1
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Liang S, Chen Y, Jia T, Chang Y, Li W, Piao Y, Chen X. Development of a spontaneous preterm birth predictive model using a panel of serum protein biomarkers for early pregnant women: A nested case-control study. Int J Gynaecol Obstet 2024. [PMID: 39189090 DOI: 10.1002/ijgo.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE To develop a model based on maternal serum liquid chromatography tandem mass spectrometry (LC-MS/MS) proteins to predict spontaneous preterm birth (sPTB). METHODS This nested case-control study used the data from a cohort of 2053 women in China from July 1, 2018, to January 31, 2019. In total, 110 singleton pregnancies at 11-13+6 weeks of pregnancy were used for model development and internal validation. A total of 72 pregnancies at 20-32 weeks from an additional cohort of 2167 women were used to evaluate the scalability of the model. Maternal serum samples were analyzed by LC-MS/MS, and a predictive model was developed using machine learning algorithms. RESULTS A novel predictive panel with four proteins, including soluble fms-like tyrosine kinase-1, matrix metalloproteinase 8, ceruloplasmin, and sex-hormone-binding globulin, was developed. The optimal model of logistic regression had an AUC of 0.934, with additional prediction of sPTB in second and third trimester (AUC = 0.868). CONCLUSION First-trimester modeling based on maternal serum LC-MS/MS identifies pregnant women at risk of sPTB, which may provide utility in identifying women at risk at an early stage of pregnancy before clinical presentation to allow for earlier intervention.
Collapse
Affiliation(s)
- Shuang Liang
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tingting Jia
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Ying Chang
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Wen Li
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Yongjun Piao
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics/Nankai University Affiliated Maternity Hospital, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Chen C, Zhu S, Fu T, Chen Y, Chen D. The protective effects of Ferrostatin-1 against inflammation-induced preterm birth and fetal brain injury. J Reprod Immunol 2024; 164:104260. [PMID: 38761507 DOI: 10.1016/j.jri.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Recent studies have suggested the involvement of ferroptosis in preterm birth. Despite compelling evidence, the underlying mechanism remains unknown. This investigation aimed to determine the therapeutic effects of Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, in preterm birth and fetal brain injury. METHODS Human placenta samples and clinical data of participants were collected to ascertain whether placental ferroptosis was associated with preterm birth. Lipopolysaccharide (LPS)-induced preterm birth mouse model was used to examine the protective effects of Fer-1 on preterm birth. Fetal brain tissues and offspring mice at 5 and 8 weeks were studied to determine the effects of Fer-1 on the cognitive function of offspring. RESULTS We examined the mechanism of spontaneous preterm birth and discovered that placental ferroptosis was associated with preterm birth. Fer-1 inhibited preterm birth by ameliorating placental ferroptosis and maternal inflammation, thus improving LPS-induced intrauterine inflammation to maintain pregnancy. Antenatal administration of Fer-1 prevented LPS-induced fetal brain damage in the acute phase and improved long-term neurodevelopmental impairments by improving placental neuroendocrine signaling and maintaining placental function. CONCLUSION Fer-1 inhibited preterm birth and fetal brain injury by inhibiting maternal inflammation and improving placental function. Our findings provide a novel therapeutic strategy for preterm birth.
Collapse
Affiliation(s)
- Chaolu Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Shuaiying Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Tiantian Fu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Yanmin Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Danqing Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China.
