1
|
Zhang H, Liu Y, Zhang K, Hong Z, Liu Z, Liu Z, Li G, Xu Y, Pi J, Fu J, Xu Y. Understanding the Transcription Factor NFE2L1/NRF1 from the Perspective of Hallmarks of Cancer. Antioxidants (Basel) 2024; 13:758. [PMID: 39061827 PMCID: PMC11274343 DOI: 10.3390/antiox13070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells subvert multiple properties of normal cells, including escaping strict cell cycle regulation, gaining resistance to cell death, and remodeling the tumor microenvironment. The hallmarks of cancer have recently been updated and summarized. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also named NRF1) belongs to the cap'n'collar (CNC) basic-region leucine zipper (bZIP) family. It acts as a transcription factor and is indispensable for maintaining both cellular homoeostasis and organ integrity during development and growth, as well as adaptive responses to pathophysiological stressors. In addition, NFE2L1 mediates the proteasome bounce-back effect in the clinical proteasome inhibitor therapy of neuroblastoma, multiple myeloma, and triple-negative breast cancer, which quickly induces proteasome inhibitor resistance. Recent studies have shown that NFE2L1 mediates cell proliferation and metabolic reprogramming in various cancer cell lines. We combined the framework provided by "hallmarks of cancer" with recent research on NFE2L1 to summarize the role and mechanism of NFE2L1 in cancer. These ongoing efforts aim to contribute to the development of potential novel cancer therapies that target the NFE2L1 pathway and its activity.
Collapse
Affiliation(s)
- Haomeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yong Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhixuan Hong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zongfeng Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhe Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guichen Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| |
Collapse
|
2
|
Chai J, Wang N, Chen L, Bai J, Zhang J, Zhang G, An J, Zhang T, Tong X, Wu Y, Li M, Jin L. Identification of a Novel Long Non-Coding RNA G8110 That Modulates Porcine Adipogenic Differentiation and Inflammatory Responses. Int J Mol Sci 2023; 24:16799. [PMID: 38069122 PMCID: PMC10706401 DOI: 10.3390/ijms242316799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been extensively studied, and their crucial roles in adipogenesis, lipid metabolism, and gene expression have been revealed. However, the exact regulatory or other mechanisms by which lncRNAs influence the functioning of mesenteric adipose tissue (MAT) remain largely unknown. In this paper, we report the identification of a new lncRNA, named G8110, from the MAT of Bama pigs. The coordinated expression levels of lncRNA G8110 and NFE2L1 were significantly decreased in the MAT of obese Bama pigs compared with those in the MAT of lean pigs. Using a bone mesenchymal stem cell adipogenic differentiation model, we found that lncRNA G8110 played a role in adipocyte differentiation by positively regulating NFE2L1. We also found that lncRNA G8110 inhibited the formation of intracellular lipid synthesis, promoted lipid metabolism, and inhibited the expression of inflammatory cytokines. Our findings regarding lipid synthesis may further promote the role of lncRNAs in driving adipose tissue remodeling and maintaining metabolic health.
