1
|
Luo Y, Jiang LY, Liao ZZ, Wang YY, Wang YD, Xiao XH. Metabolic Regulation of Inflammation: Exploring the Potential Benefits of Itaconate in Autoimmune Disorders. Immunology 2024. [PMID: 39542834 DOI: 10.1111/imm.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Itaconic acid and its metabolites have demonstrated significant therapeutic potential in various immune diseases. Originating from the tricarboxylic acid cycle in immune cells, itaconic acid can modulate immune responses, diminish inflammation, and combat oxidative stress. Recent research has uncovered multiple mechanisms through which itaconic acid exerts its effects, including the inhibition of inflammatory cytokine production, activation of anti-inflammatory pathways, and modulation of immune cell function by regulating cellular metabolism. Cellular actions are influenced by the modulation of metabolic pathways, such as inhibiting succinate dehydrogenase (SDH) activity or glycolysis, activation of nuclear-factor-E2-related factor 2 (Nrf2), boosting cellular defences against oxidative stress, and suppression of immune cell inflammation through the NF-κB pathway. This comprehensive review discusses the initiation, progression, and mechanisms of action of itaconic acid and its metabolites, highlighting their modulatory effects on various immune cell types. Additionally, it examines their involvement in immune disease like rheumatoid arthritis, multiple sclerosis, type 1 diabetes mellitus, and autoimmune hepatitis, offering greater understanding for creating new therapies for these ailments.
Collapse
Affiliation(s)
- Yin Luo
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li-Yan Jiang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
4
|
Zhao Y, Li T, Jiang Z, Gai C, Yu S, Xin D, Li T, Liu D, Wang Z. The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury. Neural Regen Res 2024; 19:1084-1094. [PMID: 37862212 PMCID: PMC10749591 DOI: 10.4103/1673-5374.382860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/05/2022] [Accepted: 07/11/2023] [Indexed: 10/22/2023] Open
Abstract
We previously showed that hydrogen sulfide (H2S) has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice. However, the precise mechanism underlying the role of H2S in this situation remains unclear. In this study, we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine, a H2S precursor, attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionine β synthase (a major H2S synthetase in the brain) in the prefrontal cortex. We also found that an miR-9-5p inhibitor blocked the expression of cystathionine β synthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia. Furthermore, miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury. L-cysteine decreased the expression of CXCL11, an miR-9-5p target gene, in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3, FSTL1, SOCS2 and SOCS5, while treatment with an miR-9-5p inhibitor reversed these changes. These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoring β-synthase expression, thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Zhang S, Wang M, Li H, Li Q, Liu N, Dong S, Zhao Y, Pang K, Huang J, Ren C, Wang Y, Tian Z, Lu F, Zhang W. Exogenous H 2 S promotes ubiquitin-mediated degradation of SREBP1 to alleviate diabetic cardiomyopathy via SYVN1 S-sulfhydration. J Cachexia Sarcopenia Muscle 2023; 14:2719-2732. [PMID: 37899701 PMCID: PMC10751422 DOI: 10.1002/jcsm.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy, a distinctive complication of diabetes mellitus, has been correlated with the presence of intracellular lipid deposits. However, the intricate molecular mechanisms governing the aberrant accumulation of lipid droplets within cardiomyocytes remain to be comprehensively elucidated. METHODS Both obese diabetic (db/db) mice and HL-1 cells treated with 200 μmol/L palmitate and 200 μmol/L oleate were used to simulate type 2 diabetes conditions. Transmission electron microscopy is employed to assess the size and quantity of lipid droplets in the mouse hearts. Transcriptomics analysis was utilized to interrogate mRNA levels. Lipidomics and ubiquitinomics were employed to explore the lipid composition alterations and proteins participating in ubiquitin-mediated degradation in mice. Clinical data were collected from patients with diabetes-associated cardiomyopathy and healthy controls. Western blot analysis was conducted to assess the levels of proteins linked to lipid metabolism, and the biotin-switch assay was employed to quantify protein cysteine S-sulfhydration levels. RESULTS The administration of H2 S donor, NaHS, effectively restored hydrogen sulfide levels in both the cardiac tissue and plasma of db/db mice (+7%, P < 0.001; +5%, P < 0.001). Both db/db mice (+210%, P < 0.001) and diabetic patients (+83%, P = 0.22, n = 5) exhibit elevated plasma triglyceride