1
|
Lin Y, He Q, Chen B, Li Z, Chen C, Deng W, Li H, Yang J, Mai B, Zhang Z, Wang D, Guo H, Tang Y, Yuan K, Mo G, Xu L, Li Y, Wang H, Zhang S. Zuogui Pills Alleviate Iron Overload-Induced Osteoporosis by Attenuating ROS-Mediated Osteoblast Apoptosis via the PI3K-AKT Pathway and Mitigating Mitochondrial Damage. JOURNAL OF ETHNOPHARMACOLOGY 2025:119455. [PMID: 39971012 DOI: 10.1016/j.jep.2025.119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a classic herbal formula in Traditional Chinese Medicine, primarily used to tonify the kidney and replenish essence, and is widely applied in treating various kidney deficiency-related conditions. Over time, ZGP has demonstrated significant efficacy in addressing symptoms such as fatigue, weakness, and soreness of the lower back and knees, which are often caused by kidney deficiency. According to Traditional Chinese Medicine theory, the kidneys govern the bones, meaning that sufficient kidney essence is closely related to bone strength. By nourishing the kidneys and replenishing essence, ZGP helps to increase bone density and improve bone microstructure, making it an important therapeutic option for osteoporosis. AIM OF THE STUDY To investigate the protective effects of ZGP in iron overload-induced osteoporosis and elucidate its molecular mechanisms through the activation of the Phosphoinositide 3-Kinase (PI3K)/Protein Kinase B (AKT) and Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathways, which reduce oxidative stress, inhibit osteoblast apoptosis, and promote osteoblast differentiation and mineralization. MATERIALS AND METHODS An in vivo mouse model of iron overload-induced osteoporosis and an in vitro MC3T3-E1 osteoblast model were used. In vitro experiments involved the use of ZGP containing-serum, along with transcriptomic analysis, Western blot, flow cytometry, TUNEL staining, and immunofluorescence, to assess the effects on oxidative stress, mitochondrial function, and apoptosis. In vivo experiments evaluated the effects of ZGP on bone mass, oxidative stress, and apoptosis using Micro-computed tomography (micro-CT), Hematoxylin and eosin staining (H&E), TUNEL staining, and immunohistochemistry. RESULTS The study found that ZGP containing-serum significantly enhanced the viability of osteoblasts induced by iron overload and reduced apoptosis through the reactive oxygen species (ROS)-mediated Phosphoinositide 3-Kinase (PI3K) / Protein Kinase B (AKT) pathway while mitigating mitochondrial damage. In vivo, micro-computed tomography results showed that ZGP improved bone mass, and decreased ROS and apoptosis, consistent with the in vitro findings. CONCLUSION ZGP demonstrates significant antioxidant and anti-apoptotic effects in iron overload-induced osteoporosis, primarily through the ROS-mediated PI3K/AKT pathway and by reducing mitochondrial damage. These findings suggest that ZGP may be a promising therapeutic agent for treating osteoporosis associated with iron overload.
Collapse
Affiliation(s)
- Yuewei Lin
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Zuang Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Chuyi Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Wei Deng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Haishan Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Jiamin Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Bin Mai
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Zhen Zhang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Dongping Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Huizhi Guo
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Yongchao Tang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Kai Yuan
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Guoye Mo
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Liangliang Xu
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Yongxian Li
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China
| | - Shuncong Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, P. R. China.
| |
Collapse
|
2
|
Zhang H, Zhao R, Wang X, Qi Y, Sandai D, Wang W, Song Z, Liang Q. Interruption of mitochondrial symbiosis is associated with the development of osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1488489. [PMID: 39963284 PMCID: PMC11830588 DOI: 10.3389/fendo.2025.1488489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondria maintain bacterial traits because of their endosymbiotic origins, yet the host cell recognizes them as non-threatening since the organelles are compartmentalized. Nevertheless, the controlled release of mitochondrial components into the cytoplasm can initiate cell death, activate innate immunity, and provoke inflammation. This selective interruption of endosymbiosis as early as 2 billion years ago allowed mitochondria to become intracellular signaling hubs. Recent studies have found that the interruption of mitochondrial symbiosis may be closely related to the occurrence of various diseases, especially osteoporosis (OP). OP is a systemic bone disease characterized by reduced bone mass, impaired bone microstructure, elevated bone fragility, and susceptibility to fracture. The interruption of intra-mitochondrial symbiosis affects the energy metabolism of bone cells, leads to the imbalance of bone formation and bone absorption, and promotes the occurrence of osteoporosis. In this paper, we reviewed the mechanism of mitochondrial intersymbiosis interruption in OP, discussed the relationship between mitochondrial intersymbiosis interruption and bone marrow mesenchymal stem cells, osteoblasts and osteoclasts, as well as the inheritance and adaptation in the evolutionary process, and prospected the future research direction to provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Haoling Zhang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuemei Wang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaqian Qi
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wei Wang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhijing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Lanzhou, China
| | - Qiudong Liang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
| |
Collapse
|
3
|
Messeha SS, Fidudusola FF, Gendy S, Latinwo LM, Odewumi CO, Soliman KFA. Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis. Nutrients 2025; 17:267. [PMID: 39861398 PMCID: PMC11767473 DOI: 10.3390/nu17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP. Aging is significantly associated with an abnormal ratio of oxidant/antioxidant and modified nuclear factor erythroid-derived two related factor2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway. OS adversely affects bone health by promoting osteoclastic (bone resorbing) activity and impairing osteoblastic (bone-forming cells). Nrf2 is critical in controlling OS and various cellular processes. The expression of Nrf2 is linked to multiple age-related diseases, including OP, and Nrf2 deficiency leads to unbalanced bone formation/resorption and a consequent decline in bone mass. Various drugs are available for treating OP; however, long-term uses of these medicines are implicated in diverse illnesses such as cancer, cardiovascular, and stroke. At the same time, multiple categories of natural products, in particular flavonoids, were proposed as safe alternatives with antioxidant activity and substantial anti-osteoporotic effects.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Fidara F. Fidudusola
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Lekan M. Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Caroline O. Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Jiang Y, Qi H, Wang M, Chen K, Chen C, Xie H. Chlorogenic Acid-Cucurbit[n]uril Nanocomplex Delivery System: Synthesis and Evaluations for Potential Applications in Osteoporosis Medication. Int J Nanomedicine 2024; 19:11577-11592. [PMID: 39539971 PMCID: PMC11559225 DOI: 10.2147/ijn.s485581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Based on nanomedicine strategies, this study employed cucurbit[7]uril (Q[7]) as the macromolecular carrier to synthesize nanocomplex drug delivery system for chlorogenic acid (CGA). The nanocomplex drug delivery system is intended to overcome the unsatisfactory biocompatibility and bioavailability of CGA and realizing its potential role in long-term osteoporosis (OP) medication. Methods The nanocomplex was synthesized by the reflux stirring method. The chemical structure of the nanocomplex was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), UV-visible spectrophotometry (UV-vis), zeta potential analysis and transmission electronic microscope (TEM). The Cell Counting Kit-8 (CCK-8) assay, Live/Dead staining assay, and cytoskeleton staining were conducted to testify the biocompatibility of the nanocomplex. The release assay, Ferric Reducing Ability of Plasma (Frap) assay and Reactive oxygen species (ROS) staining were implemented to evaluate the release profile of CGA as well as its remaining antioxidative levels. Results CGA and Q[7] formed hydrogen bonding through an exclusion interaction, with the binding ratio more than 1:1. The nanocomplex had a crystalline and spherical-like structure and improved thermal stability. The nanocomplex demonstrated better biocompatibility than free CGA. The release profile of CGA from the nanocomplex was much steadier, and 70% of CGA was released in 5 days. The CGA released from the nanocomplex maintained its antioxidative properties at high levels and effectively eliminated the accumulated ROS in MC3T3-E1 cells under oxidative stress. Conclusion Q[7] has been demonstrated to be an ideal nanocarrier for CGA and the nanocomplex delivery system holds the potential for the long-term medication strategy of OP.
