1
|
Diamantis D, Tsiailanis AD, Papaemmanouil C, Nika MC, Kanaki Z, Golic Grdadolnik S, Babic A, Tzakos EP, Fournier I, Salzet M, Kushwaha PP, Thomaidis NS, Rampias T, Shankar E, Karakurt S, Gupta S, Tzakos AG. Development of a novel apigenin prodrug programmed for alkaline-phosphatase instructed self-inhibition to combat cancer. J Biomol Struct Dyn 2024; 42:8638-8659. [PMID: 37639498 DOI: 10.1080/07391102.2023.2247083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Elevated levels of alkaline phosphatase (ALP) in the tumor microenvironment (TME) are a hallmark of cancer progression and thus inhibition of ALP could serve as an effective approach against cancer. Herein, we developed a novel prodrug approach to tackle cancer that bears self-inhibiting alkaline phosphatase-responsiveness properties that can enhance at the same time the solubility of the parent compound. To probe this novel concept, we selected apigenin as the cytotoxic agent since we first unveiled, that it directly interacts and inhibits ALP activity. Consequently, we rationally designed and synthesized, using a self-immolative linker, an ALP responsive apigenin-based phosphate prodrug, phospho-apigenin. Phospho-apigenin markedly increased the stability of the parent compound apigenin. Furthermore, the prodrug exhibited enhanced antiproliferative effect in malignant cells with elevated ALP levels, compared to apigenin. This recorded potency of the developed prodrug was further confirmed in vivo where phospho-apigenin significantly suppressed by 52.8% the growth of PC-3 xenograft tumors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dimitrios Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Antonios D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Simona Golic Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andrej Babic
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Lille, France
- Institut Universitaire de France, Paris
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Lille, France
- Institut Universitaire de France, Paris
| | - Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| |
Collapse
|
2
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
4
|
Prakash V, Gabrani R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:336-347. [PMID: 37957904 DOI: 10.2174/0118715257262003231031171910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Vijeta Prakash
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
5
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
6
|
Tsiailanis AD, Tellis CC, Papakyriakopoulou P, Kostagianni AD, Gkalpinos V, Chatzigiannis CM, Kostomitsopoulos N, Valsami G, Tselepis AD, Tzakos AG. Development of a Novel Apigenin Dosage form as a Substitute for the Modern Triple Antithrombotic Regimen. Molecules 2023; 28:molecules28052311. [PMID: 36903557 PMCID: PMC10005222 DOI: 10.3390/molecules28052311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The simultaneous administration of three antiplatelet agents has been proposed as an efficient strategy for the secondary prevention of atherothrombotic events and is included in the European guidelines. However, this strategy presented an increased risk of bleeding; therefore, the identification of new antiplatelet agents, with improved efficacy and diminished side effects, is of great importance. In silico studies, UPLC/MS Q-TOF plasma stability, in vitro platelet aggregation experiments, and pharmacokinetic studies were exploited. In the present study, it has been predicted that the flavonoid apigenin could target different platelet activation pathways, including P2Y12, protease-activated receptor-1 (PAR-1), and cyclooxygenase 1 (COX-1). To enhance apigenin's potency, hybridization with docosahexaenoic acid (DHA) was performed, as fatty acids have illustrated potent efficacy against cardiovascular diseases (CVDs). The new molecular hybrid, termed 4'-DHA-apigenin, demonstrated enhanced inhibitory activity against platelet aggregation induced by thrombin receptor activator peptide-6 (TRAP-6), adenosine diphosphate (ADP), and arachidonic acid (AA), with respect to the parent apigenin. The 4'-DHA-apigenin hybrid illustrated an almost 2-fold enhanced inhibitory activity, with respect to apigenin, and an almost 3-fold enhanced inhibitory activity, with respect to DHA, for the ADP-induced platelet aggregation. Additionally, the hybrid presented a more than 12-fold enhanced inhibitory activity with respect to DHA for the TRAP-6 induced platelet aggregation. Furthermore, a 2-fold enhanced inhibitory activity was recorded for the 4'-DHA-apigenin hybrid for the AA-induced platelet aggregation with respect to apigenin. To surmount the reduced LC-MS based plasma stability, a novel dosage form in olive oil has been developed. The 4'-DHA-apigenin olive oil-based formulation presented an enhanced antiplatelet inhibitory effect in three activation pathways. To further explore the pharmacokinetic profile of 4'-DHA-apigenin in olive oil formulations, a UPLC/MS Q-TOF protocol has been established to quantify the serum levels of apigenin after oral administration to C57BL/6J wild type mice. The olive oil-based formulation of 4'-DHA-apigenin demonstrated an increase in apigenin bioavailability of 262 %. This study may offer a new therapeutic strategy tailored to improve the treatment of CVDs.