| |
Collapse
|
4
|
Chen J, Wang A, An H, Han W, Huang J, Zheng W, Yan L, Li Z, Li G. Association between light rare earth elements in maternal plasma and the risk of spontaneous preterm birth: a nested case-control study from the Beijing birth cohort study. Environ Health 2023; 22:73. [PMID: 37872585 PMCID: PMC10591387 DOI: 10.1186/s12940-023-01027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Parental exposure to rare earth elements (REEs) could increase the risk of premature rupture of membranes, a major cause of spontaneous preterm birth (SPB). In addition, different subtypes of SPB, such as spontaneous preterm labor (SPL) and preterm premature rupture of membranes (PPROM), may have different susceptibility to environmental exposure. Therefore, we investigated the potential associations between REE exposure in different trimesters and SPB and its subtypes. METHODS A nested case-control study was performed. We included 244 women with SPB as cases and 244 women with full-term delivery as controls. The plasma concentrations of light REEs were measured in the first and third trimesters. Logistic regression was used to analyze the associations between single REE levels and SPB, and Bayesian kernel machine regression (BKMR) was used to analyze the mixed-exposure effect. RESULTS Exposure to light REEs was associated with SPB and its subtypes only in the third trimester. Specifically, the intermediate- and highest-tertile concentration groups of La and the highest-tertile concentration group of Sm were associated with an increased risk of SPL, with adjusted odds ratios (AORs) of 2.00 (95% CIs: 1.07-3.75), 1.87 (95% CIs: 1.01-3.44), and 1.82 (95% CIs: 1.00-3.30), respectively. The highest-tertile concentration group of Pr was associated with an increased risk of PPROM, with an AOR of 1.69 (95% CIs: 1.00-2.85). Similar results were also found in BKMR models. CONCLUSIONS La and Sm levels in plasma may be associated with the risk of SPL, and Pr levels in plasma may be associated with the risk of PPROM.
Collapse
Affiliation(s)
- Junxi Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Aili Wang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
- Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, PR China
| | - Hang An
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Weiling Han
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Junhua Huang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Wei Zheng
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, 100191, PR China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Guanghui Li
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, PR China.
| |
Collapse
|
5
|
Eick SM, Geiger SD, Alshawabkeh A, Aung M, Barrett ES, Bush N, Carroll KN, Cordero JF, Goin DE, Ferguson KK, Kahn LG, Liang D, Meeker JD, Milne GL, Nguyen RHN, Padula AM, Sathyanarayana S, Taibl KR, Schantz SL, Woodruff TJ, Morello-Frosch R. Urinary oxidative stress biomarkers are associated with preterm birth: an Environmental Influences on Child Health Outcomes program study. Am J Obstet Gynecol 2023; 228:576.e1-576.e22. [PMID: 36400174 PMCID: PMC10149536 DOI: 10.1016/j.ajog.2022.11.1282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Preterm birth is the leading cause of infant morbidity and mortality worldwide. Elevated levels of oxidative stress have been associated with an increased risk of delivering before term. However, most studies testing this hypothesis have been conducted in racially and demographically homogenous study populations, which do not reflect the diversity within the United States. OBJECTIVE We leveraged 4 cohorts participating in the Environmental Influences on Child Health Outcomes Program to conduct the largest study to date examining biomarkers of oxidative stress and preterm birth (N=1916). Furthermore, we hypothesized that elevated oxidative stress would be associated with higher odds of preterm birth, particularly preterm birth of spontaneous origin. STUDY DESIGN This study was a pooled analysis and meta-analysis of 4 birth cohorts spanning multiple geographic regions in the mainland United States and Puerto Rico (208 preterm births and 1708 full-term births). Of note, 8-iso-prostaglandin-F2α, 2,3-dinor-5,6-dihydro-8-iso-prostaglandin-F2α (F2-IsoP-M; the major 8-iso-prostaglandin-F2α metabolite), and prostaglandin-F2α were measured in urine samples obtained during the second and third trimesters of pregnancy. Logistic regression was used to calculate adjusted odds ratios and 95% confidence intervals for the associations between averaged biomarker concentrations for each participant and all preterm births, spontaneous preterm births, nonspontaneous preterm births (births of medically indicated or unknown origin), and categories of preterm birth (early, moderate, and late). Individual oxidative stress biomarkers were examined in separate models. RESULTS Approximately 11% of our analytical sample was born before term. Relative to full-term births, an interquartile range increase in averaged concentrations of F2-IsoP-M was associated with higher odds of all preterm births (odds ratio, 1.29; 95% confidence interval, 1.11-1.51), with a stronger association observed for spontaneous preterm birth (odds ratio, 1.47; 95% confidence interval, 1.16-1.90). An interquartile range increase in averaged concentrations of 8-iso-prostaglandin-F2α was similarly associated with higher odds of all preterm births (odds ratio, 1.19; 95% confidence interval, 0.94-1.50). The results from our meta-analysis were similar to those from the pooled combined cohort analysis. CONCLUSION Here, oxidative stress, as measured by 8-iso-prostaglandin-F2α, F2-IsoP-M, and prostaglandin-F2α in urine, was associated with increased odds of preterm birth, particularly preterm birth of spontaneous origin and delivery before 34 completed weeks of gestation.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.