Collapse
Affiliation(s)
- Yunqing Jiang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Haowen Qi
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Mingjuan Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
| | - Chen Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Haifeng Xie
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
5
|
Kang W, Ha Y, Jung Y, Lee H, Park T. Nerol mitigates dexamethasone-induced skin aging by activating the Nrf2 signaling pathway in human dermal fibroblasts. Life Sci 2024; 356:123034. [PMID: 39236900 DOI: 10.1016/j.lfs.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Collagen and hyaluronic acid are essential components of the dermis that collaborate to maintain skin elasticity and hydration due to their unique biochemical properties and interactions within the extracellular matrix. Prolonged exposure to glucocorticoids can induce skin aging, which manifests as diminished collagen content and hyaluronic acid levels in the dermis. Nerol, a monoterpene alcohol found in essential oils, was examined in this study for its potential to counteract glucocorticoid-induced skin aging and the underlying mechanism behind its effects. Our findings reveal that non-toxic concentrations of nerol treatment can reinstate collagen content and hyaluronic acid levels in human dermal fibroblasts treated with dexamethasone. Mechanistically, nerol mitigates dexamethasone-induced oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effects of nerol were significantly abrogated when the Nrf2 pathway was inhibited using the specific inhibitor ML385. In conclusion, nerol protects human dermal fibroblasts against glucocorticoid-induced skin aging by ameliorating oxidative stress via activation of the Nrf2 pathway, thereby highlighting its potential as a therapeutic agent for preventing and treating glucocorticoid-induced skin aging.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunbin Lee
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Pan F, Yang W, Zhao T, Liu K, Zhao S, Zhao L. Procyanidine alleviates bisphenol A-induced apoptosis in TM3 cells via the Nrf2 signaling pathway. Food Chem Toxicol 2024; 192:114908. [PMID: 39117098 DOI: 10.1016/j.fct.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Contaminated foods are a major source of bisphenol A (BPA) and are widely used in food packaging. Prolonged exposure to BPA can cause reproductive dysfunction in humans. Procyanidine (PC) is a potent natural antioxidant; however, the exact mechanism by which PC mitigates Leydig cell damage caused by BPA is unknown. In this study, the protective effect of PC against BPA-induced TM3 cell damage was investigated, and the underlying mechanism was assessed. PC treatment attenuates BPA-induced TM3 cell damage by suppressing oxidative stress and inhibiting TM3 apoptosis. In addition, PC upregulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant target genes. Treatment with the NRF2 inhibitor ML385 reversed the PC-induced upregulation of the mRNA expression of these genes. Overall, PC may mitigate BPA-induced cell damage by activating the Nrf2 signaling pathway, suggesting that PC supplementation may alleviate BPA toxicity in TM3 cells.
Collapse
Affiliation(s)
- Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
7
|
Xu Z, Zhang Z, Zhou H, Lin S, Gong B, Li Z, Zhao S, Hou Y, Peng Y, Bian Y. Bazi Bushen attenuates osteoporosis in SAMP6 mice by regulating PI3K-AKT and apoptosis pathways. J Cell Mol Med 2024; 28:e70161. [PMID: 39469911 PMCID: PMC11519748 DOI: 10.1111/jcmm.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zeyu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shan Lin
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yunlong Hou
- National Key laboratory of Luobing Research and Innovative Chinese MedicineShijiazhuangP.R. China
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| |
Collapse
|
8
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
9
|
Wang W, Jiang H, Yu J, Lou C, Lin J. Astaxanthin-mediated Nrf2 activation ameliorates glucocorticoid-induced oxidative stress and mitochondrial dysfunction and impaired bone formation of glucocorticoid-induced osteonecrosis of the femoral head in rats. J Orthop Surg Res 2024; 19:294. [PMID: 38745231 PMCID: PMC11092235 DOI: 10.1186/s13018-024-04775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.
Collapse
Affiliation(s)
- Weidan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hongyi Jiang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jiachen Yu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Chao Lou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
Shi J, Chen L, Wang X, Ma X. TRIM21 silencing inhibits the apoptosis and expedites the osteogenic differentiation of dexamethasone‑induced MC3T3‑E1 cells by activating the Keap1/Nrf2 pathway. Exp Ther Med 2024; 27:213. [PMID: 38590560 PMCID: PMC11000457 DOI: 10.3892/etm.2024.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is a serious complication caused by long-term or excessive use of glucocorticoids. The present study aimed to ascertain the effects of tripartite motif-containing protein 21 (TRIM21) on the process of steroid-induced ONFH and its hidden action mechanism. TRIM21 expression in dexamethasone (Dex)-treated mouse MC3T3-E1 preosteoblast cells was examined using reverse transcription-quantitative PCR and western blotting. The Cell Counting Kit-8 (CCK-8) method and lactate dehydrogenase release assay were used to respectively measure cell viability and injury. Flow cytometry analysis was used to assay cell apoptosis. Caspase 3 activity was evaluated using a specific assay, while alkaline phosphatase and Alizarin red S staining were used to evaluate osteogenesis. 2,7-dichloro-dihydrofluorescein diacetate fluorescence probe was used to estimate reactive oxygen species generation. Specific assay kits were used to appraise oxidative stress levels. In addition, the expression of apoptosis-, osteogenic differentiation- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated proteins was assessed using western blotting. In Nrf2 inhibitor (ML385)-pretreated MC3T3-E1 cells exposed to Dex, cell apoptosis, osteogenesis and oxidative stress were detected again as aforementioned. Results revealed that TRIM21 expression was raised in Dex-induced MC3T3-E1 cells and TRIM21 deletion improved the viability and osteogenic differentiation, whereas it hampered the oxidative stress and apoptosis in MC3T3-E1 cells with Dex induction. In addition, silencing of TRIM21 activated Keap1/Nrf2 signaling. Moreover, ML385 partially abrogated the effects of TRIM21 depletion on the oxidative stress, apoptosis and osteogenic differentiation in MC3T3-E1 cells exposed to Dex. In conclusion, TRIM21 silencing might activate Keap1/Nrf2 signaling to protect against steroid-induced ONFH.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Li Chen
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xu Wang
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
11
|
Ho CY, Tang CH, Ho TL, Wang WL, Yao CH. Chlorogenic acid prevents ovariectomized-induced bone loss by facilitating osteoblast functions and suppressing osteoclast formation. Aging (Albany NY) 2024; 16:4832-4840. [PMID: 38461437 PMCID: PMC10968701 DOI: 10.18632/aging.205635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.
