1
|
Zhuravlev A, Ezeriņa D, Ivanova J, Guriev N, Pugovkina N, Shatrova A, Aksenov N, Messens J, Lyublinskaya O. HyPer as a tool to determine the reductive activity in cellular compartments. Redox Biol 2024; 70:103058. [PMID: 38310683 PMCID: PMC10848024 DOI: 10.1016/j.redox.2024.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
A multitude of cellular metabolic and regulatory processes rely on controlled thiol reduction and oxidation mechanisms. Due to our aerobic environment, research preferentially focuses on oxidation processes, leading to limited tools tailored for investigating cellular reduction. Here, we advocate for repurposing HyPer1, initially designed as a fluorescent probe for H2O2 levels, as a tool to measure the reductive power in various cellular compartments. The response of HyPer1 depends on kinetics between thiol oxidation and reduction in its OxyR sensing domain. Here, we focused on the reduction half-reaction of HyPer1. We showed that HyPer1 primarily relies on Trx/TrxR-mediated reduction in the cytosol and nucleus, characterized by a second order rate constant of 5.8 × 102 M-1s-1. On the other hand, within the mitochondria, HyPer1 is predominantly reduced by glutathione (GSH). The GSH-mediated reduction rate constant is 1.8 M-1s-1. Using human leukemia K-562 cells after a brief oxidative exposure, we quantified the compartmentalized Trx/TrxR and GSH-dependent reductive activity using HyPer1. Notably, the recovery period for mitochondrial HyPer1 was twice as long compared to cytosolic and nuclear HyPer1. After exploring various human cells, we revealed a potent cytosolic Trx/TrxR pathway, particularly pronounced in cancer cell lines such as K-562 and HeLa. In conclusion, our study demonstrates that HyPer1 can be harnessed as a robust tool for assessing compartmentalized reduction activity in cells following oxidative stress.
Collapse
Affiliation(s)
- Andrei Zhuravlev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikita Guriev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikolay Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
2
|
Belykh DV, Pylina YI, Kustov AV, Startseva OM, Belykh ES, Smirnova NL, Shukhto OV, Berezin DB. Photosensitizing effects and physicochemical properties of chlorophyll a derivatives with hydrophilic oligoethylene glycol fragments at the macrocycle periphery. Photochem Photobiol Sci 2024; 23:409-420. [PMID: 38319518 DOI: 10.1007/s43630-023-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.
Collapse
Affiliation(s)
- D V Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., Syktyvkar, 167982, Russia.
| | - Y I Pylina
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - A V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O M Startseva
- Pitirim Sorokin Syktyvkar State University, 55, Oktyabrskiy Pr., Syktyvkar, 167001, Russian Federation
| | - E S Belykh
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - N L Smirnova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O V Shukhto
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| | - D B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| |
Collapse
|
3
|
Ivanova J, Guriev N, Pugovkina N, Lyublinskaya O. Inhibition of thioredoxin reductase activity reduces the antioxidant defense capacity of human pluripotent stem cells under conditions of mild but not severe oxidative stress. Biochem Biophys Res Commun 2023; 642:137-144. [PMID: 36577250 DOI: 10.1016/j.bbrc.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Pro-oxidative shift in redox balance, usually termed as "oxidative stress", can lead to different cell responses depending on its intensity. Excessive accumulation of reactive oxygen species ("oxidative distress") can cause DNA, lipid and protein damage. Physiological oxidative stimulus ("oxidative eustress"), in turn, can favor cell proliferation and differentiation - the processes of paramount importance primarily for stem cells. Functions of antioxidant enzymes in cells is currently a focus of intense research, however the role of different antioxidant pathways in pluripotent cell responses to oxidative distress/eustress is still under investigation. In this study, we assessed the contribution of the thioredoxin reductase (TrxR)-dependent pathways to maintaining the redox homeostasis in human induced pluripotent stem cells and their differentiated progeny cells under basal conditions and under conditions of oxidative stress of varying intensity. Employing the genetically encoded H2O2 biosensor cyto-HyPer and two inhibitors of thioredoxin reductase (auranofin and Tri-1), we show that the reduced activity of TrxR-dependent enzymatic systems leads to the non-cytotoxic disruption of thiol-disulfide metabolism in the cytoplasm of both pluripotent and differentiated cells under basal conditions. Quantifying the cytoplasmic concentrations of peroxide establishing in H2O2-stressed cells, we demonstrate that TrxR-dependent pathways contribute to the antioxidant activity in the cell cytoplasm under conditions of mild but not severe oxidative stress in both cell lines tested. The observed effects may testify about a conservative role of the TrxR-controlled enzymatic systems manifested as a response to physiological redox stimuli rather than a protection against the severe oxidative stress.