Collapse
Affiliation(s)
- Jin Chai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ning Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing 402460, China;
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Key Laboratory of Animal Resource Evaluation and Utilization (Pigs), Ministry of Agriculture and Rural Affairs, Chongqing 402160, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahua An
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (N.W.); (J.B.); (J.Z.); (G.Z.); (J.A.); (T.Z.); (X.T.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Tian D, Zeng X, Gong Y, Zheng Y, Zhang J, Wu Z. HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. Cell Signal 2023; 111:110875. [PMID: 37640195 DOI: 10.1016/j.cellsig.2023.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Obesity, one of the most serious public health issues, is caused by the imbalance of energy intake and energy expenditure. Increasing energy expenditure via induction of adipose tissue browning has become an appealing strategy to treat obesity and associated metabolic complications. Although histone modifications have been confirmed to regulate cellular energy metabolism, the involved biochemical mechanism of thermogenesis in adipose tissue is not completely understood. Herein, we report that class I histone deacetylases (HDAC) inhibitor MS275 increased PGC1α/UCP1 protein levels in inguinal white adipose tissue (iWAT) concomitant with elevated energy expenditure, reduced obesity and ameliorated glucose tolerance compared to control littermates. H3K18cr and H3K18ac levels were elevated after MS275 treatment. MS275 also promoted the transcription of Pgc1α and Ucp1 by enhancing the enrichment of H3K18cr and H3K18ac in the Pgc1α/Ucp1 enhancer and promoter, with a notable increase in H3K18cr. Mechanistically, the deletion of Hdac1 in beige adipocyte increases H3K18cr levels in enhancers and promoters of Pgc1α and Ucp1 genes, regulated the chromosomal state, thereby affecting the transcription of Pgc1α/Ucp1. Taken together, HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. This finding may provide a therapeutic strategy through increasing energy expenditure in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Dingyuan Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xiaojiao Zeng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
4
|
Shen W, Ren S, Hou Y, Zuo Z, Liu S, Liu Z, Fu J, Wang H, Yang B, Zhao R, Chen Y, Yamamoto M, Xu Y, Zhang Q, Pi J. Single-nucleus RNA-sequencing reveals NRF1/NFE2L1 as a key factor determining the thermogenesis and cellular heterogeneity and dynamics of brown adipose tissues in mice. Redox Biol 2023; 67:102879. [PMID: 37716088 PMCID: PMC10511808 DOI: 10.1016/j.redox.2023.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Brown adipose tissue (BAT) is a major site of non-shivering thermogenesis in mammals and plays an important role in energy homeostasis. Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as Nrf1), a master regulator of cellular metabolic homeostasis and numerous stress responses, has been found to function as a critical driver in BAT thermogenic adaption to cold or obesity by providing proteometabolic quality control. Our recent studies using adipocyte-specific Nfe2l1 knockout [Nfe2l1(f)-KO] mice demonstrated that NFE2L1-dependent transcription of lipolytic genes is crucial for white adipose tissue (WAT) homeostasis and plasticity. In the present study, we found that Nfe2l1(f)-KO mice develop an age-dependent whitening and shrinking of BAT, with signatures of down-regulation of proteasome, impaired mitochondrial function, reduced thermogenesis, pro-inflammation, and elevated regulatory cell death (RCD). Mechanistic studies revealed that deficiency of Nfe2l1 in brown adipocytes (BAC) primarily results in down-regulation of lipolytic genes, which decelerates lipolysis, making BAC unable to fuel thermogenesis. These changes lead to BAC hypertrophy, inflammation-associated RCD, and consequently cold intolerance. Single-nucleus RNA-sequencing of BAT reveals that deficiency of Nfe2l1 induces significant transcriptomic changes leading to aberrant expression of a variety of genes involved in lipid metabolism, proteasome, mitochondrial stress, inflammatory responses, and inflammation-related RCD in distinct subpopulations of BAC. Taken together, our study demonstrated that NFE2L1 serves as a vital transcriptional regulator that controls the lipid metabolic homeostasis in BAC, which in turn determines the metabolic dynamics, cellular heterogeneity and subsequently cell fates in BAT.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Suping Ren
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Shengnan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Bei Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; School of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Rui Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
5
|
Nfe2l1 deficiency mitigates streptozotocin-induced pancreatic β-cell destruction and development of diabetes in male mice. Food Chem Toxicol 2021; 158:112633. [PMID: 34699923 DOI: 10.1016/j.fct.2021.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Streptozotocin (STZ) is a pancreatic β cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic β cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic β cell damage. Here, we found that pancreatic β cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic β cell specific Nfe2l1 knockout [Nfe2l1(β)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(β)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(β)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic β cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.
Collapse
|
6
|
Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models. Redox Biol 2021; 44:102015. [PMID: 34058615 PMCID: PMC8170497 DOI: 10.1016/j.redox.2021.102015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|