1
|
Zhu X, Lin SQ, Xie J, Wang LH, Zhang LJ, Xu LL, Xu JG, Lv YB. Biomarkers of lymph node metastasis in colorectal cancer: update. Front Oncol 2024; 14:1409627. [PMID: 39328205 PMCID: PMC11424378 DOI: 10.3389/fonc.2024.1409627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths globally, trailing only behind lung cancer, and stands as the third most prevalent malignant tumor, following lung and breast cancers. The primary cause of mortality in colorectal cancer (CRC) stems from distant metastasis. Among the various routes of metastasis in CRC, lymph node metastasis predominates, serving as a pivotal factor in both prognostication and treatment decisions for patients. This intricate cascade of events involves multifaceted molecular mechanisms, highlighting the complexity underlying lymph node metastasis in CRC. The cytokines or proteins involved in lymph node metastasis may represent the most promising lymph node metastasis markers for clinical use. In this review, we aim to consolidate the current understanding of the mechanisms and pathophysiology underlying lymph node metastasis in colorectal cancer (CRC), drawing upon insights from the most recent literatures. We also provide an overview of the latest advancements in comprehending the molecular underpinnings of lymph node metastasis in CRC, along with the potential of innovative targeted therapies. These advancements hold promise for enhancing the prognosis of CRC patients by addressing the challenges posed by lymph node metastasis.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shui-Quan Lin
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Xie
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Hui Wang
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Li-Juan Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Ling Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Guang Xu
- Department of Gastroenterology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yang-Bo Lv
- Department of Colorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
2
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
3
|
Chen HY, Lin CE, Wu SC, Yang ZY, Chiang YF, Huang KC, Wang KL, Ali M, Shieh TM, Chang HY, Huang TC, Hsia SM. Para-toluenesulfonamide, a novel potent carbonic anhydrase inhibitor, improves hypoxia-induced metastatic breast cancer cell viability and prevents resistance to αPD-1 therapy in triple-negative breast cancer. Biomed Pharmacother 2023; 167:115533. [PMID: 37748406 DOI: 10.1016/j.biopha.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
Overexpression of the hypoxia-induced transmembrane enzyme carbonic anhydrase IX (CA9) has been associated with poor prognosis and chemoresistance in aggressive breast cancer. This study aimed to investigate the involvement of CA9 in the anti-tumor activity of para-toluenesulfonamide (PTS) and elucidate its mechanism of action against breast cancer both in vitro and in vivo. MCF-7 and MDA-MB-231 breast cancer cells were treated with PTS or subjected to hypoxic conditions using cobalt chloride (CoCl2), with acetazolamide serving as a positive control. Additionally, 4T1 breast cancer cell allograft mice were co-treated with PTS and α-programmed cell death 1 (αPD-1) monoclonal antibody for one month. The results demonstrated that PTS effectively reduced cell viability and reversed migration ability in MCF-7 and MDA-MB-231 cells under CoCl2-induced hypoxia. Furthermore, PTS upregulated the expression of apoptosis-related proteins and downregulated CA9, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) proteins, possibly through modulation of p38 MAPK and ERK1/2 phosphorylated proteins. In the animal model, PTS100 inhibited tumor growth and lung metastasis in mammary tumor allograft mice, exhibiting synergistic effects when combined with αPD-1 therapy. Collectively, our findings suggest that PTS inhibits breast cancer growth and metastasis through the p38 MAPK/ERK1/2 pathway. Moreover, PTS may have the potential to prevent the development of resistance to αPD-1 therapy in breast cancer.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-En Lin
- Gongwin Biopharm Co., Ltd., Taipei 104001, Taiwan
| | - Shun-Chi Wu
- Gongwin Biopharm Co., Ltd., Taipei 104001, Taiwan
| | - Zong-Yu Yang
- Gongwin Biopharm Co., Ltd., Taipei 104001, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Deh Yu College of Nursing and Health, Keelung 20301, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
4
|
Zhang Q, Yao Z, Chen F, Wang X, Wang M, Lu J, Meng Y, Xu L, Han Y, Liu W, Wang H. TIGAR Protects Cochlear Hair Cells against Teicoplanin-Induced Damage. Mol Neurobiol 2023; 60:3788-3802. [PMID: 36943624 PMCID: PMC10029784 DOI: 10.1007/s12035-023-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Teicoplanin is a glycopeptide antibiotic used to treat severe staphylococcal infections. It has been claimed that teicoplanin possesses ototoxic potential, although its toxic effects on cochlear hair cells (HCs) remain unknown. The TP53-induced glycolysis and apoptosis regulator (TIGAR) plays a crucial role in promoting cell survival. Prior research has demonstrated that TIGAR protects spiral ganglion neurons against cisplatin damage. However, the significance of TIGAR in damage to mammalian HCs has not yet been investigated. In this study, firstly, we discovered that teicoplanin caused dose-dependent cell death in vitro in both HEI-OC1 cells and cochlear HCs. Next, we discovered that HCs and HEI-OC1 cells treated with teicoplanin exhibited a dramatically decrease in TIGAR expression. To investigate the involvement of TIGAR in inner ear injury caused by teicoplanin, the expression of TIGAR was either upregulated via recombinant adenovirus or downregulated by shRNA in HEI-OC1 cells. Overexpression of TIGAR increased cell viability, decreased apoptosis, and decreased intracellular reactive oxygen species (ROS) level, whereas downregulation of TIGAR decreased cell viability, exacerbated apoptosis, and elevated ROS level following teicoplanin injury. Finally, antioxidant therapy with N-acetyl-L-cysteine decreased ROS level, prevented cell death, and restored p38/phosphorylation-p38 expression levels in HEI-OC1 cells injured by teicoplanin. This study demonstrates that TIGAR may be a promising novel target for the prevention of teicoplanin-induced ototoxicity.