Collapse
Affiliation(s)
- Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia.
| | - Nikita Guriev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya st. 29, St. Petersburg, 195251, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064, Russia
| |
Collapse
|
4
|
Mu K, Kitts DD. Application of a HyPer-3 sensor to monitor intracellular H 2O 2 generation induced by phenolic acids in differentiated Caco-2 cells. Anal Biochem 2022; 659:114934. [PMID: 36206845 DOI: 10.1016/j.ab.2022.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022]
Abstract
Intestinal epithelial cells (IECs) are an important point of contact between dietary food components consumed and subsequent whole-body utilization for body maintenance and growth. Selective bioactive phenolic acids, widely present in fruits, vegetables and beverages can generate hydrogen peroxide (H2O2) and contribute to the cellular redox balance, hence influencing well-known cellular antioxidant and pro-oxidant mechanisms. Our findings have showed that increasing extracellular H2O2 resulted in associated changes in intracellular H2O2 levels in Caco-2 cells (p < 0.05) which was facilitated by activity of a family of water channel membrane proteins, termed aquaporins (AQPs). To demonstrate this, a HyPer-3 genetically encoded fluorescent H2O2 sensitive indicator was used to enable fluorescent real-time imaging of intracellular H2O2 levels as a measure of changes occurring in extracellular H2O2 in differentiated Caco-2 cells exposed to different phenolic acids. The use of confocal microscopy and flow cytometry, respectively, captured visualization and quantification of H2O2 uptake in differentiated Caco-2 cells. DFP00173, an aquaporin 3 (AQP3) inhibitor was effective at inhibiting the intracellular uptake of H2O2 and was sensitive to varied levels of H2O2 generated when different phenolic acids were added to the culture media. In summary, HyPer-3 was shown to be an effective technique to demonstrate relative capabilities of structurally different dietary phenolic acids that have potential to alter intestinal redox balance by changing intracellular H2O2, and either antioxidant or pro-oxidant activity, respectively.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| | - David D Kitts
- Food Science, Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Deryabin PI, Ivanova JS, Borodkina AV. Senescent endometrial stromal cells transmit reactive oxygen species to the trophoblast-like cells and impair spreading of blastocyst-like spheroids. Mol Hum Reprod 2022; 28:6825317. [PMID: 36370081 DOI: 10.1093/molehr/gaac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Successful implantation requires a fine-tuned dialog between the invading embryo and the maternal endometrium. Recently, we discovered that premature senescence of endometrial stromal cells (EnSC) might mediate improper decidual transformation of endometrial tissue and impair endometrial-blastocyst interaction. Here, we show that senescent EnSC are characterized by elevated intracellular reactive oxygen species (ROS) levels that originate from mitochondrial dysfunction and insufficient antioxidant defense. Decidualization of senescent EnSC is defective and is accompanied by the elevated intracellular and mitochondrial ROS levels. Antioxidant defense during decidualization is significantly less efficient in senescent EnSC compared to healthy ones. Senescent EnSC secrete increased amounts of ROS into the extracellular space. Elevated ROS released by senescent EnSC shift the redox balance and induce DNA damage in the neighboring trophoblast-like cells. In an in vitro implantation model, we observed impaired spreading of blastocyst-like spheroids into a monolayer of decidualizing senescent EnSC, which could be compensated by pretreatment of the senescent cells with the antioxidant, Tempol. Hence, we propose a possible mechanism that might be responsible, at least in part, for the defective embryo implantation realized via ROS transmitting from senescent EnSC to trophoblast cells. Such transmission results in the accumulation of ROS and subsequent DNA damage in trophoblastic cells, which might lead to improper migration and invasion of an embryo. In light of these findings, the application of antioxidants prior to implantation might be a promising strategy to improve implantation efficiency.