levels. Treatment with GYY4137 effectively lowers triglyceride levels in db/db mice (-43%, P = 0.007). The expression of cystathionine gamma-lyase and HMG-CoA reductase degradation protein 1 (SYVN1) was decreased in db/db mice compared with the wild-type mice (cystathionine gamma-lyase: -31%, P = 0.0240; SYVN1: -35%, P = 0.01), and NaHS-treated mice (SYVN1: -31%, P = 0.03). Conversely, the expression of sterol regulatory element-binding protein 1 (SREBP1) was elevated (+91%, P = 0.007; +51%, P = 0.03 compared with control and NaHS-treated mice, respectively), along with diacylglycerol O-acyltransferase 1 (DGAT1) (+95%, P = 0.001; +35%, P = 0.02) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) (+88%, P = 0.01; +22%, P = 0.32). Exogenous H2 S led to a reduction in lipid droplet formation (-48%, P < 0.001), restoration of SYVN1 expression, modification of SYVN1's S-sulfhydration status and enhancement of SREBP1 ubiquitination. Overexpression of SYVN1 mutated at Cys115 decreased SREBP1 ubiquitination and increased the number of lipid droplets. CONCLUSIONS Exogenous H2 S enhances ubiquitin-proteasome degradation of SREBP1 and reduces its nuclear translocation by modulating SYVN1's cysteine S-sulfhydration. This pathway limits lipid droplet buildup in cardiac myocytes, ameliorating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Mengyi Wang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Hongxia Li
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Qianzhu Li
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Ning Liu
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Shiyun Dong
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Yajun Zhao
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Kemiao Pang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Jiayi Huang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Cheng Ren
- Department of Urologic SurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Wang
- Department of Urologic SurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Tian
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Fanghao Lu
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Weihua Zhang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| |
Collapse
|
8
|
Song Y, Xu Z, Zhong Q, Zhang R, Sun X, Chen G. Sulfur signaling pathway in cardiovascular disease. Front Pharmacol 2023; 14:1303465. [PMID: 38074127 PMCID: PMC10704606 DOI: 10.3389/fphar.2023.1303465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 04/14/2024] Open
Abstract
Hydrogen sulfide (H2S) and sulfur dioxide (SO2), recognized as endogenous sulfur-containing gas signaling molecules, were the third and fourth molecules to be identified subsequent to nitric oxide and carbon monoxide (CO), and exerted diverse biological effects on the cardiovascular system. However, the exact mechanisms underlying the actions of H2S and SO2 have remained elusive until now. Recently, novel post-translational modifications known as S-sulfhydration and S-sulfenylation, induced by H2S and SO2 respectively, have been proposed. These modifications involve the chemical alteration of specific cysteine residues in target proteins through S-sulfhydration and S-sulfenylation, respectively. H2S induced S-sulfhydrylation can have a significant impact on various cellular processes such as cell survival, apoptosis, cell proliferation, metabolism, mitochondrial function, endoplasmic reticulum stress, vasodilation, anti-inflammatory response and oxidative stress in the cardiovascular system. Alternatively, S-sulfenylation caused by SO2 serves primarily to maintain vascular homeostasis. Additional research is warranted to explore the physiological function of proteins with specific cysteine sites, despite the considerable advancements in comprehending the role of H2S-induced S-sulfhydration and SO2-induced S-sulfenylation in the cardiovascular system. The primary objective of this review is to present a comprehensive examination of the function and potential mechanism of S-sulfhydration and S-sulfenylation in the cardiovascular system. Proteins that undergo S-sulfhydration and S-sulfenylation may serve as promising targets for therapeutic intervention and drug development in the cardiovascular system. This could potentially expedite the future development and utilization of drugs related to H2S and SO2.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
9
|
Zhao H, Zhang Y, Fu X, Chen C, Khattak S, Wang H. The double-edged sword role of hydrogen sulfide in hepatocellular carcinoma. Front Pharmacol 2023; 14:1280308. [PMID: 37886126 PMCID: PMC10598729 DOI: 10.3389/fphar.2023.1280308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
