1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Zhai X, Li S, Wang T, Bai J, Xu F, Zhou W. Dark Tea Wine Protects Against Metabolic Dysfunction-Associated Steatotic Liver Disease In Vivo Through Activating the Nrf2/HO-1 Antioxidant Signaling Pathway. J Med Food 2024; 27:912-921. [PMID: 39001839 DOI: 10.1089/jmf.2024.k.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex and multifactorial disease. Dark tea exhibits great potential for various bioactivities for metabolic health. In this study, we aimed to evaluate therapeutic effects and the underlying mechanisms of dark tea wine (DTW) on MASLD with obesity. A rat model of MASLD was established by high-fat diet and administered with different doses of DTW as an intervention. The biomarkers of lipid metabolism and oxidative stress in rats were tested. The weight of organs and adipose tissues and the expressions of nuclear factor erythroid 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) were investigated based on the pathology and western blot analysis. We found that DTW enhanced antioxidant capacity via activating the Nrf2/HO-1 signaling pathway, further markedly triggering inhibition of weight gain, reduction of lipid dysfunction, and improvement of pathological characteristics to ameliorate MASLD induced by high-fat diet. These results suggest that DTW is a promising functional supplement for prevention and treatment of MASLD and obesity.
Collapse
Affiliation(s)
- Xiaodong Zhai
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Suyang Li
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Tongsheng Wang
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Jinbo Bai
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Fengqing Xu
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, PR China
| | - Wuxi Zhou
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| |
Collapse
|
3
|
Wu CY, Chen Y, Chen MT, Fu TT, Liu J, Liu FF, Xu CJ, Li WS, Li BL, Jiang ZP, Rao Y, Huang L. Natural Linoleic Acid from Marine Fungus Eutypella sp. F0219 Blocks KEAP1/NRF2 Interaction and Ameliorates MASLD by Targeting FABP4. Free Radic Biol Med 2024; 224:630-643. [PMID: 39299527 DOI: 10.1016/j.freeradbiomed.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30% of the worldwide population and 85% of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.
Collapse
Affiliation(s)
- Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Yue Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Meng-Ting Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Ting-Ting Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Fei-Fei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Bao-Li Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China.
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China.
| |
Collapse
|
4
|
Cai J, Zhu Z, Li Y, Li Q, Tian T, Meng Q, Wang T, Ma Y, Wu J. Artemisia capillaris Thunb. Polysaccharide alleviates cholestatic liver injury through gut microbiota modulation and Nrf2 signaling pathway activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118009. [PMID: 38447617 DOI: 10.1016/j.jep.2024.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Meng
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
7
|
Liu Y, Wang X, Li C, Yu D, Tian B, Li W, Sun Z. Research progress on the chemical components and pharmacological effects of Physalis alkekengi L. var . franchetii (Mast.) Makino. Heliyon 2023; 9:e20030. [PMID: 38125457 PMCID: PMC10731008 DOI: 10.1016/j.heliyon.2023.e20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 12/23/2023] Open
Abstract
Physalis Calyx seu Fructus is the dry calyx or the calyx with fruit of the Solanaceae plant Physalis alkekengi L. var. franchetii (Mast.) Makino, with a long history of use in medicine and food. However, despite its many potential therapeutic and culinary applications, P. alkekengi is not being exploited for these applications on a large scale. This study analysed various research related to the different chemical components of P. alkekengi, including steroids, flavonoids, alkaloids, phenylpropanoids, sucrose esters, piperazines, volatile oils, polysaccharides, amino acids, and trace elements. In addition, research related to the pharmacological activities of P. alkekengi, including its anti-inflammatory, anti microbial, antioxidative, hypoglycaemic, analgesic, anti-tumour, and immunomodulatory effects were investigated. Research articles from 1974 to 2023 were obtained from websites such as Google Scholar, Baidu Scholar, and China National Knowledge Infrastructure, and journal databases such as Scopus and PubMed, with the keywords such as Physalis alkekengi, components, effects, and activities. This study aims to provide a comprehensive understanding of the progress of phytochemical and pharmacological research on the phytochemical and pharmacological aspects of P. alkekengi and a reference for the better exploitation of P. alkekengi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yiru Liu
