1
|
Santos JFBD, Bombaça ACS, Vitório BDS, Dias-Lopes G, Garcia-Gomes ADS, Menna-Barreto RSF, d'Avila CM, Ennes-Vidal V. Differential expression of peptidases in Strigomonas culicis wild-type and aposymbiotic strains: from proteomic data to proteolytic activity. Mem Inst Oswaldo Cruz 2024; 119:e240110. [PMID: 39661825 DOI: 10.1590/0074-02760240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Strigomonas culicis is a monoxenic trypanosomatid parasite of insects that naturally contains an endosymbiotic bacterium. The aposymbiotic strain can be obtained, making this strain a model for evolutive research about organelle origins. In addition, S. culicis contains homologues of virulence factors of pathogenic trypanosomatids, which functions are waiting for further analysis. In this sense, the publication of S. culicis proteome makes feasible additional investigations regarding the differential expression of peptidases from the wild-type (WT) and the aposymbiotic (APO) strains. OBJECTIVES Here, we analysed two proteomic data from S. culicis WT and APO strains screening for peptidases differentially expressed and assessed the differential expression of cysteine and metallopeptidases. METHODS A comparative proteomic screening between WT and APO identified 43 modulated peptidases. FINDINGS Cysteine and metallopeptidases, such as calpains and GP63, were the major classes, highlighting their significance. GP63 exhibited an increased proteolysis in a specific metallopeptidase substrate, an up-modulation gene expression in RT-PCR, and a higher protein identification by flow cytometry in the aposymbiotic strain. Notwithstanding, the wild-type strain showed enhanced cysteine peptidase activity. MAIN CONCLUSION Our study highlighted the endosymbiont influence in S. culicis peptidase expression, with GP63 expression and activity raised in the aposymbiotic strain, whereas cysteine peptidase levels were reduced.
Collapse
Affiliation(s)
| | - Ana Cristina Souza Bombaça
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Celular, Rio de Janeiro, RJ, Brasil
| | - Bianca da Silva Vitório
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ciências Biomédicas e Saúde, Cabo Frio, RJ, Brasil
| | - Aline Dos Santos Garcia-Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Laboratório de Microbiologia, Rio de Janeiro, RJ, Brasil
| | | | - Claudia Masini d'Avila
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Bombaça ACS, Caminha MA, Barbosa JMC, Pedra-Rezende Y, Ennes-Vidal V, Brunoro GVF, Archanjo BS, d'Avila CM, Valente RH, Menna-Barreto RFS. Heme metabolism in Strigomonas culicis: Implications of H 2O 2 resistance induction and symbiont elimination. J Biol Chem 2024; 300:107692. [PMID: 39159809 PMCID: PMC11648444 DOI: 10.1016/j.jbc.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Monoxenous trypanosomatid Strigomonas culicis harbors an endosymbiotic bacterium, which enables the protozoa to survive without heme supplementation. The impact of H2O2 resistance and symbiont elimination on intracellular heme and Fe2+ availability was analyzed through a comparison of WT strain with both WT H2O2-resistant (WTR) and aposymbiotic (Apo) protozoa. The relative quantification of the heme biosynthetic pathway through label-free parallel reaction monitoring targeted mass spectrometry revealed that H2O2 resistance does not influence the abundance of tryptic peptides. However, the Apo strain showed increased coproporphyrinogen III oxidase and ferrochelatase levels. A putative ferrous iron transporter, homologous to LIT1 and TcIT from Leishmania major and Trypanosoma cruzi, was identified for the first time. Label-free parallel reaction monitoring targeted mass spectrometry also showed that S. culicis Iron Transporter (ScIT) increased 1.6- and 16.4-fold in WTR and Apo strains compared to WT. Accordingly, antibody-mediated blockage of ScIT decreased by 28.0% and 40.0% intracellular Fe2+concentration in both WTR and Apo strains, whereas no effect was detected in WT. In a heme-depleted medium, adding 10 μM hemin decreased ScIT transcript levels in Apo, whereas 10 μM PPIX, the substrate of ferrochelatase, increased intracellular Fe2+ concentration and ferric iron reduction. Overall, the data suggest mechanisms dependent on de novo heme synthesis (and its substrates) in the Apo strain to overcome reduced heme availability. Given the importance of heme and Fe2+ as cofactors in metabolic pathways, including oxidative phosphorylation and antioxidant systems, this study provides novel mechanistic insights associated with H2O2 resistance in S. culicis.