With an increasing worldwide prevalence, hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver in the world. It is also the primary reason for cancer-related death in the world. The pathogenesis of HCC is complex, such as DNA methylation changes, immune regulatory disorders, cell cycle disorders, chromosomal instability, and so on. Although many studies have been conducted on HCC, the molecular mechanisms of HCC are not completely understood. At present, there is no effective treatment for HCC. Hydrogen sulfide (H2S) has long been regarded as a toxic gas with the smell of rotten eggs, but recent studies have shown that it is an important gasotransmitter along with carbon monoxide (CO) and nitric oxide (NO). Increasing evidence indicates that H2S has multiple biological functions, such as anti-inflammation, anti-apoptosis, anti-oxidative stress, and so on. Recently, a lot of evidence has shown that H2S has a "double-edged sword" effect in HCC, but the mechanism is not fully understood. Here, we reviewed the progress on the role and mechanism of H2S in HCC in recent years, hoping to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Chaoren Chen
- School of Nursing and Health, Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
10
|
Loppi SH, Tavera-Garcia MA, Becktel DA, Maiyo BK, Johnson KE, Nguyen TVV, Schnellmann RG, Doyle KP. Increased fatty acid metabolism and decreased glycolysis are hallmarks of metabolic reprogramming within microglia in degenerating white matter during recovery from experimental stroke. J Cereb Blood Flow Metab 2023; 43:1099-1114. [PMID: 36772984 PMCID: PMC10291449 DOI: 10.1177/0271678x231157298] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
The goal of this study was to evaluate changes in metabolic homeostasis during the first 12 weeks of recovery in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we compared the brain metabolomes of ipsilateral and contralateral hemispheres from aged male mice up to 12 weeks after stroke to that of age-matched naïve and sham mice. There were 707 biochemicals detected in each sample by liquid chromatography-mass spectroscopy (LC-MS). Mitochondrial fatty acid β-oxidation, indicated by acyl carnitine levels, was increased in stroked tissue at 1 day and 4 weeks following stroke. Glucose and several glycolytic intermediates were elevated in the ipsilateral hemisphere for 12 weeks compared to the aged naïve controls, but pyruvate was decreased. Additionally, itaconate, a glycolysis inhibitor associated with activation of anti-inflammatory mechanisms in myeloid cells, was higher in the same comparisons. Spatial transcriptomics and RNA in situ hybridization localized these alterations to microglia within the area of axonal degeneration. These results indicate that chronic metabolic differences exist between stroked and control brains, including alterations in fatty acid metabolism and glycolysis within microglia in areas of degenerating white matter for at least 12 weeks after stroke.
Collapse
Affiliation(s)
- Sanna H Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Marco A Tavera-Garcia
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Danielle A Becktel
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Boaz K Maiyo
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kristos E Johnson
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Thuy-Vi V Nguyen
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Kristian P Doyle
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Psychology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Wu YX, Zhang YR, Jiang FJ, He S, Zhang YL, Chen D, Tong Y, Nie YJ, Pang QF. 4-OI ameliorates bleomycin-induced pulmonary fibrosis by activating Nrf2 and suppressing macrophage-mediated epithelial-mesenchymal transition. Inflamm Res 2023:10.1007/s00011-023-01733-z. [PMID: 37169970 DOI: 10.1007/s00011-023-01733-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVES Pulmonary fibrosis (PF) is a chronic and refractory interstitial lung disease with limited therapeutic options. 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, has been shown to have anti-oxidative and anti-inflammatory properties. However, the effect and the underlying mechanism of 4-OI on PF are still unknown. METHODS WT or Nrf2 knockout (Nrf2-/-) mice were intratracheally injected with bleomycin (BLM) to establish PF model and then treated with 4-OI. The mechanism study was performed by using RAW264.7 cells, primary macrophages, and conditional medium-cultured MLE-12 cells. RESULTS 4-OI significantly alleviated BLM-induced PF and EMT process. Mechanism studies have found that 4-OI can not only directly inhibit EMT process, but also can reduce the production of TGF-β1 by restraining macrophage M2 polarization, which in turn inhibits EMT process. Moreover, the effect of 4-OI on PF and EMT depends on Nrf2. CONCLUSION 4-OI ameliorates BLM-induced PF in an Nrf2-dependent manner, and its role in alleviating PF is partly due to the direct inhibition on EMT, and partly through indirect inhibition of M2-mediated EMT. These findings suggested that 4-OI has great clinical potential to develop as a new anti-fibrotic agent for PF therapy.