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Xu Wang
- College of Basic Medical, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chenxue Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dahai Yu
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Bing Tian
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Wenlan Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Zhiwei Sun
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| |
Collapse
|
8
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Huang YL, Bian H, Zhu YL, Yan HM, Wang WP, Xia MF, Dong Y, Gao X. Quantitative Diagnosis of Nonalcoholic Fatty Liver Disease with Ultrasound Attenuation Imaging in a Biopsy-Proven Cohort. Acad Radiol 2023; 30 Suppl 1:S155-S163. [PMID: 37407373 DOI: 10.1016/j.acra.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of attenuation imaging (ATI) based on ultrasound for detection of hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS This prospective study was approved by our institutional review board (B2021-092R). Written informed consent was obtained from all patients. This study included 60 patients who had clinical suspicion of NAFLD and were referred for liver biopsy after ATI and controlled attenuation parameter (CAP) examinations between September 2020 and December 2021. The histologic hepatic steatosis was graded. The area under curve (AUC) analysis was performed. RESULTS The success rate of the ATI examination was 100%. The intraobserver reproducibility of ATI was 0.981. The AUCs of ATI for detecting ≥S1, ≥S2, and S3 were 0.968 (cut-off value of 0.671 dB/cm/MHz), 0.911 (cut-off value of 0.726 dB/cm/MHz), and 0.766 (cut-off value of 0.757 dB/cm/MHz), respectively. The AUCs of CAP for detecting ≥S1, ≥S2, and S3 were 0.916 (cut-off value of 258.5 dB/m), 0.872 (cut-off value of 300.0 dB/m), and 0.807 (cut-off value of 315.0 dB/m), respectively. The diagnostic values showed no significant difference between ATI and CAP in detecting ≥S1, ≥S2, and S3 (P = .281, P = .254, and P = .330, respectively). The ATI had significant correlations with high-density lipoprotein cholesterol (P < .001), and with triglycerides (P = .015). CONCLUSION ATI showed good feasibility and diagnostic performance in the detection of varying degrees of hepatic steatosis in NAFLD patients.
Collapse
Affiliation(s)
- Yun-Lin Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China (Y.-L.H., Y.-L.Z., W.-P.W.); Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665th Kongjiang Road, Shanghai 200092, China (Y.-L.H., Y.D.)
| | - Hua Bian
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China (H.B., H.-M.Y., M.-F.X., X.G.)
| | - Yu-Li Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China (Y.-L.H., Y.-L.Z., W.-P.W.)
| | - Hong-Mei Yan
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China (H.B., H.-M.Y., M.-F.X., X.G.)
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China (Y.-L.H., Y.-L.Z., W.-P.W.)
| | - Ming-Feng Xia
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China (H.B., H.-M.Y., M.-F.X., X.G.)
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665th Kongjiang Road, Shanghai 200092, China (Y.-L.H., Y.D.).
| | - Xin Gao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China (H.B., H.-M.Y., M.-F.X., X.G.)
| |
Collapse
|
10
|
Yuan-Ce L, Yu-Yan P, Qi Z, Hong-Yang Z, Yan-Wen W, Yu-Mei S, Guang-Zhi Z, Jun-Lin Y. Physalis pubescens L. branch and leaf extracts inhibit lymphoma proliferation by inducing apoptosis and cell cycle arrest. Front Pharmacol 2023; 14:1192225. [PMID: 37554986 PMCID: PMC10404818 DOI: 10.3389/fphar.2023.1192225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zeng Guang-Zhi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yin Jun-Lin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
11
|
Zhou LM, Fan JH, Xu MM, Xiong MY, Wang QJ, Chai X, Li XD, Li XG, Ye XL. Epiberberine regulates lipid synthesis through SHP (NR0B2) to improve non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166639. [PMID: 36638873 DOI: 10.1016/j.bbadis.2023.166639] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.