| | - Sarah D Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| | | | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Rutgers University, Piscataway, NJ
| | - Nicole Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA
| | - Kecia N Carroll
- Departments of Pediatrics and Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA
| | - Dana E Goin
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Amy M Padula
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA; Seattle Children's Research Institute, Seattle, WA
| | - Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, University of California, San Francisco, San Francisco, CA; Department of Environmental Science, Policy, and Management, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
6
|
Wang J, Liang C, Hu Y, Xia X, Li Z, Gao H, Sheng J, Huang K, Wang S, Zhu P, Hao J, Tao F. Effects of selenium levels on placental oxidative stress and inflammation during pregnancy: a prospective cohort study. J Matern Fetal Neonatal Med 2022; 35:9956-9965. [PMID: 35659169 DOI: 10.1080/14767058.2022.2078963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on the impact of Se levels in different pregnancy periods on placental function are limited. AIM This cohort study sought to investigate the levels of the trace element Se and to assess their effects on placental oxidative stress (OS) and mRNA expression of inflammatory genes during pregnancy. METHODS The study population consisted of 2519 pregnant women from the Ma'anshan birth cohort. Se levels were measured in the first and second trimesters of pregnancy and in cord blood using inductively coupled plasma-mass spectrometry (ICP-MS). Placental stress and mRNA expression of inflammatory genes were assessed using RT-PCR. RESULTS A statistically significant negative association was noted between Se levels in the second trimester of pregnancy and mRNA expression of placental HO-1(β = -0.009, p < .01), HIF1α (β = -0.005, p = .010), GRP78 (β = -0.011, p < .001), CRP (β = -.007, p = .033) and CD68 (β = -0.006, p = .019). A negative association was noted between Se levels in cord blood and mRNA expression of placental HO-1 (β = -0.007, p = .004), HIF1α (β = -0.006, p = .005) and GRP78 (β = -0.009, p = .004). We found that prenatal Se status was associated with placental stress and mRNA expression of inflammatory genes. CONCLUSION Se deficiency during pregnancy, especially in the second trimester, leads to the production of OS and an increase in inflammatory mediators, affecting the growth and development of the fetus. Monitoring of pregnant women's nutritional status is necessary to prevent nutritional imbalances and deficiencies in important micronutrients in the fetal.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yabin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.,Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Sufang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Li K, Wang B, Yan L, Jin Y, Li Z, An H, Ren M, Pang Y, Lan C, Chen J, Zhang Y, Zhang L, Ye R, Li Z, Ren A. Associations between blood heavy metal(loid)s and serum heme oxygenase-1 in pregnant women: Do their distribution patterns matter? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117249. [PMID: 33975215 DOI: 10.1016/j.envpol.2021.117249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The relationship between heavy metal(loid)s exposure and oxidative stress damage is a matter of research interest. Our study aimed to investigate the distribution patterns of the nine heavy metal(loid)s in blood of pregnant women, including four toxic heavy metal(loid)s [arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg)] and five typical heavy metal(loid)s [manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)] in blood. Blood samples of 348 women were collected and their concentrations in the serum (sr) and blood cells (bc) were measured, as well as serum heme oxygenase-1 (HO-1) (an oxidative stress marker). Total blood (tb) concentrations of these metal(loid)s and serum-to-blood cell concentration ratios (sr/bc) were further calculated. We found Cu mainly accumulated in the serum compared to the blood cells with Cusr/bc = 2.30, whereas Co, Se, and As evenly distributed between these two fractions. Other metal(loid)s mainly concentrated in the blood cells. Cosr, Cusr, Cubc, Mnbc, Znbc, Cdbc, Cotb, Cutb, Mntb, Zntb, Cdtb, and Cusr/bc were negatively associated with serum HO-1, whereas Assr, Asbc, Astb, Znsr/bc, Cdsr/bc, and Hgsr/bc were positively, indicating of their potential toxicity. We concluded that the distribution patterns of blood heavy metal(loid)s, in particular for Cd, Hg and Zn, which either increased in serum or decreased in blood cells, might be associated with elevated serum oxidative stress, should be considered in environmental health assessments.