Collapse
Affiliation(s)
- Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan
- Division of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40202, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40202, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40202, Taiwan
| | - Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40202, Taiwan
| | - Wen-Ling Wang
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40202, Taiwan
- Department of Chinese Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Chinese Medicine, China Medical University Hospital Taipei Branch, Taipei 11449, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40202, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
12
|
Du X, Zang C, Wang Q. Cyclin A1 (CCNA1) inhibits osteoporosis by suppressing transforming growth factor-beta (TGF-beta) pathway in osteoblasts. BMC Musculoskelet Disord 2024; 25:206. [PMID: 38454404 PMCID: PMC10919014 DOI: 10.1186/s12891-024-07303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiao Du
- Department of Orthopedics, Beijing Geriatric Hospital, No.118 Hot Spring Road, Haidian District 100095, Beijing, China
| | - Chuanyi Zang
- Department of Orthopedics, Beijing Geriatric Hospital, No.118 Hot Spring Road, Haidian District 100095, Beijing, China
| | - Qinglei Wang
- Department of Orthopedics, Beijing Geriatric Hospital, No.118 Hot Spring Road, Haidian District 100095, Beijing, China.
| |
Collapse
|
13
|
Huang LK, Zeng XS, Jiang ZW, Peng H, Sun F. Echinacoside alleviates glucocorticoid induce osteonecrosis of femoral head in rats through PI3K/AKT/FOXO1 pathway. Chem Biol Interact 2024; 391:110893. [PMID: 38336255 DOI: 10.1016/j.cbi.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH), caused by glucocorticoid (GC) administration, is known to exhibit a high incidence worldwide. Although osteoblast apoptosis has been reported as an important cytological basis of SONFH, the precise mechanism remains elusive. Echinacoside (Ech), a natural phenylethanoid glycoside, exerts multiple beneficial effects, such as facilitation of cell proliferation and anti-inflammatory and anticancer activities. Herein, we aimed to explore the regulatory mechanism underlying glucocorticoid-induced osteoblast apoptosis and determine the protective efficacy of Ech against SONFH. We comprehensively surveyed multiple public databases to identify SONFH-related genes. Using bioinformatics analysis, we identified that the PI3K/AKT/FOXO1 signaling pathway was most strongly associated with SONFH. We examined the protective effect of Ech against SONFH using in vivo and in vitro experiments. Specifically, dexamethasone (Dex) decreased p-PI3K and p-AKT levels, which were reversed following Ech addition. Validation of the PI3K inhibitor (LY294002) and molecular docking of Ech and PI3K/AKT further indicated that Ech could directly enhance PI3K/AKT activity to alleviate Dex-induced inhibition. Interestingly, Dex upregulated the expression of FOXO1, Bax, cleaved-caspase-9, and cleaved-caspase-3 and enhanced MC3T3-E1 apoptosis; application of Ech and siRNA-FOXO1 reversed these effects. In vitro, Ech decreased the number of empty osteocytic lacunae, reduced TUNEL and FOXO1 positive cells, and improved bone microarchitecture. Our results provide robust evidence that PI3K/AKT/FOXO1 plays a crucial role in the development of SONFH. Moreover, Ech may be a promising candidate drug for the treatment of SONFH.
Collapse
Affiliation(s)
- Liang Kun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Shuang Zeng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ze Wen Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fei Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Lyu CC, Ji XY, Che HY, Meng Y, Wu HY, Zhang JB, Zhang YH, Yuan B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024; 10:e25004. [PMID: 38317876 PMCID: PMC10838784 DOI: 10.1016/j.heliyon.2024.e25004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Mastitis is an easy clinical disease in dairy cows, which seriously affects the milk yield and quality of dairy cows. Chlorogenic acid (CGA), a polyphenolic substance, is abundant in Eucommia ulmoides leaves and has anti-inflammatory and anti-oxidative stress effects. Here, we explore whether CGA attenuated lipopolysaccharide (LPS)-induced inflammation and decreased milk fat in bovine mammary epithelial cells (BMECs). 10 μg/mL LPS was used to induce mastitis in BMECs. QRT-PCR, Western blotting, oil red O staining, and triglyceride (TG) assay were used to examine the effects of CGA on BMECs, including inflammatory response, oxidative stress response, and milk fat synthesis. The results showed that CGA repaired LPS-induced inflammation in BMECs. The expression of IL-6, IL-8, TNF-α, IL-1β, and iNOS was decreased, and the expression levels of CHOP, XCT, NRF2, and HO-1 were increased, which reduced the oxidative stress level of cells and alleviated the reduction of milk fat synthesis. In addition, the regulation of P65 phosphorylation by CGA suggests that CGA may exert its anti-inflammatory and anti-oxidative effects through the NF-κB signaling pathway. Our study showed that CGA attenuated LPS-induced inflammation and oxidative stress, and restored the decrease in milk fat content in BMECs by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Hao-Yu Che
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Yu Meng
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Hong-Yu Wu
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Jia-Bao Zhang
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | | | | |
Collapse
|
15
|
Chen J, Zhou Z, Wu N, Li J, Xi N, Xu M, Wu F, Fu Q, Yan G, Liu Y, Xu X. Chlorogenic acid attenuates deoxynivalenol-induced apoptosis and pyroptosis in human keratinocytes via activating Nrf2/HO-1 and inhibiting MAPK/NF-κB/NLRP3 pathways. Biomed Pharmacother 2024; 170:116003. [PMID: 38091639 DOI: 10.1016/j.biopha.2023.116003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1β and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyu Zhou
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Nanhui Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mingyuan Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qiaoting Fu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
16
|
Gul B, Anwar R, Saleem M, Ahmad M, Ullah MI, Kamran S. Attenuation of CFA-induced arthritis through regulation of inflammatory cytokines and antioxidant mechanisms by Solanum nigrum L. leaves extracts. Inflammopharmacology 2023; 31:3281-3301. [PMID: 37864683 DOI: 10.1007/s10787-023-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Solanum nigrum L. is a popular traditional medicine for various inflammatory conditions including rheumatism and joint pain. The current study aimed to evaluate the anti-arthritic mechanism of Solanum nigrum L. Four extracts were prepared using n-hexane, methanol, chloroform, and water. The anti-nociceptive and anti-inflammatory activity was carried out with 100, 200, and 300 mg/kg body wt. PO of each extract by the hot plate and carrageenan-induced paw oedema methods, respectively. The anti-arthritic study was performed with chloroform and aqueous extracts (300 mg/kg) in complete Freund's adjuvant (CFA)-induced arthritis. Paw size (mm), ankle joint diameter (mm), and latency time (sec) were recorded on day 0 and every 4th day till 28 days. The hematological, inflammatory, and oxidative biomarkers were estimated. Results showed that significant analgesia (p < 0.05) and reduction in paw inflammation were achieved with all extracts. The highest percent inhibition in Carrageenan-induced inflammation was achieved with 300 mg/kg of chloroform (72.19%) and aqueous (71.30%) extracts, respectively. In the CFA model, both extracts showed a significant reduction in paw size and ankle joint diameter (p < 0.05). The RT-qPCR analysis revealed the upregulation of interleukin-4 and interleukin-10, and down-expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, cycloxygenase-2, nuclear factor-κB, prostaglandin E synthase 2, and interferon-γ. A significant increase in superoxide dismutase, catalase, and glutathione levels was observed. Hence, it is concluded that Solanum nigrum L. leaf extracts regulate the expression of inflammatory markers and improve oxidative stress resulting in the attenuation of CFA-induced arthritis.