Collapse
Affiliation(s)
- Antonios D. Tsiailanis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Constantinos C. Tellis
- Atherothrombosis Research Centre, Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Androniki D. Kostagianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios Gkalpinos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Christos M. Chatzigiannis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Kostomitsopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Alexandros D. Tselepis
- Atherothrombosis Research Centre, Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G. Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Correspondence:
| |
Collapse
|
7
|
Tsiailanis AD, Vrettos EI, Choleva M, Kiriakidi S, Ganai AM, Patha TK, Karpoormath R, Mavromoustakos T, Fragopoulou E, Tzakos AG. Development of a DHA-Losartan hybrid as a potent inhibitor of multiple pathway-induced platelet aggregation. J Biomol Struct Dyn 2022; 40:13889-13900. [PMID: 34791990 DOI: 10.1080/07391102.2021.1996461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the scientific progression in the prevention and treatment of cardiovascular diseases (CVDs) they remain the leading cause of mortality and disability worldwide. The classic treatment involves the simultaneous dosing of two antiplatelet drugs, aspirin and clopidogrel/prasugrel. However, besides drug resistance, severe side effects have been also manifested including acute bleeding and toxicity. Thus, new therapeutic agents with enhanced efficacy and diminished side effects are of importance. Towards this end, omega-3 (ω-3) fatty acids have demonstrated potent efficacy against CVDs through inhibiting platelet aggregation that bears a pivotal role in atherothrombosis. Another factor that displays a critical role in the pathogenesis of cardiovascular diseases is the renin-angiotensin system (RAS), and especially the AT1R blocker losartan that has been reported to exert antiplatelet activity mediated by this receptor. Along these lines, we envisaged developing a molecular hybrid consisted of docosahexaenoic acid (ω-3 fatty acid) and losartan, that could exert a notable antiplatelet effect against CVDs. The design and synthesis of the new DHA-losartan hybrid, designated DHA-L, bestowed with the additive properties of the parent compounds, is reported. In silico studies were first exploited to validate the potential of DHA-L to retain losartan's ability to bind AT1R. The antiplatelet activity of DHA-L was evaluated against in vitro platelet aggregation induced by several platelet agonists. Notably, the hybrid illustrated a pleiotropic antiplatelet profile inhibiting platelet aggregation through multiple platelet activation pathways including P2Y12, PAR-1 (Protease-Activated Receptor-1), PAF (Platelet Activating Factor), COX-1 (cyclooxygenase-1) and collagen receptors. The stability of DHA-L in human plasma and in a wide range of pH values was also evaluated over time using an HPLC protocol. The hybridization approach described herein could pave the way for the development of novel potent multitargeted therapeutics with enhanced antiplatelet profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Antonis D Tsiailanis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Eirinaios I Vrettos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Maria Choleva
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Sofia Kiriakidi
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Tabasum Khan Patha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Andreas G Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| |
Collapse
|
8
|
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin. Int J Mol Sci 2022; 23:ijms232214413. [PMID: 36430891 PMCID: PMC9696847 DOI: 10.3390/ijms232214413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
Collapse
|
9
|