Collapse
Affiliation(s)
- Li-Ming Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Hua Fan
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min-Min Xu
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Meng-Yuan Xiong
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiao-Jiao Wang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue Chai
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao-Duo Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue-Gang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, China.
| | - Xiao-Li Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Jiang H, Mao T, Sun Z, Shi L, Han X, Zhang Y, Zhang X, Wang J, Hu J, Zhang L, Li J, Han H. Yinchen Linggui Zhugan decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease by modulation of SIRT1/Nrf2 signaling pathway and gut microbiota. Front Microbiol 2022; 13:1001778. [PMID: 36578580 PMCID: PMC9791106 DOI: 10.3389/fmicb.2022.1001778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Yinchen Linggui Zhugan decoction (YLZD) is an effective and classical traditional herbal prescription for treating the nonalcoholic fatty liver disease (NAFLD) and has been proven to be effective in the regulation of lipid metabolism disorder and attenuate inflammation for a NAFLD rat model. However, the exact underlying mechanism has not been elucidated. In the current study, a NAFLD rat model was established using a high-fat diet (HFD) for 10 weeks, followed by YLZD treatment with 1.92 g/kg/day for 4 weeks to explore the mechanisms of YLZD. Our results showed that YLZD decreased the hepatic lipid deposition, restored the liver tissue pathological lesions, inhibited the expression of oxidative stress, and decreased the inflammatory cytokines levels. Meanwhile, the genes and proteins expressions of SIRT1/Nrf2 signaling pathway together with downstream factors including HO-1 and NQO1 were elevated in the YLZD treated NAFLD rats. For further elaborating the upstream mechanism, short-chain fatty acids (SCFAs) in serum and feces were measured by liquid chromatograph mass spectrometer and gas chromatograph mass spectrometer, and the differences in gut microbiota of rats in each group were analyzed through high-throughput sequencing of 16S rRNA. The results demonstrated that the contents of butyric acid (BA) and total SCFAs in YLZD-treated NAFLD rats were significantly increased in serum and feces. 16S rRNA sequencing analysis illustrated that YLZD intervention led to a modification of the gut microbiota composition, with a decrease of Oribacterium, Lactobacillus and the ratio of Firmicutes/Bacteroides, as well as the increase in SCFAs-producing bacteria such as Christensenellaceae, Clostridia, Muribaculaceae, and Prevotellaceae. Spearman rank correlation analysis indicated that BA and total SCFAs were negatively co-related with oxidative stress-related factors and inflammatory cytokines, while they were positively co-related with SIRT1/Nrf2 pathway related genes and proteins. Furthermore, in vitro study confirmed that BA effectively reduced oxidative stress by activating SIRT1/Nrf2 signaling pathway in L02 cells. Together, the present data revealed YLZD could ameliorate HFD-induced NAFLD in rats by the modulation of SIRT1/Nrf2 signaling pathway and gut microbiota.
Collapse
Affiliation(s)
- Hui Jiang
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongmei Sun
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Zhang
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaosi Zhang
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Wang
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juncong Hu
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liming Zhang
- School of Graduate, Beijing University of Chinese Medicine, Beijing, China,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Junxiang Li, Haixiao Han
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Junxiang Li, Haixiao Han
| |
Collapse
|
13
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
14
|
Hu J, Zheng Y, Ying H, Ma H, Li L, Zhao Y. Alanyl-Glutamine Protects Mice against Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis and Fibrosis by Modulating Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14183796. [PMID: 36145172 PMCID: PMC9503574 DOI: 10.3390/nu14183796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease with increasing prevalence rates over years and is associated with hepatic lipid accumulation, liver injury, oxidative stress, hepatic inflammation, and liver fibrosis and lack of approved pharmacological therapy. Alanyl-glutamine (Ala-Gln) is a recognized gut-trophic nutrient that has multiple pharmacological effects in the prevention of inflammation- and oxidative-stress-associated diseases. Nevertheless, whether Ala-Gln has a protective effect on NASH still lacks evidence. The aim of this study is to explore the influence of Ala-Gln on NASH and its underlying mechanisms. Here, C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet to establish the model of NASH, and Ala-Gln at doses of 500 and 1500 mg/kg were intraperitoneally administered to mice along with a MCD diet. The results showed that Ala-Gln treatment significantly attenuated MCD-induced hepatic pathological changes, lowered NAFLD activity score, and reduced plasma alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels. Ala-Gln dramatically alleviated