Collapse
Affiliation(s)
- Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mobasher Ahmad
- Gulab Devi Institute of Pharmacy, Gulab Devi Hospital, Lahore, Pakistan
| | - Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Shahzad Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Potprommanee S, Kiattisin K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023; 12:4292. [PMID: 38231740 DOI: 10.3390/foods12234292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Ding L, Gao Z, Wu S, Chen C, Liu Y, Wang M, Zhang Y, Li L, Zou H, Zhao G, Qin S, Xu L. Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:49. [PMID: 37940733 PMCID: PMC10632357 DOI: 10.1007/s13659-023-00405-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023]
Abstract
Osteoporosis (OP), a systemic and chronic bone disease, is distinguished by low bone mass and destruction of bone microarchitecture. Ginsenoside Compound-K (CK), one of the metabolites of ginsenoside Rb1, has anti-aging, anti-inflammatory, anti-cancer, and hypolipidemic activities. We have demonstrated CK could promote osteogenesis and fracture healing in our previous study. However, the contribution of CK to osteoporosis has not been examined. In the present study, we investigated the effect of CK on osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. The results showed that CK inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation and reactive oxygen species (ROS) activity by inhibiting the phosphorylation of NF-κB p65 and oxidative stress in RAW264.7 cells. In addition, we also demonstrated that CK could inhibit bone resorption using bone marrow-derived macrophages. Furthermore, we demonstrated that CK attenuated bone loss by suppressing the activity of osteoclast and alleviating oxidative stress in vivo. Taken together, these results showed CK could inhibit osteoclastogenesis and prevent OVX-induced bone loss by inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Li
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shengnan Qin
- Department of Orthopaedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Lin BH, Ma RX, Wu JT, Du SQ, Lv YY, Yu HN, Zhang W, Mao SM, Liu GY, Bu YT, Chen ZH, Jin C, Wu ZY, Yang L. Cinnamaldehyde Alleviates Bone Loss by Targeting Oxidative Stress and Mitochondrial Damage via the Nrf2/HO-1 Pathway in BMSCs and Ovariectomized Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917162 DOI: 10.1021/acs.jafc.3c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bing-Hao Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Run-Xun Ma
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Jing-Tao Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Shi-Qi Du
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Yi-Yun Lv
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Hao-Nan Yu
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Shu-Ming Mao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Guang-Yao Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Yi-Tian Bu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zi-Hao Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Chen Jin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zong-Yi Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Lei Yang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| |
Collapse
|
20
|
Fu F, Luo H, Du Y, Chen Y, Tian K, Pan J, Li J, Wang N, Bao R, Jin H, Tong P, Ruan H, Wu C. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med 2023; 27:3601-3613. [PMID: 37621124 PMCID: PMC10660633 DOI: 10.1111/jcmm.17928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1β. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Du
- The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kun Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jin Pan
- Department of Architecture, School of ArchitectureChina Academy of ArtHangzhouChina
| | - Jian Li
- Department of OrthopaedicsHangzhou Ninth People's HospitalHangzhouChina
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouChina
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
21
|
Li J, Cao H, Zhou X, Guo J, Zheng C. Advances in the study of traditional Chinese medicine affecting bone metabolism through modulation of oxidative stress. Front Pharmacol 2023; 14:1235854. [PMID: 38027015 PMCID: PMC10646494 DOI: 10.3389/fphar.2023.1235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/β-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiaying Li
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cao
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuchang Zhou
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chengqiang Zheng
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Adeyi OE, Somade OT, James AS, Adeyi AO, Ogbonna-Eze SN, Salako OQ, Makinde TV, Ajadi OM, Nosiru SA. Ferulic acid mitigates 2-methoxyethanol-induced testicular oxidative stress via combined downregulation of FoxO1, PTEN, and modulation of Nrf2-Hmox1-NQO1 signaling pathway in rats. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100257. [DOI: 10.1016/j.prmcm.2023.100257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Wang Y, Wang Z, Xue Q, Zhen L, Wang Y, Cao J, Liu Y, Khan A, Zhao T, Cheng G. Effect of ultra-high pressure pretreatment on the phenolic profiles, antioxidative activity and cytoprotective capacity of different phenolic fractions from Que Zui tea. Food Chem 2023; 409:135271. [PMID: 36587513 DOI: 10.1016/j.foodchem.2022.135271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study aims to explore whether ultra-high pressure (UHP) pre-treatment strengthened the bioaccessibility and bioactivities of the free (QF), esterified (QE) and insoluble-bound phenolics (QIB) from Que Zui tea (QT). The results revealed that the extraction yields, the total phenolic (TPC) and total flavonoid contents (TFC) of three phenolic fractions from QT were markedly increased after ultra-high pressure (UHP) processing (p < 0.05). A total of 19 and 20 compounds were characterized and quantified in non- and UHP-treated QT, respectively, including the content of 6'-O-caffeoylarbutin (11775.68 and 13248.87 μg/g of dry extract) was highest in QF, the content of caffeic acid was highest in QE (2131.58 and 7362.99 μg/g of dry extract) and QIB (9151.89 and 10930.82 μg/g of dry extract). QF, QE and QIB from QT after UHP processing had better antioxidant, ROS scavenging, and anti-apoptosis effects. The possible mechanism of cytoprotective effect was related to Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Li Zhen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
24
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
25
|
Comparative Pharmacokinetic Study of 5 Active Ingredients after Oral Administration of Zuogui Pill in Osteoporotic Rats with Different Syndrome Types. Int J Anal Chem 2023; 2023:1473878. [PMID: 36998619 PMCID: PMC10045483 DOI: 10.1155/2023/1473878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Zuogui Pill is a kidney-yin-tonifying formula in traditional Chinese medicine that is widely used to manage osteoporosis with kidney-yin-deficiency in China. Herein, an efficient and accurate high-performance liquid chromatography-tandem mass spectrometry method was developed to determine the concentrations of 5 bioactive compounds in rat plasma following oral administration of Zuogui Pill. Because drug absorption and distribution differ under physiological and pathological conditions, the established method was used to quantify blood components and dynamic change in osteoporotic rats with different syndrome types. Moreover, integrated pharmacokinetic study was conducted to describe the overall pharmacokinetic characteristics of traditional Chinese medicine. The results showed that the absorption, distribution, and metabolism of Zuogui Pill varied widely under different states. The bioavailability of most active components showed significant advantages in osteoporotic rats with kidney-yin-deficiency, which corresponds to the opinion that Zuogui Pill has the effect of nourishing kidney-yin. It is hoped that this finding could interpret the pharmacodynamic substances and mechanism of Zuogui Pill in the treatment of osteoporosis with kidney-yin-deficiency.
Collapse
|
26
|
Li Y, Xie L, Liu K, Li X, Xie F. Bioactive components and beneficial bioactivities of flowers, stems, leaves of Lonicera japonica Thunberg: A review. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Xu L, Bai E, Zhu Y, Qin J, Du X, Huang H. pH-Responsive Hydrogel as a Potential Oral Delivery System of Baicalin for Prolonging Gastroprotective Activity. Pharmaceutics 2023; 15:pharmaceutics15010257. [PMID: 36678886 PMCID: PMC9861087 DOI: 10.3390/pharmaceutics15010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Gastric ulcer is one of the most common gastrointestinal diseases, and natural products have obvious advantages in the treatment of gastrointestinal diseases. Baicalin (Bai) extracted from scutellaria baicalensis exhibits anti-inflammatory, antioxidant, and anti-apoptotic activities. Herein, a pH-responsive sodium alginate/polyaspartate/CaCO3 (SA/PASP@CaCO3) in situ hydrogel was established for the oral delivery of Bai. In this study, we detected the gelling properties, mechanical strength, in vitro erosion, and in vitro release behavior of the hydrogels. Meanwhile, the efficiency of Bai/SA/PASP@CaCO3 hydrogel on ethanol-induced acute gastric ulcers, acetic acid-induced chronic gastric ulcers, and H2O2-stimulated human gastric epithelial GES-1 cells was explored. The pathological examination revealed that Bai-loaded hydrogel alleviated acute and chronic gastric ulcers. In vivo and in vitro results further confirmed that Bai/SA/PASP@CaCO3 in situ hydrogels significantly relieved oxidative stress injury. Moreover, through Western blot assay, Bai/SA/PASP@CaCO3 hydrogel was also found to dramatically increase the proteins levels of NRF2, HO-1, and Bcl2, and reduce levels of p-JNK, cleaved-caspase-3 and Bax; through flow cytometry, it was observed to significantly inhibit the H2O2-induced apoptosis of GES-1 cells. Importantly, the Bai/SA/PASP@CaCO3 in situ hydrogel system showed better anti-gastric ulcer efficiency than free drug, and could serve as a potential drug delivery system for the clinical treatment of gastric ulcers.