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ya-Ru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan-Li Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Yan T, Li X, Wang X, Zhang Y, He B, Jia Y, Xiao W. Rhodiola wallichiana var.cholaensis protects against myocardial ischemia-reperfusion injury by attenuating oxidative stress-mediated apoptosis via enhancing Nrf2 signaling. Int J Cardiol 2023:S0167-5273(23)00704-0. [PMID: 37178804 DOI: 10.1016/j.ijcard.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The present study aimed to explore the cardioprotective effects of Rhodiola wallichiana var.cholaensis (RW) against hypoxia/reoxygenation (H/R)-induced H9c2 cell injury and ischemia/reperfusion (I/R)-induced myocardial injury. Following treatment with RW, H9c2 cells were subjected to 4 h of hypoxia/3 h of reoxygenation. MTT assay, LDH assay, and flow cytometry were employed to detect cell viability and changes of ROS and mitochondrial membrane potential. Moreover, after RW treatment, rats underwent 30 min of ischemia, followed by 120 min of reperfusion. Masson and TUNEL staining were performed to measure myocardial damage and apoptosis, respectively. The changes in the levels of proteins were detected by ELISA and western blot. The results showed that RW attenuated the H/R-induced increase in LDH release and loss of the mitochondrial membrane potential, as well as the apoptosis in H9c2 cells. Meanwhile, RW significantly reduces the ST-segment elevation and improves cardiomyocytes' injury, inhibit the apoptosis induced by I/R in rats. Furthermore, RW could decrease the levels of MDA and increase the levels of SOD, T-AOC. GSH-Px and GSH both in vivo and in vitro. Besides, RW increased the expressions of Nrf2, HO-1, ARE and NQO1, and decreased the expressions of Keap1, activating the Nrf2 signaling pathway. Taken together, these results suggested that RW exerts cardioprotection on H/R injury in H9c2 cells and I/R injury in rats by attenuating oxidative stress-mediated apoptosis via enhancing Nrf2 signaling.
Collapse
Affiliation(s)
- Tingxu Yan
- Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang 222047, China.; School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xu Li
- Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang 222047, China.; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, Jiangsu, China
| | - Xin Wang
- Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang 222047, China.; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, Jiangsu, China
| | - Yue Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Wei Xiao
- Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang 222047, China.; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, Jiangsu, China.
| |
Collapse
|
13
|
Chen Y, Wang Z, Song Y, Chen N, Guo J, Liu W, Guo K, Ling X, Zhang L. 4-octyl itaconate improves the viability of D66H cells by regulating the KEAP1-NRF2-GCLC/HO-1 pathway. J Cell Mol Med 2023; 27:962-975. [PMID: 36916028 PMCID: PMC10064036 DOI: 10.1111/jcmm.17708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
As a novel nuclear factor E2-related factor 2 (NRF2) activator, the itaconate has shown significant therapeutic potential for oxidative stress diseases. However, its role in Vohwinkel syndrome in relation to the gap junction protein beta 2 (GJB2) mutation is still unclear. This study aimed at investigating the effect of 4-octyl itaconate (OI) on HaCaT and D66H cells and clarify its potential mechanism in vitro. The optimal concentration and treatment time of OI on HaCaT cells and D66H cells were determined by CCK-8 and LDH experiments. The effect of OI on cell proliferation was detected by EdU staining and FACS analysis of PI, while the apoptosis was evaluated by TUNEL staining and FACS analysis of Annexin V. The ROS staining was performed, and the levels of SOD, MDA, GSH and GSH/GSSG were detected to evaluate the effect of OI on oxidative damage induced by D66H-type mutation. CO-IP, Western blot, immunofluorescence and qPCR analyses were employed to detect the activation of KEAP1-NRF2-GCLC/HO-1 pathway by OI. Finally, sh-NRF2 was used to confirm the activation of this pathway by OI. Results showed that OI could improve the cell viability decreased by GJB2 gene mutation by regulating the balance between cell growth and apoptosis induced by oxidative damage. Furthermore, this alleviation process was regulated by the KEAP1-NRF2-HO-1/GCLC pathway. In conclusion, OI could improve the viability of HaCaT and D66H cells via regulating the KEAP1-NRF2-GCLC/HO-1 pathway, which provided a wide spectrum of potential targets for effective therapeutic treatments of Vohwinkel syndrome in the clinic.
