1
|
Chen T, Bai D, Gong C, Cao Y, Yan X, Peng R. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol 2024; 230:116556. [PMID: 39332692 DOI: 10.1016/j.bcp.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Diabetes induces a pro-aging state characterized by an increased abundance of senescent cells in various tissues, heightened chronic inflammation, reduced substance and energy metabolism, and a significant increase in intracellular reactive oxygen species (ROS) levels. This condition leads to mitochondrial dysfunction, including elevated oxidative stress, the accumulation of mitochondrial DNA (mtDNA) damage, mitophagy defects, dysregulation of mitochondrial dynamics, and abnormal energy metabolism. These dysfunctions result in intracellular calcium ion (Ca2+) homeostasis disorders, telomere shortening, immune cell damage, and exacerbated inflammation, accelerating the aging of diabetic cells or tissues. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, plays a crucial role in maintaining mitochondrial function and mitigating the aging process in diabetic cells. This article systematically explores the specific mechanisms by which H2S regulates diabetes-induced mitochondrial dysfunction to delay cellular senescence, offering a promising new strategy for improving diabetes and its complications.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dacheng Bai
- Guangdong Institute of Mitochondrial Biomedicine, Room 501, Coolpad Building, No.2 Mengxi Road, High-tech Industrial Park, Nanshan District, Shenzhen, Guangdong Province 518000, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Cortés-Rojo C, Vargas-Vargas MA. Don´t give up on mitochondria as a target for the treatment of diabetes and its complications. World J Diabetes 2024; 15:2015-2021. [PMID: 39493563 PMCID: PMC11525734 DOI: 10.4239/wjd.v15.i10.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 09/26/2024] Open
Abstract
In this editorial, we discuss an article by Wang et al, focusing on the role of mitochondria in peripheral insulin resistance and insulin secretion. Despite numerous in vitro and pre-clinical studies supporting the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of diabetes and its complications, efforts to target mitochondria for glycemic control in diabetes using mitochondria-targeted antioxidants have produced inconsistent results. The intricate functionality of mitochondria is summarized to underscore the challenges it poses as a therapeutic target. While mitochondria-targeted antioxidants have demonstrated improvement in mitochondrial function and oxidative stress in pre-clinical diabetes models, the results regarding glycemic control have been mixed, and no studies have evaluated their hypoglycemic effects in diabetic patients. Nonetheless, pre-clinical trials have shown promising outcomes in ameliorating diabetes-related complications. Here, we review some reasons why mitochondria-targeted antioxidants may not function effectively in the context of mitochondrial dysfunction. We also highlight several alternative approaches under development that may enhance the targeting of mitochondria for diabetes treatment.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico - Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico - Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
3
|
Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD, Nicolau CCT, Yanaguizawa Junior JL, Fiorini AMR, Méndez-Sánchez N, Abenavoli L, Direito R, Valente VE, Laurindo LF, Barbalho SM. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals (Basel) 2024; 17:1354. [PMID: 39458995 PMCID: PMC11510109 DOI: 10.3390/ph17101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical-pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore, the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c, adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Raissa Bulaty Tauil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Paula Takano Golono
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Vitor Engrácia Valente
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil;
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
4
|