Collapse
Affiliation(s)
- Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Yangbo Zhu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, Hangzhou 310003, China
| | - Jiayi Qin
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 QingChun Road, Hangzhou 310003, China
| | - Xiao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China
- Correspondence: (X.D.); (H.H.)
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (X.D.); (H.H.)
| |
Collapse
|
28
|
Guo W, Jin P, Li R, Huang L, Liu Z, Li H, Zhou T, Fang B, Xia L. Dynamic network biomarker identifies cdkn1a-mediated bone mineralization in the triggering phase of osteoporosis. Exp Mol Med 2023; 55:81-94. [PMID: 36599933 PMCID: PMC9898265 DOI: 10.1038/s12276-022-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023] Open
Abstract
The identification of predictive markers to determine the triggering phase prior to the onset of osteoporosis is essential to mitigate further irrevocable deterioration. To determine the early warning signs before osteoporosis, we used the dynamic network biomarker (DNB) approach to analyze time-series gene expression data in a zebrafish osteoporosis model, which revealed that cyclin-dependent kinase inhibitor 1 A (cdkn1a) is a core DNB. We found that cdkn1a negatively regulates osteogenesis, as evidenced by loss-of-function and gain-of-function studies. Specifically, CRISPR/Cas9-mediated cdkn1a knockout in zebrafish significantly altered skeletal development and increased bone mineralization, whereas inducible cdkn1a expression significantly contributed to osteoclast differentiation. We also found several mechanistic clues that cdkn1a participates in osteoclast differentiation by regulating its upstream signaling cascades. To summarize, in this study, we provided new insights into the dynamic nature of osteoporosis and identified cdkn1a as an early-warning signal of osteoporosis onset.
Collapse
Affiliation(s)
- Weiming Guo
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Peng Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Ruomei Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Lu Huang
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Zhen Liu
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Hairui Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
29
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
30
|
Sharifi HJ, Paine DN, Fazzari VA, Tipple AF, Patterson E, de Noronha CMC. Sulforaphane Reduces SAMHD1 Phosphorylation To Protect Macrophages from HIV-1 Infection. J Virol 2022; 96:e0118722. [PMID: 36377871 PMCID: PMC9749475 DOI: 10.1128/jvi.01187-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cellular protein SAMHD1 is important for DNA repair, suppressing LINE elements, controlling deoxynucleoside triphosphate (dNTP) concentrations, maintaining HIV-1 latency, and preventing excessive type I interferon responses. SAMHD1 is also a potent inhibitor of HIV-1 and other significant viral pathogens. Infection restriction is due in part to the deoxynucleoside triphosphatase (dNTPase) activity of SAMHD1 but is also mediated through a dNTPase-independent mechanism that has been described but not explored. The phosphorylation of SAMHD1 at threonine 592 (T592) controls many of its functions. Retroviral restriction, irrespective of dNTPase activity, is linked to unphosphorylated T592. Sulforaphane (SFN), an isothiocyanate, protects macrophages from HIV infection by mobilizing the transcription factor and antioxidant response regulator Nrf2. Here, we show that SFN and other clinically relevant Nrf2 mobilizers reduce SAMHD1 T592 phosphorylation to protect macrophages from HIV-1. We further show that SFN, through Nrf2, triggers the upregulation of the cell cycle control protein p21 in human monocyte-derived macrophages to contribute to SAMHD1 activation. We additionally present data that support another, potentially redox-dependent mechanism employed by SFN to contribute to SAMHD1 activation through reduced phosphorylation. This work establishes the use of exogenous Nrf2 mobilizers as a novel way to study virus restriction by SAMHD1 and highlights the Nrf2 pathway as a potential target for the therapeutic control of SAMHD1 cellular and antiviral functions. IMPORTANCE Here, we show, for the first time, that the treatment of macrophages with Nrf2 mobilizers, known activators of antioxidant responses, increases the fraction of SAMHD1 without a regulatory phosphate at position 592. We demonstrate that this decreases infection of macrophages by HIV-1. Phosphorylated SAMHD1 is important for DNA repair, the suppression of LINE elements, the maintenance of HIV-1 in a latent state, and the prevention of excessive type I interferon responses, while unphosphorylated SAMHD1 blocks HIV infection. SAMHD1 impacts many viruses and is involved in various cancers, so knowledge of how it works and how it is regulated has broad implications for the development of therapeutics. Redox-modulating therapeutics are already in clinical use or under investigation for the treatment of many conditions. Thus, understanding the impact of redox modifiers on controlling SAMHD1 phosphorylation is important for many areas of research in microbiology and beyond.
Collapse
Affiliation(s)
- H. John Sharifi
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Dakota N. Paine
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | | - Emilee Patterson
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Carlos M. C. de Noronha
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
31
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
32
|
Mathis BJ, Kato H, Hiramatsu Y. Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells 2022; 11:cells11233855. [PMID: 36497112 PMCID: PMC9736027 DOI: 10.3390/cells11233855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the endogenous antioxidant response to reactive oxygen species as well as a controller of Phase II detoxification in response to xenobiotics. This amenity to specific external manipulation exploits the binding affinity of Nrf2 for its constitutive repressor and degradation facilitator Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1). Derived from both natural and synthesized origins, these compounds have been extensively tested without definitive beneficial results. Unfortunately, multiple terminated trials have shown a negative side to Nrf2 with regard to cardiac pathologies while animal-based studies have demonstrated cardiomyocyte hypertrophy and heart failure after chronic Nrf2 upregulation. Putatively based on autophagic control of Nrf2 activity-modulating upstream factors, new evidence of miRNA involvement has added complexity to this mechanism. What follows is an extensive survey of Nrf2-regulating exogenous compounds that may promote cardiomyopathy, clinical trial evidence, and a comparison to exercise-induced factors that also upregulate Nrf2 while preventing cardiac pathologies.
Collapse
Affiliation(s)
- Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-853-3004
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuji Hiramatsu
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
| |
Collapse
|
33
|
Xu Y, Deng T, Xie L, Qin T, Sun T. Neuroprotective effects of hawthorn leaf flavonoids in
Aβ
25–35
‐induced
Alzheimer's disease model. Phytother Res 2022; 37:1346-1365. [PMID: 36447359 DOI: 10.1002/ptr.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aβ in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aβ25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aβ25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.
Collapse
Affiliation(s)
- Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| |
Collapse
|
34
|
Ma F, Luo S, Lu C, Jiang X, Chen K, Deng J, Ma S, Li Z. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front Endocrinol (Lausanne) 2022; 13:963451. [PMID: 36482997 PMCID: PMC9723463 DOI: 10.3389/fendo.2022.963451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Nuclear factor E2-related factor 2(Nrf2) is a transcription factor that mainly regulates oxidative stress in the body. It initiates the expression of several downstream antioxidants, anti-inflammatory proteins and detoxification enzymes through the Kelch-like ECH-associating protein 1 (Keap1) -nuclear factor E2-related factor 2(Nrf2) -antioxidant response element (ARE) signaling pathway. Its anti-apoptosis, anti-oxidative stress and anti-inflammatory effects have gradually become the focus of periodontal disease research in recent years. In this paper, the structure and function of Nrf2 pathway and its mechanism of action in the treatment of periodontitis in recent years were analyzed and summarized, so as to further clarify the relationship between Nrf2 pathway and oxidative stress in the occurrence and development of periodontitis, and to provide ideas for the development of new treatment drugs targeting Nrf2 pathway.