Collapse
Affiliation(s)
- Yanrui Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenying Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yali Song
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenmin Liu
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Keying Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Ling
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
15
|
Zhao H, Fu X, Zhang Y, Yang Y, Wang H. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases. Front Pharmacol 2023; 14:1172147. [PMID: 37124222 PMCID: PMC10133551 DOI: 10.3389/fphar.2023.1172147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important organelle for protein translation, folding and translocation, as well as the post-translational modification and assembly of newly synthesized secreted proteins. When the excessive accumulation of misfolded and/or unfolded proteins exceeds the processing capacity of ER, ER stress is triggered. The integrated intracellular signal cascade, namely the unfolded protein response, is induced to avoid ER stress. ER stress is involved in many pathological and physiological processes including myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered as a toxic gas with the smell of rotten eggs. However, more and more evidences indicate that H2S is an important gas signal molecule after nitric oxide and carbon monoxide, and regulates a variety of physiological and pathological processes in mammals. In recent years, increasing studies have focused on the regulatory effects of H2S on ER stress in myocardial diseases, however, the mechanism is not very clear. Therefore, this review focuses on the role of H2S regulation of ER stress in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay the foundation for the future researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Yihan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang,
| |
Collapse
|
16
|
Tabandeh MR, Jozaie S, Ghotbedin Z, Gorani S. Dimethyl itaconic acid improves viability and steroidogenesis and suppresses cytokine production in LPS-treated bovine ovarian granulosa cells by regulating TLR4/nfkβ, NLRP3, JNK signaling pathways. Res Vet Sci 2022; 152:89-98. [PMID: 35933803 DOI: 10.1016/j.rvsc.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
The stimulation of pro-inflammatory pathways by lipopolysaccharide (LPS) endotoxins is a key player in the pathological mechanisms involved in the development of ovarian dysfunctions in dairy cows. Dimethyl itaconate acid (DMIA) is a novel immunometabolite that has recently emerged as a regulator of inflammatory responses in mammals. The present study was undertaken to determine the anti-inflammatory effects of DMIA on bovine granulosa cells (GCs) and to explore its possible molecular mechanisms. The ovarian GCs were obtained from small follicles of dairy cows. The GCs were stimulated with 1 μg/mL LPS for 4 h and then treated with 250 μM DMIA for 12 h. The viability, production of pro-inflammatory cytokines, activation of inflammatory signaling pathways and synthesis of steroid hormones were evaluated in treated GCs. Our results showed that DMIA reduced the inflammatory responses in LPS stimulated GCs by down-regulating the expression of nod-like receptor family pyrin domain containing 3 inflammasome, and toll-like receptor 4 and by suppressing the phosphorylation of nuclear factor kappa B and c-Jun N-terminal kinase proteins. DMIA also attenuated the increased production of pro inflammatory cytokines (interleukin 6, tumor necrosis factor α and interleukin 1 beta (p < 0.01) in LPS stimulated GCs. Exposure of LPS stimulated GCs to DMIA improved the impaired steroidogenesis by up-regulation of steroid synthesis genes including 3-beta-hydroxysteroid dehydrogenase, follicle stimulating hormone receptor and cytochrome P450 aromatase. The results of the present study highlight the potential role of itaconic acid for the improvement of GCs inflammation in dairy cows with ovarian dysfunctions.
Collapse
Affiliation(s)
- Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Sadegh Jozaie
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohre Ghotbedin
- Department of Basic Sciences, Division of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saad Gorani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
17
|
The Role of H 2S Regulating NLRP3 Inflammasome in Diabetes. Int J Mol Sci 2022; 23:ijms23094818. [PMID: 35563208 PMCID: PMC9103162 DOI: 10.3390/ijms23094818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3) is a recently discovered cytoplasmic multiprotein complex involved in inflammation. The NLRP3 inflammasome contains NLRP3, apoptosis-related specific protein (ASC) and precursor caspase-1. The NLRP3 inflammasome is involved in many diseases, including diabetes. H2S is a harmful gas with a rotten egg smell. Recently, it has been identified as the third gas signal molecule after nitric oxide and carbon monoxide. It has many biological functions and plays an important role in many diseases, including diabetes. In recent years, it has been reported that H2S regulation of the NLRP3 inflammasome contributes to a variety of diseases. However, the mechanism has not been fully understood. In this review, we summarized the recent role and mechanism of H2S in regulating the NLRP3 inflammasome in diabetes, in order to provide a theoretical basis for future research.