Rubert J, Gatto P, Pancher M, Sidarovich V, Curti C, Mena P, Del Rio D, Quattrone A, Mattivi F. A Screening of Native (Poly)phenols and Gut-Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavan-3-ol Metabolite. Mol Nutr Food Res 2022; 66:e2101043. [PMID: 35394679 PMCID: PMC9787721 DOI: 10.1002/mnfr.202101043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/19/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Epidemiological evidence suggests that a reduced risk of colorectal cancer (CRC) is correlated with high consumption of fruits and vegetables, which are major sources of fiber and phytochemicals, such as flavan-3-ols. However, it remains unknown how these phytochemicals and their specific gut-related metabolites may alter cancer cell behavior. METHODS AND RESULTS A focused screening using native (poly)phenols and gut microbial metabolites (GMMs) on 3D HCT116 spheroids is carried out using a high-throughput imaging approach. Dose-responses, IC50 , and long-term exposure are calculated for the most promising native (poly)phenols and GMMs. As a result, this research shows that (poly)phenol catabolites may play a key role in preventing cancer propagation. Indeed, µM concentration levels of (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone significantly decrease spheroid size at early stages of spheroid aggregation and gene expression of matrix metalloproteinases. CONCLUSION A chronic exposure to (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone may lead to a reduced CRC risk. Daily intake of monomeric, oligomeric, and polymeric flavan-3-ols may increase the colonic concentrations of this metabolite, and, in turn, this compound may act locally interacting with intestinal epithelial cells, precancerous and cancer cells.
Collapse
Affiliation(s)
- Josep Rubert
- Food Quality and DesignWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
- Division of Human Nutrition and HealthWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Pamela Gatto
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Michael Pancher
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Viktoryia Sidarovich
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Claudio Curti
- Department of Food and DrugUniversity of ParmaParco Area delle Scienze, 27/AParma43124Italy
| | - Pedro Mena
- Human Nutrition UnitDepartment of Food and DrugUniversity of ParmaMedical School Building C, Via Volturno, 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParma43124Italy
| | - Daniele Del Rio
- Human Nutrition UnitDepartment of Food and DrugUniversity of ParmaMedical School Building C, Via Volturno, 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParma43124Italy
- School of Advanced Studies on Food and NutritionUniversity of ParmaParma43126Italy
| | - Alessandro Quattrone
- Laboratory of Translational GenomicsDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Fulvio Mattivi
- Dept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
- Metabolomics UnitDepartment of Food Quality and NutritionFondazione Edmund Mach ‐ FEMResearch and Innovation CentreVia Mach 1San Michele all'Adige38098Italy
| |
Collapse
|
10
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life (Basel) 2022; 12:life12040591. [PMID: 35455082 PMCID: PMC9027262 DOI: 10.3390/life12040591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Quercetin is one of the most common, naturally occurring flavonoids, structurally classified to the flavonol subfamily. This compound, found in many edible and medicinal plants either as a free or glycosidated form, has been scientifically exploited for many years, and one could hardly expect it could be a hero of some additional story. Commonly recognized as an anti-inflammatory agent, quercetin not only limits capillary vessel permeability by inhibiting hyaluronidase but also blocks cyclooxygenases and lipoxygenases. As a typical flavonoid, it is also known for its antioxidant effect, which was confirmed by many in vitro and in vivo studies. Throughout the years, numerous other activities were reported for quercetin, including antidiabetic, anti-proliferative, or anti-viral. Of note, recent data have revealed its potential role as a therapeutic agent for several central nervous system disorders. This review provides an overview of available experimental data on quercetin and its complexes with respect to central nervous system diseases, with a main focus on some aspects that were not discussed previously, such as anti-anxiolytic effects, anti-Huntington’s disease activity, or therapeutic potential in brain cancer. Moreover, quercetin’s protective role in some of these diseases is discussed, especially as an anti-neuroinflammatory agent. Bearing in mind the poor bioavailability of this compound, possible options that would enhance its delivery to the site of action are also presented.