Collapse
Affiliation(s)
- Kexin Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yu Jin
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiyi Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, PR China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yali Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| |
Collapse
|
8
|
Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int J Mol Sci 2021; 22:ijms221810122. [PMID: 34576285 PMCID: PMC8468091 DOI: 10.3390/ijms221810122] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) in cells and tissues and the ability of a biological system to detoxify them. During a normal pregnancy, oxidative stress increases the normal systemic inflammatory response and is usually well-controlled by the balanced body mechanism of the detoxification of anti-oxidative products. However, pregnancy is also a condition in which this adaptation and balance can be easily disrupted. Excessive ROS is detrimental and associated with many pregnancy complications, such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), and preterm birth (PTB), by damaging placentation. The placenta is a tissue rich in mitochondria that produces the majority of ROS, so it is important to maintain normal placental function and properly develop its vascular network to ensure a safe and healthy pregnancy. Antioxidants may ameliorate these diseases, and related research is progressing. This review aimed to determine the association between oxidative stress and adverse pregnancy outcomes, especially PE, FGR, GDM, and PTB, and explore how to overcome this oxidative stress in these unfavorable conditions.
Collapse
|
9
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
10
|
Ovayolu A, Bostancieri N, Turksoy VA, Dogan I, Bulgan GG, Turkcuoglu I. Measuring the status of maternal serum thiol/disulfide couples in the diagnosis and/or the determination of the severity of late-onset preeclampsia. J Matern Fetal Neonatal Med 2021; 35:6036-6043. [PMID: 33771094 DOI: 10.1080/14767058.2021.1904393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Preeclampsia (PrE) is a pregnancy-related disorder. PrE affects the health of the mother and/or the fetus binomial with short and/or long-term consequences. The role of oxidant/antioxidant molecules and aberrant maternal inflammation in PrE has been documented. However, the importance of antioxidant molecules such as thiols has been poorly documented. In this research, a possible link between serum thiols levels and the diagnosis/severity of late-onset PrE (L-PrE) was investigated. MATERIALS AND METHODS We examined maternal serum native thiols, disulfide, total thiols levels, and their ratios in pregnant women with (n = 51) and without L-PrE (n = 50). The levels of these three markers were measured using spectrophotometric assays and compared. RESULTS There were significant differences in terms of serum native and total thiols levels between patients with L-PrE and healthy pregnant women (p = .001, p = .008, respectively). Disulfide levels were not different in either group (p = 0.729). There was no difference between total thiols, native thiols, disulfide concentrations, and their ratios in patients with mild (23 patients) and severe (27 patients) preeclampsia in L-PrE (p ≥ .05). A significant discriminative role of native and total thiols for the presence of L-PrE, with cutoff values of 175.86 μmol/L and 296.73 μmol/L, respectively, were revealed in ROC curve analysis. CONCLUSIONS Lower concentrations of total/native thiols were linked with the development of L-PrE. However, there is still a need for more clinically useful biomarkers/molecules and management strategies in PrE.
Collapse
Affiliation(s)
- Ali Ovayolu
- Department of Obstetrics and Gynecology, Cengiz Gokcek Women's and Children's Hospital, Gaziantep, Turkey
| | - Nuray Bostancieri
- Department of Histology and Embryology, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Vugar Ali Turksoy
- Faculty of Medicine, Department of Public Health, Bozok University, Yozgat, Turkey
| | - Ilkay Dogan
- Faculty of Medicine, Department of Biostatistics, Gaziantep University, Gaziantep, Turkey
| | - Gonca Goksu Bulgan
- Department of Obstetrics and Gynecology, Cengiz Gokcek Women's and Children's Hospital, Gaziantep, Turkey
| | - Ilgin Turkcuoglu
- Department of Obstetrics and Gynecology, Sanko University School of Medicine, Gaziantep, Turkey
| |
Collapse
|
11
|
Falsaperla R, Lombardo F, Filosco F, Romano C, Saporito MAN, Puglisi F, Piro E, Ruggieri M, Pavone P. Oxidative Stress in Preterm Infants: Overview of Current Evidence and Future Prospects. Pharmaceuticals (Basel) 2020; 13:E145. [PMID: 32645921 PMCID: PMC7408528 DOI: 10.3390/ph13070145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB), defined as parturition prior to 37 weeks of gestation, is the leading cause of morbidity and mortality in the neonatal population. The incidence and severity of complications of prematurity increase with decreasing gestational age and birthweight. The aim of this review study is to select the most current evidence on the role of oxidative stress in the onset of preterm complication prevention strategies and treatment options with pre-clinical and clinical trials. We also provide a literature review of primary and secondary studies on the role of oxidative stress in preterm infants and its eventual treatment in prematurity diseases. We conducted a systematic literature search of the Medline (Pubmed), Scholar, and ClinicalTrials.gov databases, retroactively, over a 7-year period. From an initial 777 articles identified, 25 articles were identified that met the inclusion and exclusion criteria. Of these, there were 11 literature reviews: one prospective cohort study, one experimental study, three case-control studies, three pre-clinical trials, and six clinical trials. Several biomarkers were identified as particularly promising, such as the products of the peroxidation of polyunsaturated fatty acids, those of the oxidation of phenylalanine, and the hydroxyl radicals that can attack the DNA chain. Among the most promising drugs, there are those for the prevention of neurological damage, such as melatonin, retinoid lactoferrin, and vitamin E. The microbiome also has an important role in oxidative stress. In conclusion, the most recent studies show that a strong relationship between oxidative stress and prematurity exists and that, unfortunately, there is still little therapeutic evidence reported in the literature.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Filadelfo Lombardo
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania street Santa Sofia 78, 95123 Catania, Italy; (F.L.); (F.F.)