Collapse
Affiliation(s)
- Fengyu Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shangdie Luo
- Department of Orthodontics, Huizhou Stomatological Hospital, Huizhou, Guangdong, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinrong Jiang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Jianwen Deng
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shuyuan Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
| |
Collapse
|
35
|
The Evaluation of Xiaozeng Qianggu Tablets for Treating Postmenopausal Osteoporosis via up-Regulated Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3960834. [PMID: 36193128 PMCID: PMC9526660 DOI: 10.1155/2022/3960834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Objective. Postmenopausal osteoporosis (PMOP) is a common age-associated disease in the life course. Clinically, Xiaozeng Qianggu Tablets (XQT) have a potent therapeutic effect on the PMOP. However, the bioactive components and the mechanism of XQT underlying the PMOP treatment were unclear and it should be explored to discover the scientific connotation in traditional medical practice. Methods. The components in XQT were identified by UPLC-Q-TOF/MS. The animal model of PMOP was established by surgical ovariectomy in the female Sprague-Dawley rats. After treatment of XQT, the therapeutic effect was assessed by the determination of bone metabolism biomarkers in serum and histopathological examination. The effect of XQT on the autophagy and bone micro-situation were tested using western blot, RT-qPCR, and transmission electron microscope. Results. There were 27 compounds identified in XQT, including catalpol, monotropein, verbascoside, cryptochlorogenic acid, 5,7-dihydroxychromone 7-rutinoside, biorobin, and so on. The bone metabolism markers (alkaline phosphatase, bone alkaline phosphatase, procollagen type I intact N-terminal propeptide, cross-linked carboxy-terminal telopeptide of type I collagen, and tartrate-resistant acid phosphatase) were significantly increased in the PMOP rats and reversed by XQT administration. Moreover, the width of bone trabeculae and the ratio of the area of calcium deposition to bone trabeculae were also improved after treating the middle dose of XQT. Meanwhile, the bone micro-structure was improved by XQT. The mRNA and protein expression of unc-51 like kinase 1, beclin-1, and microtubule-associated protein 1B-light chain 3 in PMOP rats were down-regulated and up-regulated by XQT administration. Conclusions. The compounds in XQT, including catalpol, monotropein, verbascoside cryptochlorogenic acid, and so on, were valuable for further pharmacy evaluation. The pathological changes and bone micro-structure were improved by XQT, and the down-regulated autophagy level was also restored, which suggested a potent effect of XQT on treating PMOP, corresponding to its clinic use.
Collapse
|
36
|
Rai D, Tripathi AK, Sardar A, Pandey AR, Sinha S, Chutani K, Dhaniya G, Kothari P, Sashidhara KV, Trivedi R. A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis. Free Radic Biol Med 2022; 190:124-147. [PMID: 35963563 DOI: 10.1016/j.freeradbiomed.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023]
Abstract
In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/β-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-β and β-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//β-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Kumar Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
37
|
Dong X, Liu J, Guo S, Yang F, Bu R, Lu J, Xue P. Metabolomics comparison of Chemical components and metabolic regulations in different parts of Eucommia ulmoides Oliv. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Feng Y, Gao S, Zhu T, Sun G, Zhang P, Huang Y, Qu S, Du X, Mou D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front Nutr 2022; 9:936229. [PMID: 35990322 PMCID: PMC9384962 DOI: 10.3389/fnut.2022.936229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context Hyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage. Objective The present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism. Materials and methods Sprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR. Results This study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway. Conclusion HFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ting Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peisen Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dehua Mou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
39
|
Nrf2 signaling activation by a small molecule activator compound 16 inhibits hydrogen peroxide-induced oxidative injury and death in osteoblasts. Cell Death Dis 2022; 8:353. [PMID: 35941127 PMCID: PMC9360014 DOI: 10.1038/s41420-022-01146-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
We explored the potential activity of compound 16 (Cpd16), a novel small molecule Nrf2 activator, in hydrogen peroxide (H2O2)-stimulated osteoblasts. In the primary murine/human osteoblasts and MC3T3-E1 murine osteoblastic cells, Cpd16 treatment at micro-molar concentrations caused disassociation of Keap1-Nrf2 and Nrf2 cascade activation. Cpd16 induced stabilization of Nrf2 protein and its nuclear translocation, thereby increasing the antioxidant response elements (ARE) reporter activity and Nrf2 response genes transcription in murine and human osteoblasts. Significantly, Cpd16 mitigated oxidative injury in H2O2-stimulited osteoblasts. H2O2-provoked apoptosis as well as programmed necrosis in osteoblasts were significantly alleviated by the novel Nrf2 activator. Cpd16-induced Nrf2 activation and osteoblasts protection were stronger than other known Nrf2 activators. Dexamethasone- and nicotine-caused oxidative stress and death in osteoblasts were attenuated by Cpd16 as well. Cpd16-induced osteoblast cytoprotection was abolished by Nrf2 short hairpin RNA or knockout, but was mimicked by Keap1 knockout. Keap1 Cys151S mutation abolished Cpd16-induced Nrf2 cascade activation and osteoblasts protection against H2O2. Importantly, weekly Cpd16 administration largely ameliorated trabecular bone loss in ovariectomy mice. Together, Cpd16 alleviates H2O2-induced oxidative stress and death in osteoblasts by activating Nrf2 cascade.
Collapse
|
40
|
Li P, Liu Y, Li J, Sun Y, Wang H. Resveratrol Glycosides Impede Microglial Apoptosis and Oxidative Stress in Rats for Spinal Cord Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) usually occurs after severe trauma, which can lead to detrimental and unpredictable secondary diseases, including dyskinesia, paraplegia and even quadriplegia, resulting in seriously reduced quality of life among these patients. Oxidative damage is one of the
major pathogenic factors of SCI. Resveratrol biologically exerts a significant antioxidant activity by increasing the levels of antioxidants and sequentially scavenging free radicals, so as to protect multiple organs from damage. This study investigates whether resveratrol can function as
a protective mediator in SCI and the underlying mechanisms, aiming to provide a theoretical hint for the treatment of SCI. After establishment of SCI model in rats, serial doses of resveratrol were administrated. Afterwards, the therapeutic effects of resveratrol glycosides were evaluated
by analyzing the motor function, spinal cord edema, cellular apoptosis and oxidative reaction in rats. Eventually, the potential mechanisms of resveratrol glycosides were studied via Western blotting. Our results showed that the pro-apoptosis proteins were highly expressed in the spinal cord
tissue of rats after SCI. In comparison with healthy rats, those with SCI exhibited significant widespread dead neurons, glial cell apoptosis, oxidative stress and more serious functional defects. Nevertheless, resveratrol glycosides can ameliorate oxidative stress, inhibit the apoptosis of
glial cells and neuronal death after SCI. Importantly, it can induce the activation of the Nrf2/HO-1 signal transduction pathway that mediated the alleviation of SCI in rats. Resveratrol can improve motor dysfunction after SCI, which may be a result of its anti-oxidation and anti-apoptotic
effects via modulating the Nrf2 signal transduction pathway of microglia, which provides a new idea for the treatment of SCI.