Collapse
Affiliation(s)
- P I Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - J S Ivanova
- Laboratory of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A V Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Zenin V, Ivanova J, Pugovkina N, Shatrova A, Aksenov N, Tyuryaeva I, Kirpichnikova K, Kuneev I, Zhuravlev A, Osyaeva E, Lyublinskaya E, Gazizova I, Guriev N, Lyublinskaya O. Resistance to H2O2-induced oxidative stress in human cells of different phenotypes. Redox Biol 2022; 50:102245. [PMID: 35114579 PMCID: PMC8818566 DOI: 10.1016/j.redox.2022.102245] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/03/2022] Open
Abstract
Application of genetically encoded biosensors of redox-active compounds promotes the elaboration of new methods for investigation of intracellular redox activities. Previously, we have developed a method to measure quantitatively the intracellular concentration of hydrogen peroxide (H2O2) in living cells using genetically encoded biosensor HyPer. In the present study, we refined the method and applied it for comparing the antioxidant system potency in human cells of different phenotypes by measuring the gradient between the extracellular and cytoplasmic H2O2 concentrations under conditions of H2O2-induced external oxidative stress. The measurements were performed using cancer cell lines (K-562 and HeLa), as well as normal human cells – all expressing HyPer in the cell cytoplasm. As normal cells, we used three isogenic lines of different phenotypes – mesenchymal stem/stromal cells (MSCs), induced pluripotent stem cells (iPSCs) derived from MSCs by reprogramming, and differentiated iPSC progenies with the phenotype resembling precursory MSCs. When exposing cells to exogenous H2O2, we showed that at low oxidative loads (<50 μM of H2O2) the gradient depended on extracellular H2O2 concentration. At high loads (>50 μM of H2O2), which caused the exhaustion of thioredoxin activity in the cell cytoplasm, the gradient stabilized, pointing out that it is the functional status of the thioredoxin-depended enzymatic system that drives the dependence of the H2O2 gradient on the oxidative load in human cells. At high H2O2 concentrations, the cytoplasmic H2O2 level in cancer cells was found to be several hundred times lower than the extracellular one. At the same time, in normal cells, extracellular-to-intracellular gradient amounted to thousands of times. Upon reprogramming, the potency of cellular antioxidant defense increased. In contrast, differentiation of iPSCs did not result in the changes in antioxidant system activity in the cell cytoplasm, assuming that intensification of the H2O2-detoxification processes is inherent to a period of early human development. HyPer can be used to compare the H2O2-detoxification activity of different cells. In H2O2-stressed cells, H2O2 gradient across the cell membrane depends on H2O2 load. In normal human cells, H2O2 gradient amounts to thousands of times. Upon cell reprogramming, the H2O2-detoxification activity in cells increases. High H2O2 loads compromise Trx-depended reduction of thiols in cell cytoplasm.
Collapse
|
7
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Lyublinskaya O, Antunes F. Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H 2O 2 biosensor HyPer. Redox Biol 2019; 24:101200. [PMID: 31030065 PMCID: PMC6482347 DOI: 10.1016/j.redox.2019.101200] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, we propose a method for quantification of average hydrogen peroxide concentration within a living cell that is based on the use of genetically encoded H2O2 biosensor HyPer. The method utilizes flow cytometric measurements of HyPer fluorescence in H2O2-exposed cells to analyze the biosensor oxidation kinetics. Fitting the experimental curves with kinetic equations allows determining the rate constants of HyPer oxidation/reduction which are used further for the calculation of peroxide concentrations in the cells of interest both in the presence and absence of external H2O2. Applying this method to K562 cells, we have estimated the gradient as about 390-fold between the extracellular and intracellular level of exogenous H2O2 in cells exposed to the micromole doses of peroxide, as well as the average basal level of H2O2 in the cytosol of undisturbed cells ([H2O2]basal=2.2±0.4nM). The method can be extended to other H2O2-sensitive redox probes or to procedures in which, rather than adding external peroxide, intracellular production of peroxide is triggered, providing a tool to quantitate not only basal average H2O2 concentrations but also the concentration of peroxide build up in the vicinity of redox probes.