Collapse
|
12
|
Munoz-Casabella A, Wahner-Roedler DL, Croghan IT, Petterson TM, Fuehrer DL, Bauer BA. Use of Complementary and Integrative Medicine Among Patients With Glioblastoma Multiforme Seen at a Tertiary Care Center. Glob Adv Health Med 2022; 11:2164957X221078543. [PMID: 35360507 PMCID: PMC8961379 DOI: 10.1177/2164957x221078543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is among the most aggressive and lethal tumors, with a median survival of 12-15 months. Many patients use complementary and integrative medicine (CIM) therapies to supplement their cancer treatment. Objective To determine the prevalence of CIM use and identify the most frequently used types of CIM in a cohort of patients with GBM seen at a tertiary care medical center in the United States. Methods An anonymous survey was mailed through the US Postal Service from August 1, 2019, through February 21, 2020, to patients with GBM. Results A total of 346 surveys were mailed, and 146 responses (42%) were received. The median age of respondents was 61 years (range, 52-68 years), and 85 (58%) were male. Most patients had undergone surgery (90%), chemotherapy (96%), and radiotherapy (95%). The median time from diagnosis of GBM to survey participation was 18 months (range, 12-31 months). Most respondents (81%) used some form of CIM, most frequently meditation (22%), relaxation and other stress management techniques (19%), chiropractic therapy (16%), and acupuncture (12%). Compared with men, women more commonly meditated (32% vs 16%; P = .046) and practiced yoga (20% vs 6%; P = .04). We observed age-based differences, with younger patients more commonly meditating, practicing relaxation and stress management techniques, and receiving chiropractic therapy (P < .05 for all). Conclusions Providers should encourage patients with GBM to discuss their interest in CIM therapies and guide them to evidence-based treatments that may help improve their quality of life.
Collapse
Affiliation(s)
- Amanda Munoz-Casabella
- Department of Neurology, Mayo
Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and
Science, Rochester, MN, USA
| | | | - Ivana T. Croghan
- Division of General Internal
Medicine, Mayo Clinic, Rochester, MN, USA,Department of Quantitative Health
Sciences, Mayo Clinic, Rochester, MN, USA,Division of Community Internal
Medicine, Mayo Clinic, Rochester, MN, USA,Ivana T. Croghan, PhD, Division of General
Internal Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Tanya M. Petterson
- Department of Quantitative Health
Sciences, Mayo Clinic, Rochester, MN, USA
| | - Debbie L. Fuehrer
- Division of General Internal
Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brent A. Bauer
- Division of General Internal
Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
14
|
Sheng J, Zu Z, Zhang Y, Zhu H, Qi J, Zheng T, Tian Y, Zhang L. Targeted therapy of atherosclerosis by zeolitic imidazolate framework-8 nanoparticles loaded with losartan potassium via simultaneous lipid-scavenging and anti-inflammation. J Mater Chem B 2022; 10:5925-5937. [PMID: 35639392 DOI: 10.1039/d2tb00686c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis (AS) is a condition associated with dysfunctional lipid metabolism and an inflammatory immune microenvironment that remains the leading cause of severe cardiovascular events. Drugs exhibiting both anti-inflammatory and lipid-scavenging...