Wang Y, Li S, Li W, Wu J, Hu X, Tang T, Liu X. Cardiac-targeted and ROS-responsive liposomes containing puerarin for attenuating myocardial ischemia-reperfusion injury. Nanomedicine (Lond) 2024; 19:2335-2355. [PMID: 39316570 PMCID: PMC11492708 DOI: 10.1080/17435889.2024.2402678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study aimed to construct an ischemic cardiomyocyte-targeted and ROS-responsive drug release system to reduce myocardial ischemia-reperfusion injury (MI/RI).Methods: We constructed thioketal (TK) and cardiac homing peptide (CHP) dual-modified liposomes loaded with puerarin (PUE@TK/CHP-L), which were expected to deliver drugs precisely into ischemic cardiomyocytes and release drugs in response to the presence of high intracellular ROS levels. The advantages of PUE@TK/CHP-L were assessed by cellular pharmacodynamics, in vivo fluorescence imaging and animal pharmacodynamics.Results: PUE@TK/CHP-L significantly inhibited apoptosis and ferroptosis in H/R-injured cardiomyocytes and also actively targeted ischemic myocardium. Based on these advantages, PUE@TK/CHP-L could significantly enhance the drug's ability to attenuate MI/RI.Conclusion: PUE@TK/CHP-L had potential clinical value in the precise treatment of MI/RI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institution of Clinical Pharmacy, Central South University, Changsha, 410011, China
| |
Collapse
|
5
|
Wang Y, Li F, Wei S, Li W, Wu J, Li S, Hu X, Tang T, Liu X. Puerarin-Loaded Liposomes Co-Modified by Ischemic Myocardium-Targeting Peptide and Triphenylphosphonium Cations Ameliorate Myocardial Ischemia-Reperfusion Injury. Int J Nanomedicine 2024; 19:7997-8014. [PMID: 39130683 PMCID: PMC11317047 DOI: 10.2147/ijn.s468394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury. Methods We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury. Results In vitro test results showed that PUE@T/I-L had sustained release and excellent hemocompatibility. Fluorescence test results showed that TPP cations and IMTP double-modified liposomes (T/I-L) enhanced the intracellular uptake, escaped lysosomal capture and promoted drug targeting into the mitochondria. Notably, PUE@T/I-L inhibited the opening of the mitochondrial permeability transition pore, reduced intracellular reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD) levels, thereby decreasing the percentage of Hoechst-positive cells and improving the survival of hypoxia-reoxygenated (H/R)-injured H9c2 cells. In a mouse myocardial I/R injury model, PUE@T/I-L showed a significant myocardial protective effect against myocardial I/R injury by protecting mitochondrial integrity, reducing myocardial apoptosis and decreasing infarct size. Conclusion This drug delivery system exhibited excellent mitochondrial targeting and reduction of myocardial apoptosis, which endowed it with good potential extension value in the precise treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institution of Clinical Pharmacy, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
8
|
A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus (TGEV)-induced mitochondrial dysfunction. J Biol Chem 2022; 298:102280. [PMID: 35863430 PMCID: PMC9400091 DOI: 10.1016/j.jbc.2022.102280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)–Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1–CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.
Collapse
|
9
|
Sartori MR, Navarro CDC, Castilho RF, Vercesi AE. Aggravation of hepatic lipidosis in red-footed tortoise Chelonoidis carbonaria with age is associated with alterations in liver mitochondria. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110731. [PMID: 35276383 DOI: 10.1016/j.cbpb.2022.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
The occurrence of hepatic lipidosis is commonly reported in different reptilian species, especially in animals under captivity. Liver accumulation of fat is associated with disorders, better described in mammals as non-alcoholic fatty liver diseases (NAFLD), ranging from simple steatosis, to non-alcoholic steatohepatitis (NASH), and to more severe lesions of cirrhosis and hepatocellular carcinoma. Mitochondria play a central role in NAFLD pathogenesis, therefore in this study we characterized livers of ad libitum fed captive red-footed tortoise Chelonoidis carbonaria through histological and mitochondrial function evaluations of juvenile and adult individuals. Livers from adult tortoises exhibited higher levels of lipids, melanomacrophages centers and melanin than juveniles. The observed high score levels of histopathological alterations in adult tortoises, such as microvesicular steatosis, inflammation and fibrosis, indicated the progression to a NASH condition. Mitochondrial oxygen consumption at different respiratory states and with different substrates was 30 to 58% lower in adult when compared to juvenile tortoises. Despite citrate synthase activity was also lower in adults, cardiolipin content was similar to juveniles, indicating that mitochondrial mass was unaffected by age. Mitochondrial Ca2+ retention capacity was reduced by 70% in adult tortoises. Overall, we found that aggravation of NAFLD in ad libitum fed captive tortoises is associated with compromised mitochondrial function, indicating a critical role of the organelle in liver disease progression in reptiles.
Collapse
Affiliation(s)
- Marina R Sartori
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-887, Brazil.