Collapse
|
18
|
Lu X, Ding Y, Liu H, Sun M, Chen C, Yang Y, Wang H. The Role of Hydrogen Sulfide Regulation of Autophagy in Liver Disorders. Int J Mol Sci 2022; 23:ijms23074035. [PMID: 35409395 PMCID: PMC8999478 DOI: 10.3390/ijms23074035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a complex process of degradation of senescent or dysfunctional organelles in cells. Dysfunctional autophagy is associated with many diseases such as cancers, immune dysfunction, and aging. Hydrogen sulfide (H2S) is considered to be the third gas signal molecule after nitrous oxide and carbon monoxide. In recent years, H2S has been found to have a variety of important biological functions, and plays an important role in a variety of physiological and pathological processes. In this review, we review the recent role and mechanism of H2S in regulating autophagy in liver disorders, in order to provide a basis for further research in the future.
Collapse
Affiliation(s)
- Xueqin Lu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Yueming Ding
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Huiyang Liu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Mengyao Sun
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (X.L.); (Y.D.); (C.C.)
| | - Yihan Yang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (H.L.); (M.S.); (Y.Y.)
- Correspondence:
| |
Collapse
|
19
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
20
|
Nrf2 as a potential target for Parkinson's disease therapy. J Mol Med (Berl) 2021; 99:917-931. [PMID: 33844027 DOI: 10.1007/s00109-021-02071-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Conventionally, PD treatment options have focused on dopamine replacement and provide only symptomatic relief. However, disease-modifying therapies are still unavailable. Mechanistically, genetic and environmental factors can produce oxidative stress which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. Importantly, nuclear factor erythroid 2-related factor 2 (Nrf2) is essential for maintaining redox homeostasis by binding to the antioxidant response element which exists in the promoter regions of most genes coding for antioxidant enzymes. Furthermore, protein kinase C, mitogen-activated protein kinases, and phosphotidylinositol 3-kinase have been implicated in the regulation of Nrf2 activity during PD. Here, we review the evidence supporting the regulation of Nrf2 through Keap1-dependent and Keap1-independent mechanisms. We also address that targeting Nrf2 may provide a therapeutic option to mitigate oxidative stress-associated PD. Finally, we discuss currently known classes of small molecule activators of Nrf2, including Nrf2-activating compounds in PD.
Collapse
|
21
|
Liu G, Wu Y, Jin S, Sun J, Wan BB, Zhang J, Wang Y, Gao ZQ, Chen D, Li S, Pang Q, Wang Z. Itaconate ameliorates methicillin-resistant Staphylococcus aureus-induced acute lung injury through the Nrf2/ARE pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:712. [PMID: 33987410 PMCID: PMC8106008 DOI: 10.21037/atm-21-1448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) are a critical predisposing factor of sepsis in the clinic. As a product of human energy metabolism and immune response, itaconate can effectively reduce inflammation in the body. This research employed 4-octyl itaconate (4-OI) to illustrate that itaconate exerted anti-inflammatory effects to protect the body from acute lung injury (ALI) induced by MRSA. Methods HE staining and immunohistochemistry are used to evaluate the MRSA-induced ALI in mice. WB and qPCR were used to verify the effect of 4-OI on inflammation and oxidative stress caused by MRSA. Molecular docking was used to verify the binding sites of 4-OI and Keap1. Results We demonstrated that 4-OI treatment increased the survival ratio, attenuated the pathological damage, inhibited neutrophil infiltration, and reduced lung bacterial burden in the mouse MRSA pneumonia model. 4-OI decreased the expression of inflammatory factors by stimulating the Nrf2 in vivo and in vitro. Furthermore, 4-OI exerted its effect by promoting nuclear transport of Nrf2 in vitro. The results of molecular docking indicated that 4-OI bound to the pocket of Keap1 and exerted a stable interaction. Both Nrf2 inhibitors (ML385) and Nrf2−/− mice abolished the protective effect of 4-OI on MRSA-induced inflammation both in vitro and in vivo. Conclusions 4-OI prevents lung damage caused by MRSA bacteremia via activating Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sihao Jin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiaojiao Sun
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bin-Bin Wan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yingying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiqiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The Role of the Signaling Pathways Involved in the Effects of Hydrogen Sulfide on Endoplasmic Reticulum Stress. Front Cell Dev Biol 2021; 9:646723. [PMID: 33816495 PMCID: PMC8017186 DOI: 10.3389/fcell.2021.646723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) is a kind of organelle with multiple functions including protein synthesis, modification and folding, calcium storage, and lipid synthesis. Under stress conditions, ER homeostasis is disrupted, which is defined as ER stress (ERS). The accumulation of unfolded proteins in the ER triggers a stable signaling network named unfolded protein response (UPR). Hydrogen sulfide is an important signal molecule regulating various physiological and pathological processes. Recent studies have shown that H2S plays an important role in many diseases by affecting ERS, but its mechanism, especially the signaling pathways, is not fully understood. Therefore, in this review, we summarize the recent studies about the signaling pathways involved in the effects of H2S on ERS in diseases to provide theoretical reference for the related in-depth researches.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ping Lu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