Collapse
Affiliation(s)
- Peng Li
- Department of Integrative Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Yang Liu
- Department of Neurorehabilitation, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Jiadi Li
- Bureau of traditional Chinese Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Yuwei Sun
- Bureau of traditional Chinese Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| | - Haipeng Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, 161000, China
| |
Collapse
|
41
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
42
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
43
|
Kim AR, Lim YJ, Jang WG. Zingerone stimulates osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression in MC3T3-E1 cells and primary mouse calvarial cells. Clin Exp Pharmacol Physiol 2022; 49:1050-1058. [PMID: 35639082 DOI: 10.1111/1440-1681.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/06/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Zingerone (Zin) is a non-volatile compound found mainly in dried ginger. Zingerone increases the expression of osteogenic markers and has antioxidant effects. A previous study showed that zingerone accelerated osteoblast differentiation by suppressing the expression of Smad7, a member of the inhibitory Smad (I-Smad) family. However, it is not known if zingerone can induce osteoblast differentiation by regulating Smad1/5/9, a member of the receptor-regulated Smad (R-Smad) famlily. In addition, osteoblast differentiation induced by Smad1/5/9 mediated increases in the expression of heme oxygenase 1 (HO-1) has not been reported. This study investigated the effects of zingerone on osteoblast differentiation and confirmed the relationship between Smad1/5/9 and HO-1. Zingerone increased the expression of osteogenic genes including Runx2, Dlx5 and OC, and also promoted Smad1/5/9 phosphorylation. Interestingly, HO-1 expression was also elevated by zingerone, and an inhibitor of HO-1 (Sn(IV) protoporphyrin IX dichloride, SnPP) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes such as Dlx5, Runx2, and OC. Protein phosphatase 2A Cα (PP2A Cα, an inhibitor of Smad1/5/9) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes. The zingerone-induced increase in HO-1 lucifeerase activity was suppressed by PP2A Cα. Taken together, our data demonstrate that zingerone promotes osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression.
Collapse
Affiliation(s)
- A-Rang Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
44
|
Exploration of molecular mechanisms responsible for anti-inflammatory and anti-angiogenic attributes of methanolic extract of Viola betonicifolia. Inflammopharmacology 2022; 30:1459-1474. [PMID: 35608743 DOI: 10.1007/s10787-022-00990-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/02/2022] [Indexed: 11/05/2022]
Abstract
Uncontrolled inflammation plays a central role in the pathogenesis of various diseases. Currently available anti-inflammatory agents on prolonged use may lead to ulcers or thrombus formation. The present study was designed to evaluate the anti-inflammatory, anti-arthritic and anti-angiogenic potentials of methanol extract of Viola betonicifolia using battery of in vivo models. Methanol extract of Viola betonicifolia (Vb.Me) was prepared through maceration. High performance liquid chromatography (HPLC) and gas chromatography mass spectrometery (GC-MS) were performed to identify bioactive compounds present in Vb.Me. In vivo safety profile of Vb.Me was evaluated following OECD 425 acute toxicity guidelines. Anti-inflammatory potential of Vb.Me at three different dose levels was evaluated in in vivo acute (carrageenan and, histamine-induced paw oedema), sub-chronic (cotton pellet-induced granuloma) and chronic (Complete Freund's adjuvant-induced arthritis) models. Blood and paws samples were collected to study effects of Vb.Me treatment on the expression of various pro- and anti-inflammatory genes (RT-PCR) and to study the histopathological changes at tissue levels. Effects of Vb.Me on neovasculature development were studied in ex-ovo chicken chorioallantoic membrane (CAM) assay. Quercetin and n-hexadecanoic were identified as one of the major bioactive molecules in HPLC and GC-MS analysis of Vb.Me. Toxicity data revealed that Vb.Me was safe for administration up to the dose of 2000 mg/kg. Findings of inflammatory models showed that Vb.Me produced time and dose-dependent effects. 500 mg/kg Vb.Me showed significantly (p < 0.05) better effects as compared with 125 and 250 mg/kg. 500 mg/kg Vb.Me also showed comparable anti-inflammatory effects with indomethacin in both acute and chronic models respectively. RT-PCR data exhibited significant (p < 0.05) down-regulation of IL-6, IL-1ß, NF-kß, TNF-α and COX-2 genes with simultaneous up-regulation of IL-4 and IL-10 genes in the blood samples of animals treated with 500 mg/kg of Vb.Me and 10 mg/kg of indomethacin respectively. CAM assay data revealed arrest of microvessel outgrowth in Vb.Me-treated eggs. Altogether, findings of the current study indicate that Vb.Me exerts in vivo anti-inflammatory and anti-angiogenic effects through regulation of expression of various pro- and anti-inflammatory genes. Synergist actions of various bioactive molecules in Vb.Me are proposed to be responsible for these attributes. However, further studies to standardize the extract and evaluation of its potential in various inflammation-induced diseases are warranted.
Collapse
|
45
|
Xuan Y, Wang J, Zhang X, Wang J, Li J, Liu Q, Lu G, Xiao M, Gao T, Guo Y, Cao C, Chen O, Wang K, Tang Y, Gu J. Resveratrol Attenuates High Glucose-Induced Osteoblast Dysfunction via AKT/GSK3β/FYN-Mediated NRF2 Activation. Front Pharmacol 2022; 13:862618. [PMID: 35677434 PMCID: PMC9169221 DOI: 10.3389/fphar.2022.862618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoblast dysfunction, induced by high glucose (HG), negatively impacts bone homeostasis and contributes to the pathology of diabetic osteoporosis (DOP). One of the most widely recognized mechanisms for osteoblast dysfunction is oxidative stress. Resveratrol (RES) is a bioactive antioxidant compound to combat oxidative damage. However, its role in the protection of HG-induced osteoblast dysfunction has not been clarified. Therefore, our study aimed to explore potential regulatory mechanisms of RES for attenuating HG-induced osteoblast dysfunction. Our results showed that osteoblast dysfunction under HG condition was significantly ameliorated by RES via the activation of nuclear factor erythroid 2-related factor (NRF2) to suppress oxidative stress. Furthermore, using Nrf2-shRNA and wortmannin, we identified that activation of NRF2 via RES was regulated by the AKT/glycogen synthase kinase 3β (GSK3β)/FYN axis.