lipid accumulation in liver through modulating the expression levels of fatty acid translocase (FAT/CD36) and farnesoid X receptor (FXR). In addition, Ala-Gln exerted an anti-oxidant effect by elevating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, Ala-Gln exhibited an anti-inflammatory effect via decreasing the accumulation of activated macrophages and suppressing the production of proinflammatory mediators. Notably, Ala-Gln suppressed the development of liver fibrosis in MCD-diet-fed mice, which may be due to the inhibition of hepatic stellate cells activation. In conclusion, these findings revealed that Ala-Gln prevents the progression of NASH through the modulation of oxidative stress and inflammation and provided the proof that Ala-Gln might be an effective pharmacological agent to treat NASH.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| | - Yigang Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Correspondence:
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Oxidative Stress and AKT-Associated Angiogenesis in a Zebrafish Model and Its Potential Application for Withanolides. Cells 2022; 11:cells11060961. [PMID: 35326412 PMCID: PMC8946239 DOI: 10.3390/cells11060961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the AKT serine/threonine kinase (AKT) signaling pathway are essential regulators in cellular migration, metastasis, and angiogenesis. More than 300 withanolides were discovered from the plant family Solanaceae, exhibiting diverse functions. Notably, the relationship between oxidative stress, AKT signaling, and angiogenesis in withanolide treatments lacks comprehensive understanding. Here, we summarize connecting evidence related to oxidative stress, AKT signaling, and angiogenesis in the zebrafish model. A convenient vertebrate model monitored the in vivo effects of developmental and tumor xenograft angiogenesis using zebrafish embryos. The oxidative stress and AKT-signaling-modulating abilities of withanolides were highlighted in cancer treatments, which indicated that further assessments of their angiogenesis-modulating potential are necessary in the future. Moreover, targeting AKT for inhibiting AKT and its AKT signaling shows the potential for anti-migration and anti-angiogenesis purposes for future application to withanolides. This particularly holds for investigating the anti-angiogenetic effects mediated by the oxidative stress and AKT signaling pathways in withanolide-based cancer therapy in the future.
Collapse
|
16
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Zhang H, Zhou L, Zhou Y, Wang L, Jiang W, Liu L, Yue S, Zheng P, Liu H. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci 2021; 285:119963. [PMID: 34536498 DOI: 10.1016/j.lfs.2021.119963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
AIMS Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. MAIN METHODS LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. KEY FINDINGS In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. SIGNIFICANCE IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shuang Yue
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| |
Collapse
|
18
|
Qiu L, Hu L, Liu X, Li W, Zhang X, Xia H, Zhang C. Physalin B inhibits PDGF-BB-induced VSMC proliferation, migration and phenotypic transformation by activating the Nrf2 pathway. Food Funct 2021; 12:10950-10966. [PMID: 34647944 DOI: 10.1039/d1fo01926k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular intimal hyperplasia is a hallmark event in vascular restenosis. The excessive proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) play important roles in the pathological mechanism of vascular intimal hyperplasia. Physalin B is an alcoholate isolated from Physalis (Solanaceae) that has a wide range of biological activities. However, the effect of physalin B on VSMCs is currently unclear. In this study, we demonstrated that physalin B significantly inhibited the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. Physalin B also reduced inflammation and oxidative stress in VSMCs induced by PDGF-BB. Mechanistic studies showed that physalin B plays a role mainly by activating Nrf2. After Nrf2 activation, physalin B mitigates oxidative stress by enhancing the expression of the antioxidant gene HO-1; on the other hand, physalin B inhibits the NF-κB pathway to alleviate the inflammatory response. These two effects ultimately reduce the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. In addition, in the mouse carotid artery ligation model, physalin B prevented intimal hyperplasia and inhibited the proliferation, migration and phenotypic transformation of cells in the hyperplastic intima. In conclusion, we provided significant evidence that physalin B abrogates PDGF-BB-induced VSMC proliferation, migration, phenotypic transformation and intimal hyperplasia by activating Nrf2-mediated signal transduction. Therefore, physalin B may be a potential therapeutic agent for preventing or treating restenosis.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Lingli Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430064, P.R. China
| | - Xutao Zhang
- Jianshi Hospital of Traditional Chinese Medicine, Jianshi, Hubei 445300, P.R. China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changjiang Zhang
- Department of Cardiology, Minda Hospital of Hubei Minzu University, Enshi 445000, P.R. China.