23
|
Zhao S, Li X, Li X, Wei X, Wang H. Hydrogen Sulfide Plays an Important Role in Diabetic Cardiomyopathy. Front Cell Dev Biol 2021; 9:627336. [PMID: 33681206 PMCID: PMC7930320 DOI: 10.3389/fcell.2021.627336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy is an important complication of diabetes mellitus and the main cause of diabetes death. Diabetic cardiomyopathy is related with many factors, such as hyperglycemia, lipid accumulation, oxidative stress, myocarditis, and apoptosis. Hydrogen sulfide (H2S) is a newly discovered signal molecule, which plays an important role in many physiological and pathological processes. Recent studies have shown that H2S is involved in improving diabetic cardiomyopathy, but its mechanism has not been fully elucidated. This review summarizes the research on the roles and mechanisms of H2S in diabetic cardiomyopathy in recent years to provide the basis for in-depth research in the future.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaoyun Wei
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Tocmo R, Le B, Heun A, van Pijkeren JP, Parkin K, Johnson JJ. Prenylated xanthones from mangosteen (Garcinia mangostana) activate the AhR and Nrf2 pathways and protect intestinal barrier integrity in HT-29 cells. Free Radic Biol Med 2021; 163:102-115. [PMID: 33310139 PMCID: PMC8647718 DOI: 10.1016/j.freeradbiomed.2020.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Xanthones from the tropical fruit mangosteen (Garcinia mangostana) display anti-inflammatory and anti-oxidative activities. Here, we isolate and identify potential inducers of the aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways from mangosteen using a bioassay-guided strategy. Mangosteen fruit pericarp extracts were subjected to sequential solvent extractions, followed by chromatography coupled with NMR spectroscopy and mass spectrometric analyses for identification and isolation of pure compounds. Isolation of active fractions led to seven prenylated xanthones that were identified and subsequently evaluated for bioactivity. In vitro luciferase reporter cellular assays using H1L6.1c3 (AhR induction) and HepG2-ARE (Nrf2 induction) were used to identify AhR and Nrf2 activators. All seven prenylated xanthones displayed AhR inducing activity, whereas only five xanthones activated Nrf2. Garcinone D (GarD) significantly upregulated AhR/Cyp1a1 and Nrf2/HO-1 protein expression and enhanced zonula occludens-1 and occludin protein levels in HT-29 cells. In addition, GarD inhibited oxidative stress-induced intestinal epithelial barrier dysfunction by enhancing tight junction (TJ) proteins and inhibition of reactive oxygen species production. Inhibition of AhR by pretreating cells with an AhR antagonist revealed that the AhR pathway is required for the improved epithelial barrier functions of GarD. These results highlight a dual mechanism by GarD that confers protection against intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Bryan Le
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Amber Heun
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Jan Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| | - Jeremy James Johnson
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
25
|
Cheng CF, Ku HC, Shen TC. The potential of using itaconate as treatment for inflammation-related heart diseases. Tzu Chi Med J 2021; 34:113-118. [PMID: 35465278 PMCID: PMC9020236 DOI: 10.4103/tcmj.tcmj_83_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 11/04/2022] Open
Abstract
Intracellular metabolites can cause critical changes in biological functions. Itaconate is perhaps the most fascinating substance in macrophages. Lipopolysaccharide can activate aconitate decarboxylase 1 and induces the generation of itaconate from the tricarboxylic acid cycle by decarboxylation of cis-aconitate. It has been reported that itaconate has beneficial effects on inflammation and oxidation. The mechanisms involved in these effects include the suppression of succinate dehydrogenase, the activation of nuclear factor E2-related factor 2 by alkylation of Kelch-like ECH-associated protein 1, suppression of aerobic glycolysis through regulation of glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase A, and suppression of IκBζ translation through activating transcription factor 3 activation. All of these findings elucidated the possible therapeutic implications of itaconate in inflammation-related diseases. In this review, we highlight that itaconate is a crucial molecule of the immunomodulatory response in macrophages and can regulate between immune response and cardiovascular metabolism. Furthermore, these discoveries suggest that itaconate is a very novel therapeutic molecule for the treatment of inflammation-related heart diseases.