Collapse
Affiliation(s)
- Yue Xuan
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cong Cao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunli Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
46
|
Xiao J, Li W, Li G, Tan J, Dong N. STK11 overexpression prevents glucocorticoid-induced osteoporosis via activating the AMPK/SIRT1/PGC1α axis. Hum Cell 2022; 35:1045-1059. [PMID: 35543972 DOI: 10.1007/s13577-022-00704-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis (OP) is a frequent orthopedic disease characterized by pain, fractures and deformities. Glucocorticoids are the most common cause of secondary osteoporosis. Here, we aim to explore the function and mechanism of STK11 in glucocorticoid (GC)-induced OP. Human mesenchymal stromal cells (hMSCs) were differentiated under osteogenic or adipogenic culture medium. An in-vitro OP model was induced by dexamethasone (DEX). The viability, differentiation, apoptosis, and ROS level were evaluated for investigating the functions of SKT11 on hMSCs. The SIRT1 inhibitor EX-527, PGC1α inhibitor SR-18292, and AMPK activator metformin were administered into hMSCs for confirming the mechanism of SKT11. Our results showed that STK11 was down-regulated in OP tissues, as well as DEX-treated hMSCs. Overexpressing STK11 attenuated DEX-mediated inhibition of osteogenic differentiation and heightened the activation of the AMPK/SIRT1/PGC1α pathway, whereas STK11 knockdown exerted opposite effects. Inhibiting SIRT1 or PGC1α repressed the promotive effect of STK11 on osteogenic differentiation of hMSCs, while activation of AMPK abated the inhibitory effect of STK11 knockdown on osteogenic differentiation of hMSCs. In conclusion, this study revealed that overexpressing STK11 dampened GC-induced OP by activating the AMPK/SIRT1/PGC1α axis.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Wenjin Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Guojuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Jiankai Tan
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Na Dong
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
47
|
Sun F, Zhou JL, Wei SX, Jiang ZW, Peng H. Glucocorticoids induce osteonecrosis of the femoral head in rats via PI3K/AKT/FOXO1 signaling pathway. PeerJ 2022; 10:e13319. [PMID: 35529482 PMCID: PMC9074886 DOI: 10.7717/peerj.13319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 01/15/2023] Open
Abstract
Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a disorder that causes severe disability in patients and has a high incidence worldwide. Although glucocorticoid (GC)-induced apoptosis of osteoblasts is an important cytological basis of SONFH, the detailed mechanism underlying SONFH pathogenesis remains elusive. PI3K/AKT signaling pathway was reported to involve in cell survival and apoptosis. Objective We explored the role of PI3K/AKT/FOXO1 signaling pathway and its downstream targets during glucocorticoid -induced osteonecrosis of the femoral head. Methods We obtained gene expression profile of osteoblasts subjected to dexamethasone (Dex) treatment from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out and functional enrichment analysis were conducted by bioinformatics analysis. In vitro, we analyzed Dex-induced apoptosis in MC3T3-E1 cells and explored the role of PI3K/AKT/FOXO1 signaling pathway in this phenomenon by employing siRNA-FOXO1 and IGF-1(PI3K/AKT agonist). Finally, we verified our results in a rat model of SONFH. Results In Dex-treated osteoblasts, DEGs were mainly enriched in the FOXO signaling pathway. Dex inhibited MC3T3-E1 cell viability in a dose-dependent effect and induced apoptosis by increasing the expression levels of FOXO1, Bax, cleaved-Caspase-3, and cleaved-Caspase-9, while reducing the expression of Bcl-2. Notably, these results were reversed by siRNA-FOXO1 treatment. Dex inhibited PI3K/AKT signaling pathway, upregulated FOXO1 expression and increased FOXO1 nuclear translocation, which were reversed by IGF-1. Compared to normal rats, the femoral head of SONFH showed increased expression of FOXO1, increased number of apoptotic cells, and empty osteocytic lacunas, as well as decreased bone tissue content and femoral head integrity. Significantly, the effects of GC-induced SONFH were alleviated following IGF-1 treatment. Conclusion Dex induces osteoblast apoptosis via the PI3K/AKT/FOXO1 signaling pathway. Our research offers new insights into the underlying molecular mechanisms of glucocorticoid-induced osteonecrosis in SONFH and proposes FOXO1 as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Fei Sun
- Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Si Xing Wei
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze Wen Jiang
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Peng
- Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Attallah NGM, Mokhtar FA, Elekhnawy E, Heneidy SZ, Ahmed E, Magdeldin S, Negm WA, El-Kadem AH. Mechanistic Insights on the In Vitro Antibacterial Activity and In Vivo Hepatoprotective Effects of Salvinia auriculata Aubl against Methotrexate-Induced Liver Injury. Pharmaceuticals (Basel) 2022; 15:ph15050549. [PMID: 35631375 PMCID: PMC9145932 DOI: 10.3390/ph15050549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Kafr El Zayat 31616, Al Gharbiya, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Selim Z. Heneidy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
49
|
Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription Factor KLF7 Promotes Osteoclast Differentiation by Suppressing HO-1. Front Genet 2022; 13:798433. [PMID: 35419025 PMCID: PMC8995880 DOI: 10.3389/fgene.2022.798433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis is a common orthopedic disease with high prevalence in patients older than 50 years. Osteoporosis is often detected only after the fracture and is hard to treat. Therefore, it is of great significance to explore the molecular mechanism of the occurrence of osteoporosis. Methods: The expression of Heme oxygenase-1 (HO-1) in people with different bone mineral density (BMD) was analyzed based on public databases. GenHacncer and JASPAR databases were adopted to search and verify the upstream transcription factor of HO-1. qRT-PCR, western blot and tartrate-resistant acid phosphatase assays were performed to explore the impact of HO-1 and Kruppel-like factor 7 (KLF7) on osteoclast differentiation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding relationship between KLF7 and HO-1. Finally, Hemin, the agonist of HO-1, was applied in rescue assays, thereby verifying the mechanism of KLF7 modulating osteoclast differentiation by HO-1. Results: Bioinformatics analysis revealed that HO-1 was highly-expressed while KLF7 lowly-expressed in people with high BMD. Besides, a potential binding site of KLF7 was found on the promoter region of HO-1. ChIP assay further manifested the targeting relationship between HO-1 and KLF7. Western blot and TRAP staining unveiled that osteoclast differentiation was suppressed by HO-1, while facilitated by KLF7. Rescue experiments indicated that over-expressed HO-1 could reverse of the promoting effect of KLF7 on osteoclast differentiation. Conclusion: The study confirmed that osteoclast differentiation was promoted by KLF7 constraining HO-1, thereby facilitating osteoporosis. The cognation of the pathogenesis of osteoporosis was further enriched. New treatment could be developed on this basis.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Fei Hu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Shichang Miao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Liping Sun
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yajun Jiao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Mingwei Xu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xin Huang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Ying Yang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Rongkui Zhou
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
50
|
Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front Nutr 2022; 9:866233. [PMID: 35392289 PMCID: PMC8981461 DOI: 10.3389/fnut.2022.866233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Coffee by-products contain bioactive compounds that have been shown to have the capacity to modulate human metabolism. The goal of this study was to investigate the effects of the main bioactive compounds in coffee by-products and two aqueous extracts from the coffee husk and silverskin on the activation of fibroblast growth factor 21 (FGF21) signaling and the subsequent regulation of mitochondrial bioenergetics and lipid and glucose metabolism. HepG2 cells treated with palmitic acid (PA) were used in a non-alcoholic fatty liver disease (NAFLD) cell model. The bioactive compounds from coffee by-products (50 μmol L−1) and the aqueous extracts from the coffee silverskin and coffee husk (100 μg mL−1) increased ERK1/2 phosphorylation and the secretion of FGF21 (1.3 to 1.9-fold). Coffee by-products' bioactive compounds counteracted inflammation and PA-triggered lipotoxicity. Oxidative stress markers (ROS, mitochondrial superoxide, and NADPH oxidase) and the activity of antioxidant enzymes (superoxide dismutase and catalase) were modulated through the activation of Nrf2 signaling. Mitochondrial bioenergetics were regulated by enhancing respiration and ATP production via PGC-1α, and the expression of oxidative phosphorylation complexes increased. Coffee by-products' bioactive compounds decreased lipid accumulation (23–41%) and fatty acid synthase activity (32–65%) and triggered carnitine palmitoyltransferase-1 activity (1.3 to 1.7-fold) by activating AMPK and SREBP-1c pathways. The GLUT2 expression and glucose uptake were increased (58–111%), followed by a promoted glucokinase activity (55–122%), while glucose production and phosphoenolpyruvate carboxykinase activity were reduced due to IRS-1/Akt1 regulation. The bioactive compounds from coffee by-products, primarily chlorogenic and protocatechuic acids, could regulate hepatic mitochondrial function and lipid and glucose metabolism by activating FGF21 and related signaling cascades.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yolanda Aguilera
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria A. Martín-Cabrejas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Elvira Gonzalez de Mejia
| |
Collapse
|