Collapse
Affiliation(s)
- Jie Sheng
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ziyue Zu
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haitao Zhu
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Jianchen Qi
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Tao Zheng
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ying Tian
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Longjiang Zhang
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| |
Collapse
|
15
|
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur J Med Chem 2021; 229:114068. [PMID: 34971873 DOI: 10.1016/j.ejmech.2021.114068] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
More studies are needed to develop new drugs for problems associated with drug resistance and unfavorable side effects. The natural flavonoid of quercetin revealed a wide range of biological activities by the modulation of various targets and signaling pathways. However, quercetin's low solubility and poor bioavailability have restricted its applicability; as a result, researchers have attempted to design and synthesize numerous novel quercetin derivatives using various methodologies in order to modify quercetin's constraints; the physico-chemical properties of quercetin's molecular scaffold make it appealing for drug development; low molecular mass and chemical groups are two of these characteristics. Therefore, the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated. These quercetin-based molecules could be valuable in the creation and discovery of medications for a number of diseases.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Effect of PLC-β1/CaM signaling pathway mediated by AT1R on the occurrence and development of hepatocellular carcinoma. Cancer Cell Int 2021; 21:587. [PMID: 34727945 PMCID: PMC8561349 DOI: 10.1186/s12935-021-02261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022] Open
Abstract
Objective To study the roles of AT1R, PLC-β1, CaM and other related signal molecules in the formation and development of hepatocellular carcinoma (HCC) and their correlation. Methods ELISA and immunohistochemistry were used to analyze the expressions of target proteins in serum and liver tissue of HCC patients, and the correlation between AT1R, PLC-β1 and CaM and postoperative survival status of patients was followed up and determined. CCK-8 method was used to screen the doses of Ang II and candesartan sensitive to HepG2 and HCCLM3 cells. Transwell experiment was used to observe the effects of different drugs on the migration and invasion activity of HCC cells. Meanwhile, flow cytometry and Western blot were used to detect the expression levels of AT1R, PLC-β1 and CaM in the cells. Then PLC-β1 siRNA was selected to transfect HCC cells, so as to further clarify the mechanism of the above signal proteins. HepG2 cells were inoculated under the hepatic capsule of mice to induce the formation of HCC in situ. Ang II and candesartan were used to stimulate HCC mice to observe the difference in liver appearance and measure the liver index. Finally, ELISA and immunofluorescence experiments were selected to analyze the levels of target proteins in mouse serum and liver tissue. Results The expression levels of target proteins in serum and liver tissue of HCC patients were significantly increased, and the postoperative survival time of patients with high expression of AT1R, PLC-β1 or CaM was obviously shortened. Ang II and candesartan could significantly promote and inhibit the motility of HCC cells, and had different effects on the levels of AT1R, PLC-β1 and CaM in cells. However, in hepatocellular carcinoma cells transfected with PLC-β1 siRNA, the intervention ability of drugs was obviously weakened. Ang II could significantly promote the formation and progression of mouse HCC, while candesartan had the opposite effect. Meanwhile, medications could affect the expressions of target proteins in mouse serum and liver tissue. Conclusion AT1R, PLC-β1 and CaM may be risk factors affecting the formation and prognosis of HCC, and the PLC-β1/CaM signaling pathway mediated by AT1R is an important way to regulate the migration and invasion activity of HCC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02261-8.
Collapse
|
17
|
Yousuf M, Khan P, Shamsi A, Shahbaaz M, Hasan GM, Haque QMR, Christoffels A, Islam A, Hassan MI. Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy. ACS OMEGA 2020; 5:27480-27491. [PMID: 33134711 PMCID: PMC7594119 DOI: 10.1021/acsomega.0c03975] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is a potential drug target that plays an important role in the progression of different types of cancers. We performed in silico and in vitro screening of different natural compounds and found that quercetin has a high binding affinity for the CDK6 and inhibits its activity with an IC50 = 5.89 μM. Molecular docking and a 200 ns whole atom simulation of the CDK6-quercetin complex provide insights into the binding mechanism and stability of the complex. Binding parameters ascertained by fluorescence and isothermal titration calorimetry studies revealed a binding constant in the range of 107 M-1 of quercetin to the CDK6. Thermodynamic parameters associated with the formation of the CDK6-quercetin complex suggested an electrostatic interaction-driven process. The cell-based protein expression studies in the breast (MCF-7) and lung (A549) cancer cells revealed that the treatment of quercetin decreases the expression of CDK6. Quercetin also decreases the viability and colony formation potential of selected cancer cells. Moreover, quercetin induces apoptosis, by decreasing the production of reactive oxygen species and CDK6 expression. Both in silico and in vitro studies highlight the significance of quercetin for the development of anticancer leads in terms of CDK6 inhibitors.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Shahbaaz
- South
African Medical Research Council Bioinformatics Unit, South African
National Bioinformatics Institute, University
of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
- Laboratory
of Computational Modeling of Drugs, South
Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Alan Christoffels
- South
African Medical Research Council Bioinformatics Unit, South African
National Bioinformatics Institute, University
of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|