Collapse
|
26
|
Kurita M, Matsutomo T, Kodera Y. 3-Allyltrisulfanyl-alanine Formation during the Preparation of Aged Garlic Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14577-14583. [PMID: 33237752 DOI: 10.1021/acs.jafc.0c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The formation of 3-allyltrisulfanyl-alanine (ATrSA) was investigated during the aging process to prepare aged garlic extract (AGE). In raw garlic, ATrSA and its possible precursor, S-allylmercaptocysteine (SAMC), were barely detectable. However, the ATrSA content in AGE increased steadily during the 22 month of aging, while the SAMC level increased to a maximum at 4 months and then gradually decreased. In a model reaction mimicking the AGE preparation process, ATrSA production was decreased when the formation of SAMC was blocked by a γ-glutamyl-transpeptidase inhibitor but its decrease was reversed by the addition of SAMC. We also found that ATrSA was formed by the incubation of SAMC with allylsulfides such as diallyldisulfide and diallyltrisulfide. These findings suggest that ATrSA is formed via the reaction involving SAMC during the aging process. In addition, we found that ATrSA inhibits the secretion of interleukin-6 induced by lipopolysaccharide in mouse splenic lymphocytes in culture.
Collapse
Affiliation(s)
- Masahiro Kurita
- Central Research Institute, Wakunaga Pharmaceutical Company, Limited, 1624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima 739-1195, Japan
| | - Toshiaki Matsutomo
- Central Research Institute, Wakunaga Pharmaceutical Company, Limited, 1624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima 739-1195, Japan
| | - Yukihiro Kodera
- Central Research Institute, Wakunaga Pharmaceutical Company, Limited, 1624 Shimokotachi, Koda-cho, Akitakata-shi, Hiroshima 739-1195, Japan
| |
Collapse
|
27
|
Itaconate: A Metabolite Regulates Inflammation Response and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5404780. [PMID: 32724492 PMCID: PMC7382747 DOI: 10.1155/2020/5404780] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Metabolic products can lead to crucial biological function alterations. Itaconate is probably the best example of how a metabolic process can be diverted to generate an immunomodulator effect in macrophages. Through inflammatory stimuli, such as lipopolysaccharide, the immune response gene 1 is activated and promotes the production of itaconate from the tricarboxylic acid cycle by decarboxylating cis-aconitate. Itaconate has been reported to have multiple immunoregulatory and antioxidative effects. In addition, reports have described its antibacterial and protumor effects. The involved mechanism in these effects includes the activation of nuclear factor E2-related factor 2 by alkylation of Kelch-like ECH-associated protein 1, inhibition of aerobic glycolysis by targeting glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase A, inhibition of succinate dehydrogenase, and blockade of IκBζ translation. All of these discoveries elucidated the transformation of the pro- into anti-inflammatory status in macrophages, which is crucial in innate immunity and set the ground for the emerging therapeutic implications of itaconate. In this review, we point out that itaconate is a novel and pivotal metabolic determinant of the immunoregulatory response in macrophages and highlight studies that have improved our understanding of the connection between the immune response and metabolism. In addition, we shed light on the therapeutic potential of itaconate and its derivatives to treat inflammatory diseases.
Collapse
|
28
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|