Collapse
Affiliation(s)
- Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St.Petersburg, Russia.
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisbon, Portugal.
| |
Collapse
|
9
|
Kornienko JS, Smirnova IS, Pugovkina NA, Ivanova JS, Shilina MA, Grinchuk TM, Shatrova AN, Aksenov ND, Zenin VV, Nikolsky NN, Lyublinskaya OG. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep 2019; 9:1296. [PMID: 30718685 PMCID: PMC6361906 DOI: 10.1038/s41598-018-37972-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Stress-induced premature senescence program is known to be activated in cells by various genotoxic stressors, and oxidative stress is considered to be the main of those. To this end, many studies discover antioxidants as protective anti-aging agents. In the current study, we examined the effects of different antioxidants (Tempol, resveratrol, NAC, DPI) on the mesenchymal stem cells maintained in normal physiological conditions. We used high, but non-cytotoxic antioxidant doses which are widely used in laboratory practice to protect cells from oxidative damage. We show that these substances induce reversible block of cell proliferation and do not cause any genotoxic effects when applied to the quiescent cells. However, the same doses of the same substances, when applied to the proliferating cells, can induce irreversible cell cycle arrest, DNA strand breaks accumulation and DNA damage response activation. As a consequence, antioxidant-induced DNA damage results in the stress-induced premature senescence program activation. We conclude that high doses of antioxidants, when applied to the proliferating cells that maintain physiological levels of reactive oxygen species, can cause DNA damage and induce premature senescence which suggests to re-estimate believed unconditional anti-aging antioxidant properties.
Collapse
Affiliation(s)
- Ju S Kornienko
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - I S Smirnova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N A Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - Ju S Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - M A Shilina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - T M Grinchuk
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - A N Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N D Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - V V Zenin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N N Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - O G Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia.
| |
Collapse
|
10
|
Nerush AS, Shсhukina KM, Balalaeva IV, Orlova AG. Hydrogen peroxide in the reactions of cancer cells to cisplatin. Biochim Biophys Acta Gen Subj 2019; 1863:692-702. [PMID: 30690121 DOI: 10.1016/j.bbagen.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hydrogen peroxide (H2O2) is thought to be one of the key components involved in the responses of tumor cells to chemotherapy. The aim of this study was to reveal the pathways and the phases of cisplatin-induced cell death that are characterized by changes of H2O2 level. METHODS The genetically encoded cytosolic fluorescent sensor HyPer2 was used for flow cytometric analysis of the cisplatin-induced changes in H2O2 level in HeLa Kyoto cells. Using a vital dye and the apoptotic markers PE Annexin V or TMRE the pathways and stages of cell death were investigated simultaneously with HyPer2 response. The H2O2 level was studied separately in viable and early apoptotic cells after 12, 18, 24 h's incubation with cisplatin at several concentrations with or without the scavenger of reactive oxygen species NAC. RESULTS Cisplatin causes dose- and time-dependent increase of H2O2 level in TMRE-positive and PE Annexin V-negative cancer cells. The scavenging of ROS by NAC decreased the H2O2 level and restored cell viability. CONCLUSION Н2О2 generation begins in cells that have already lost mitochondrial membrane potential but have not yet externalized phosphatidylserine. Prevention of apoptosis by NAC confirmed the role of H2O2 in apoptosis induction. GENERAL SIGNIFICANCE This is the first time that the sensor HyPer2 has been used in parallel with apoptotic markers and vital dye to demonstrate the role of H2O2 in different stages and types of tumor cell death under chemotherapeutic action.
Collapse
Affiliation(s)
- A S Nerush
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia.
| | - K M Shсhukina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - I V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - A G Orlova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Radi R, Denicola A, Morgan B, Zielonka J. Foreword to the Free Radical Biology and Medicine Special Issue on ¨Current fluorescence and chemiluminescence approaches in free radical and redox biology¨. Free Radic Biol Med 2018; 128:1-2. [PMID: 30293645 DOI: 10.1016/j.freeradbiomed.2018.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|