Collapse
Affiliation(s)
- Ana Cristina Souza Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelle Almeida Caminha
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Bráulio Soares Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, Brazil
| | - Claudia Masini d'Avila
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | |
Collapse
|
3
|
Yang L, Zhao Z, Luo D, Liang M, Zhang Q. Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. INSECTS 2022; 13:823. [PMID: 36135524 PMCID: PMC9503472 DOI: 10.3390/insects13090823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Aquatic insects are well-adapted to freshwater environments, but metabolic mechanisms of such adaptations, particularly to primary environmental factors (e.g., hypoxia, water pressure, dark light, and abundant microbes), are poorly known. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of a few species are aquatic. We generated 24 global metabolomic profiles of larvae and adults of Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) to identify freshwater adaptation-related metabolites (AARMs). We identified 110 differentially abundant metabolites (DAMs) in A. leii (adults vs. aquatic larvae) and 183 DAMs in L. praetexta (adults vs. terrestrial larvae). Furthermore, 100 DAMs specific to aquatic A. leii larvae were screened as AARMs via interspecific comparisons (A. leii vs. L. praetexta), which were primarily involved in antioxidant activity, immune response, energy production and metabolism, and chitin biosynthesis. They were assigned to six categories/superclasses (e.g., lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compound). Finally, ten metabolic pathways shared between KEGG terms specific to aquatic fireflies and enriched by AARMs were screened as aquatic adaptation-related pathways (AARPs). These AARPs were primarily involved in energy metabolism, xenobiotic biodegradation, protection of oxidative/immune damage, oxidative stress response, and sense function (e.g., glycine, serine and threonine metabolism, drug metabolism-cytochrome P450, and taste transduction), and certain aspects of morphology (e.g., steroid hormone biosynthesis). These results provide evidence suggesting that abundance changes in metabolomes contribute to freshwater adaptation of fireflies. The metabolites identified here may be vital targets for future work to determine the mechanism of freshwater adaptation in insects.
Collapse
Affiliation(s)
- Linyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zishun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- YEN, Chuxiong People’s Hospital, Chuxiong 675000, China
| | - Mingzhong Liang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Qilin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Bombaça ACS, Gandara ACP, Ennes-Vidal V, Bottino-Rojas V, Dias FA, Farnesi LC, Sorgine MH, Bahia AC, Bruno RV, Menna-Barreto RFS. Aedes aegypti Infection With Trypanosomatid Strigomonas culicis Alters Midgut Redox Metabolism and Reduces Mosquito Reproductive Fitness. Front Cell Infect Microbiol 2021; 11:732925. [PMID: 34485182 PMCID: PMC8414984 DOI: 10.3389/fcimb.2021.732925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aedes aegypti mosquitoes transmit arboviruses of important global health impact, and their intestinal microbiota can influence vector competence by stimulating the innate immune system. Midgut epithelial cells also produce toxic reactive oxygen species (ROS) by dual oxidases (DUOXs) that are essential players in insect immunity. Strigomonas culicis is a monoxenous trypanosomatid that naturally inhabits mosquitoes; it hosts an endosymbiotic bacterium that completes essential biosynthetic pathways of the parasite and influences its oxidative metabolism. Our group previously showed that S. culicis hydrogen peroxide (H2O2)-resistant (WTR) strain is more infectious to A. aegypti mosquitoes than the wild-type (WT) strain. Here, we investigated the influence of both strains on the midgut oxidative environment and the effect of infection on mosquito fitness and immunity. WT stimulated the production of superoxide by mitochondrial metabolism of midgut epithelial cells after 4 days post-infection, while WTR exacerbated H2O2 production mediated by increased DUOX activity and impairment of antioxidant system. The infection with both strains also disrupted the fecundity and fertility of the females, with a greater impact on reproductive fitness of WTR-infected mosquitoes. The presence of these parasites induced specific transcriptional modulation of immune-related genes, such as attacin and defensin A during WTR infection (11.8- and 6.4-fold, respectively) and defensin C in WT infection (7.1-fold). Thus, we propose that A. aegypti oxidative response starts in early infection time and does not affect the survival of the H2O2-resistant strain, which has a more efficient antioxidant system. Our data provide new biological aspects of A. aegypti–S. culicis relationship that can be used later in alternative vector control strategies.
Collapse
Affiliation(s)
- Ana Cristina S Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Caroline P Gandara
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A Dias
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana C Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos H Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela V Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its " Candidatus Pandoraea novymonadis" Endosymbiont. mBio 2021; 12:e0160621. [PMID: 34399629 PMCID: PMC8406214 DOI: 10.1128/mbio.01606-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont “Candidatus Pandoraea novymonadis.” Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the “Ca. Pandoraea novymonadis” genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches.
Collapse
|
6
|
Fan J, Wu H, Li K, Liu X, Tan Q, Cao W, Liang B, Ye B. Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:287-299. [PMID: 32615742 PMCID: PMC7338903 DOI: 10.3347/kjp.2020.58.3.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Hongye Wu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xunuo Liu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qingqing Tan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Wenqiao Cao
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Bo Liang
- Chongqing No.18 Middle School, Chongqing 400016, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
- Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|