| |
Collapse
|
19
|
Wang YL, Wu J, Li RX, Sun YT, Ma YJ, Zhao CY, Zou J, Zhang YY, Sun XD. A double-edged sword: The Kelch-like ECH-associated protein 1-nuclear factor erythroid-derived 2-related factor 2-antioxidant response element pathway targeted pharmacological modulation in nonalcoholic fatty liver disease. Curr Opin Pharmacol 2021; 60:281-290. [PMID: 34500407 DOI: 10.1016/j.coph.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Nutraceuticals activating the Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway are widely used for nonalcoholic fatty liver disease (NAFLD) because no specific drugs are approved yet. The pathology of NAFLD is summarized as the 'two-hit' hypothesis. The 'first hit' includes insulin resistance and lipid accumulation. Oxidative stress, lipid peroxidation, and inflammation are regarded as the 'second hit'. Now there is controversial evidence about the roles of the Keap1-Nrf2-ARE pathway and its activators in NAFLD. When the 'first hit' occurs, the hepatocyte-specific Nrf2 deficiency reduces insulin resistance and significantly attenuates lipid accumulation. However, when the 'second hit' occurs, Nrf2 activation reduces oxidative stress and combats inflammation. We reviewed the roles of the Keap1-Nrf2-ARE pathway as a double-edged sword in the development of NAFLD, its inhibitors as a novel therapeutic approach for early NAFLD, and the nutraceutical character of its activators.
Collapse
Affiliation(s)
- Yong-Lun Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Jiao Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Rui-Xi Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yu-Ting Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yi-Jia Ma
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Chen-Yu Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Jie Zou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| |
Collapse
|
20
|
Weiskirchen R. Physalin B attenuates liver fibrosis via suppressing LAP2α-HDAC1 mediated deacetylation of glioma-associated oncogene 1 and hepatic stellate cell activation. Br J Pharmacol 2021; 178:4045-4047. [PMID: 34409595 DOI: 10.1111/bph.15588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
21
|
Hou Y, Li J, Wu JC, Wu QX, Fang J. Activation of Cellular Antioxidant Defense System by Naturally Occurring Dibenzopyrone Derivatives Confers Neuroprotection against Oxidative Insults. ACS Chem Neurosci 2021; 12:2798-2809. [PMID: 34297534 DOI: 10.1021/acschemneuro.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seven dibenzopyrone phenolic derivatives, i.e., alternariol (1), alternariol 5-O-methyl ether (2), altenusin B (3), dehydroaltenusin (4), altenuene (5), altenusin (6), and alterlactone (7), were isolated from endophytic fungi Alternaria alternata extract, and these compounds' structures were elucidated based on various spectroscopic data. Compound 3, a diphenic acid derivative, was determined as a new compound. In this study, compounds 3, 4, 6, and 7 displayed remarkable neuroprotective effects against oxidative injuries by acting as potent activators of nuclear factor-erythroid derived 2-like 2 (Nrf2) in PC12 cells. A mechanistic study indicated that these compounds induced the nuclear accumulation of Nrf2, promoted the expression of Nrf2-governed cytoprotective genes, and increased the cellular antioxidant capacity. More importantly, genetic silence of Nrf2 expression deprived the observed cytoprotection, highlighting the important role of Nrf2 in the protection of these compounds.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun-Chen Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
The Cape Gooseberry Constituent Physalin B Ameliorates Nonalcoholic Steatohepatitis and Attenuates Liver Fibrosis. LIVERS 2021. [DOI: 10.3390/livers1020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Physalin B belongs to a family of Physalins that can be isolated from the genus Physalis (Solanaceae). In traditional Chinese Medicine, Physalis angulata L. is frequently used to treat a variety of illnesses such as dermatitis, trachitis, rheumatism, and hepatitis. Physalin B promotes cellular apoptosis and has antitumor, antimalarial, and antimycobacterial activities. Two recent studies evaluated the therapeutic activities of Physalin B in pre-clinical hepatic disease models. In this comment, a brief summary of the most important findings of these two studies is given and discussed.
Collapse
|