| | - Claudia D C Navarro
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-887, Brazil
| | - Roger F Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-887, Brazil
| | - Anibal E Vercesi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-887, Brazil
| |
Collapse
|
10
|
Wu J, Zhou F, Fan G, Liu J, Wang Y, Xue X, Lyu X, Lin S, Li X. Ferulic acid ameliorates acetaminophen-induced acute liver injury by promoting AMPK-mediated protective autophagy. IUBMB Life 2022; 74:880-895. [PMID: 35514074 DOI: 10.1002/iub.2625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Acetaminophen (APAP), one of the most widely used antipyretics and analgesics, principally results in acute liver injury (ALI) in developed countries when taken overdose. Ferulic acid (FA) is a natural polyphenol compound existing in many plants that has free radical scavenging, anti-inflammatory and liver-protective properties. However, the effect and underlying mechanism of FA in treating APAP-induced ALI have not been fully elucidated. Herein, we established a mouse model of APAP-induced ALI and used APAP-stimulated mouse primary hepatocytes for biochemical assessment of molecular parameters. After constructing networks and obtaining predicted targets from public databases, we further verified the putative pathways using immune-blotting assays both in vivo and in vitro. The reign of liver necrosis, serum levels of ALT and AST and oxidative stress in livers significantly elevated after APAP treatment, which were almost recovered back to normal levels by FA administration. In addition, FA significantly upregulated the APAP-induced downregulation of hepatic specific markers, including HNF4a, Foxa2 and ALB. Then, the results of functional enrichment indicated the possible signaling pathways of FA against APAP challenge, mainly including AMPK, autophagy, apoptosis and other metabolic process. Furthermore, FA markedly reversed the APAP-induced decline of mitochondria membrane potential, increased ratio of BAX/BCL2 and CASPASE 3 expression, and promoted autophagy flux of hepatocytes by upregulating AMPK phosphorylation, which were abrogated by a specific AMPK inhibitor, compound C. Overall, the hepatoprotective effect of FA on APAP-induced ALI might be associated with anti-oxidant and anti-apoptosis, which were at least partly attributed to AMPK-mediated protective autophagy.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangjun Lyu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dong zhi men Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
12
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
13
|
Machado PDA, Gomes PS, Midlej V, Coimbra ES, de Matos Guedes HL. PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Front Microbiol 2021; 12:583834. [PMID: 33584607 PMCID: PMC7876069 DOI: 10.3389/fmicb.2021.583834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
PF-429242 is an inhibitor of subtilisin, an important protease found in Leishmania. However, studies regarding the effect of PF-429242 on Leishmania are scarce. In this work we evaluated the antileishmanial effect of PF-429242 against Leishmania infantum and the mechanism involved in the death of the parasite. PF-429242 had low toxicity against mammalian cells (peritoneal macrophages) (CC50 = 189.07 μM) and presented activity against L. infantum promastigotes (IC50 = 2.78 μM) and intracellular amastigotes (IC50 = 14.07 μM), indicating selectivity toward the parasite. Transmission electron microscopy (TEM), as well as staining of L. infantum promastigotes with MitoTracker® Red, rhodamine 123 and MitoSOX, revealed that the mitochondria was a potential target of PF-429242. In addition, PF-429242 caused an accumulation of neutral lipids in promastigotes, which was demonstrated by Nile Red staining and TEM, and induced oxidative stress (H2DCFDA staining). Furthermore the formation of autophagic vacuoles in L. infantum promastigotes was observed by MDC staining and TEM. However, the killing induced by PF-429242 in L. infantum promastigotes appeared to be unrelated to apoptosis and/or necrosis as there was no phosphatidylserine externalization, DNA fragmentation or alterations in the permeability of the parasite plasma membrane, as assessed by annexin V-FITC, TUNEL and propidium iodide staining, respectively. The morphological and ultrastructural evaluation of the promastigotes by optical microscopy, scanning electron microscopy (SEM) and TEM, revealed the presence of parasites with flagellar defects. TEM analysis of the intracellular amastigotes indicated that mitochondrial damage and autophagy could also be involved in the death of these forms after treatment with PF-429242. In addition, PF-429242 treatment stimulated NO production from infected macrophage, but only at a high concentration (100 μM), as well as an increase of TNF levels after treatment with 10 μM of PF-429242. The compound did not stimulate ROS or IL-10 production. Together, these data highlight the antileishmanial potential of PF-429242, inducing several cellular alterations in the parasite, such as mitochondrial damage, neutral lipids accumulation, oxidative stress and autophagy which culminate in the death of L. infantum, as well as modulating host cellular responses that favor the development of an immune response against the parasite.
Collapse
Affiliation(s)
- Patrícia de Almeida Machado
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pollyanna Stephanie Gomes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,UFRJ Campus Duque de Caxias Professor Geraldo Cidade - Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Roszczyc-Owsiejczuk K, Zabielski P. Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:635175. [PMID: 33815291 PMCID: PMC8013882 DOI: 10.3389/fendo.2021.635175] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Piotr Zabielski,
| |
Collapse
|