubiquitination and phosphorylation, are crucial epigenetic mechanisms regulating various biological events, which could modify the conformation of histone and influence chromatin-associated nuclear processes to regulate development, cellular responsiveness, and biological phenotype without affecting the underlying genetic sequence. In recent years, fungi have become important model organisms for studying epigenetic regulation. HPTMs involves in growth and development, secondary metabolite biosynthesis and virulence in Aspergillus. This review mainly aims at summarizing the acetylation, deacetylation, methylation, demethylation, and sumoylation of histones in IA and connect this knowledge to possible HPTMs-based antifungal drugs. We hope this research could provide a reference for exploring new drug targets and developing low-toxic and high-efficiency antifungal strategies.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ente Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinyan Zhu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
8
|
HDA-2-Containing Complex Is Required for Activation of Catalase-3 Expression in Neurospora crassa. mBio 2022; 13:e0135122. [PMID: 35699373 PMCID: PMC9426557 DOI: 10.1128/mbio.01351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation. IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.
Collapse
|
9
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
10
|
Systematic Characterization of bZIP Transcription Factors Required for Development and Aflatoxin Generation by High-Throughput Gene Knockout in Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8040356. [PMID: 35448587 PMCID: PMC9031554 DOI: 10.3390/jof8040356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022] Open
Abstract
The basic leucine zipper (bZIP) is an important transcription factor required for fungal development, nutrient utilization, biosynthesis of secondary metabolites, and defense against various stresses. Aspergillus flavus is a major producer of aflatoxin and an opportunistic fungus on a wide range of hosts. However, little is known about the role of most bZIP genes in A. flavus. In this study, we developed a high-throughput gene knockout method based on an Agrobacterium-mediated transformation system. Gene knockout construction by yeast recombinational cloning and screening of the null mutants by double fluorescence provides an efficient way to construct gene-deleted mutants for this multinucleate fungus. We deleted 15 bZIP genes in A. flavus. Twelve of these genes were identified and characterized in this strain for the first time. The phenotypic analysis of these mutants showed that the 15 bZIP genes play a diverse role in mycelial growth (eight genes), conidiation (13 genes), aflatoxin biosynthesis (10 genes), oxidative stress response (11 genes), cell wall stress (five genes), osmotic stress (three genes), acid and alkali stress (four genes), and virulence to kernels (nine genes). Impressively, all 15 genes were involved in the development of sclerotia, and the respective deletion mutants of five of them did not produce sclerotia. Moreover, MetR was involved in this biological process. In addition, HapX and MetR play important roles in the adaptation to excessive iron and sulfur metabolism, respectively. These studies provide comprehensive insights into the role of bZIP transcription factors in this aflatoxigenic fungus of global significance.
Collapse
|
11
|
Rojas-Rojas FU, Vega-Arreguín JC. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:445-457. [PMID: 33876568 DOI: 10.1111/1758-2229.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Oomycota phylum includes fungi-like filamentous microorganisms classified as plant pathogens. The most destructive genus within oomycetes is Phytophthora, which causes diseases in plants of economic importance in agriculture, forestry and ornamental. Phytophthora species are widespread worldwide and some of them enable adaptation to different hosts and environmental changes. The development of sexual and asexual reproductive structures and the secretion of proteins to control plant immunity are critical for the adaptative lifestyle. However, molecular mechanisms underlying the adaptation of Phytophthora to different hosts and environmental changes are poorly understood. In the last decade, the role of epigenetics has gained attention, and important evidence has demonstrated the potential role of chromatin covalent modifications, such as DNA methylation and histone acetylation/methylation, in the regulation of gene expression during Phytophthora development and plant infection. Here, we review for the first time the evidence of the potential role of chromatin covalent modifications in the lifecycle of the phytopathogenic genus Phytophthora, including virulence, and host and environment adaptation processes.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| |
Collapse
|
12
|
Cui G, Dong Q, Duan J, Zhang C, Liu X, He Q. NC2 complex is a key factor for the activation of catalase-3 transcription by regulating H2A.Z deposition. Nucleic Acids Res 2020; 48:8332-8348. [PMID: 32633757 PMCID: PMC7470962 DOI: 10.1093/nar/gkaa552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Negative cofactor 2 (NC2), including two subunits NC2α and NC2β, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α–NC2β interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2β is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.
Collapse
Affiliation(s)
- Guofei Cui
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Cai M, Liu Z, Yu P, Jiao Y, Chen Q, Jiang Q, Zhao Y. Circadian rhythm regulation of the oxidation–antioxidant balance in Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110387. [DOI: 10.1016/j.cbpb.2019.110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
|
14
|
Duan J, Liu Q, Su S, Cha J, Zhou Y, Tang R, Liu X, Wang Y, Liu Y, He Q. The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner. Environ Microbiol 2019; 22:76-90. [PMID: 31599077 DOI: 10.1111/1462-2920.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023]
Abstract
Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.
Collapse
Affiliation(s)
- Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sodgerel Su
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Tang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Dong Q, Wang Y, Qi S, Gai K, He Q, Wang Y. Histone variant H2A.Z antagonizes the positive effect of the transcriptional activator CPC1 to regulate catalase-3 expression under normal and oxidative stress conditions. Free Radic Biol Med 2018; 121:136-148. [PMID: 29738831 DOI: 10.1016/j.freeradbiomed.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
In eukaryotes, deposition of the histone variant H2A.Z into nucleosomes through the chromatin remodeling complex, SWR1, is a crucial step in modulating gene transcription. Recently, H2A.Z has been shown to control the expression of responsive genes, but the underlying mechanism of how H2A.Z responds to physiological stimuli is not well understood. Here, we reveal that, in Neurospora crassa, H2A.Z is a negative regulator of catalase-3 gene, which is responsible for resistance to oxidative stress. H2A.Z represses cat-3 gene expression through direct incorporation at cat-3 locus in a SWR1 complex dependent pathway. Notably, loss of H2A.Z or SWR1 subunits leads to increased binding of a transcription factor, CPC1, at cat-3 locus. Additionally, introduction of plasmids containing gene encoding H2A.Z or SWR1 complex subunits into wild-type strains decreased CAT-3 expression, indicating that H2A.Z counteracts the positive effect of CPC1 to achieve low level cat-3 expression under non-inductive condition. Furthermore, upon oxidative stress, H2A.Z is rapidly evicted from cat-3 locus for the recruitment of CPC1, resulting in robust and full cat-3 gene expression in response to external stimuli. Collectively, this study strongly demonstrates that H2A.Z antagonizes the function of transcription factor to regulate responsive gene transcription under normal conditions and to poise for gene full activation under oxidative stress.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajun Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaohua Qi
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|