| | - Federica Filosco
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania street Santa Sofia 78, 95123 Catania, Italy; (F.L.); (F.F.)
| | - Catia Romano
- Child and Adolescent Neuropsychiatry, Department Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Marco Andrea Nicola Saporito
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Federica Puglisi
- Neonatal Intensive Care, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy; (R.F.); (M.A.N.S.); (F.P.)
| | - Ettore Piro
- University Hospital “P. Giaccone”, Department of Sciences for Health Promotion, Maternal Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, 90121 Palermo, Italy;
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, AUO San Marco-Policlinco, University of Catania, 95123 Catania, Italy;
| | - Piero Pavone
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, AUO San Marco-Policlinco, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
12
|
Aguirre-Joya JA, Chacón-Garza LE, Valdivia-Najár G, Arredondo-Valdés R, Castro-López C, Ventura-Sobrevilla JM, Aguilar-Gonzáles CN, Boone-Villa D. Nanosystems of plant-based pigments and its relationship with oxidative stress. Food Chem Toxicol 2020; 143:111433. [PMID: 32569796 DOI: 10.1016/j.fct.2020.111433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
Plant-based pigments are widely present in nature, they are classified depending on their chemical structure as tetrapyrroles, carotenoids, polyphenolic compounds, and alkaloids and are extensively used in medicine, food industry, clothes, and others. Recently they have been investigated due to their role in the areas of food processing, food safety and quality, packaging, and nutrition. Many studies indicate a relationship between bioactive pigments and Non-Communicable Diseases derived from oxidative stress. Their biological applications can help in preventing oxidative injuries in the cell caused by oxygen and nitrogen reactive species. Those pigments are easily degraded by light, oxygen, temperature, pH conditions, among others. Nanotechnology offers the possibility to protect bioactive ingredients and increase its bioavailability after oral administration. Safety to humans (mainly evaluated from toxicity data) is the first concern for these products. In the present work, we present a comprehensive outlook of the most important plant-based pigments used as food colorants, the principal nanotechnology systems prepared with them, and the relationship of these compounds with the oxidative stress and related Non-Communicable Disease.
Collapse
Affiliation(s)
- Jorge A Aguirre-Joya
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Luis E Chacón-Garza
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Guillermo Valdivia-Najár
- CONACYT - Department of Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco, Mexico
| | - Roberto Arredondo-Valdés
- Nanobioscience Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico; Research Group of Chemist Pharmacist Biologist, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Cecilia Castro-López
- Laboratory of Chemistry and Biotechnology of Dairy Products, Research Centre in Food & Development, A.C (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas Highway, Hermosillo, Sonora, Mexico
| | | | - Cristóbal N Aguilar-Gonzáles
- Food Research Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Daniel Boone-Villa
- School of Medicine North Unit, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico.
| |
Collapse
|
13
|
Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24:4377-4388. [PMID: 32175696 PMCID: PMC7176865 DOI: 10.1111/jcmm.15144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.
Collapse
Affiliation(s)
- Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Affiliation(s)
- Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|