Collapse
Affiliation(s)
- Qiongmin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Zhiqun Yao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| |
Collapse
|
5
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Rastelli EJ, Wipf P, Sharlow ER. Disruption of Ovarian Cancer STAT3 and p38 Signaling with a Small-Molecule Inhibitor of PTP4A3 Phosphatase. J Pharmacol Exp Ther 2023; 384:429-438. [PMID: 36627205 PMCID: PMC9976793 DOI: 10.1124/jpet.122.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Protein tyrosine phosphatase type IVA member 3 (PTP4A3 or PRL-3) is a nonreceptor, oncogenic, dual-specificity phosphatase that is highly expressed in many human tumors, including ovarian cancer, and is associated with a poor patient prognosis. Recent studies suggest that PTP4A3 directly dephosphorylates SHP-2 phosphatase as part of a STAT3-PTP4A3 feedforward loop and directly dephosphorylates p38 kinase. The goal of the current study was to examine the effect of a PTP4A phosphatase inhibitor, 7-imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053), on ovarian cancer STAT3, SHP-2, and p38 kinase phosphorylation. JMS-053 caused a concentration- and time-dependent decrease in the activated form of STAT3, Y705 phospho-STAT3, in ovarian cancer cells treated in vitro. In contrast, the phosphorylation status of two previously described direct PTP4A3 substrates, SHP-2 phosphatase and p38 kinase, were rapidly increased with JMS-053 treatment. We generated A2780 and OVCAR4 ovarian cancer cells resistant to JMS-053, and the resulting cells were not crossresistant to paclitaxel, cisplatin, or teniposide. JMS-053-resistant A2780 and OVCAR4 cells exhibited a 95% and 50% decrease in basal Y705 phospho-STAT3, respectively. JMS-053-resistant OVCAR4 cells had an attenuated phosphorylation and migratory response to acute exposure to JMS-053. These results support a regulatory role for PTP4A phosphatase in ovarian cancer cell STAT3 and p38 signaling circuits. SIGNIFICANCE STATEMENT: This study demonstrates that chemical inhibition of PTP4A phosphatase activity with JMS-053 decreases STAT3 activation and increases SHP-2 phosphatase and p38 kinase phosphorylation activation in ovarian cancer cells. The newly developed JMS-053-resistant ovarian cancer cells should provide useful tools to further probe the role of PTP4A phosphatase in ovarian cancer cell survival and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Kelly N Isbell
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Sai Ashish Vasa
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Ettore J Rastelli
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Peter Wipf
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., D.C.L., E.R.S.); KeViRx, Inc., Charlottesville, Virginia (J.S.L., K.N.I., S.A.V., E.R.S.); and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania (E.J.R., P.W.)
| |
Collapse
|
6
|
Wang Y, Guo Y, Lu Y, Sun Y, Xu D. The effects of endosulfan on cell migration and invasion in prostate cancer cells via the KCNQ1OT1/miR-137-3p/PTP4A3 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157252. [PMID: 35817112 DOI: 10.1016/j.scitotenv.2022.157252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Endosulfan belongs to persistent organic pollutants (POPs), closely related to an increased risk of prostate cancer (PCa). The existing evidence shows that lncRNAs compete with miRNAs for binding sites and contribute to the onset and progression of human malignancies. In this study we investigate how endosulfan promotes cell migration and invasion in DU145 and PC3 prostate cancer cells through epigenetic mechanism of lncRNA-miRNA regulation. Based on our past research we focused on PTP4A3 and constructed wild-type (WT) and mutant PTP4A3 plasmids for further analysis. Our results revealed that transfection of PTP4A3-WT can lead to changes in the expression of epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the TGF-β signaling pathway, and promote cell migration and invasion in PCa cells. Bioinformatics analysis shows that there were complementary sequences in PTP4A3 3'-UTR and KCNQ1OT1 3'-UTR to the seed sequence of hsa-miR-137-3p, and dual luciferase reporter assay indicates the potential binding capacity of miR-137-3p to 3'-UTR of PTP4A3 and KCNQ1OT1. We found that miR-137-3p mimic inhibited cell migration and invasion, as well as repressed alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway. Rescue experiment results revealed that co-transfection of miR-137-3p mimic and PTP4A3-WT plasmid reversed these changes following transfection with miR-137-3p mimic alone. We found that KCNQ1OT1 was predominantly distributed in the cytoplasm from a subcellular fractionation assay. Functionally, silencing of KCNQ1OT1 repressed cell migration and invasion, and caused alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway, which were all restored by co-transfection with anti-miR-137-3p or PTP4A3-WT plasmid. Furthermore, overexpression of miR-137-3p or silencing of KCNQ1OT1 dramatically rescued the effects of endosulfan on promoting cell migration and invasion. These findings suggest that endosulfan can indeed promote cell migration and invasion via the KCNQ1OT1/miR-137-3p/PTP4A3 axis in PCa cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yanyuan Lu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|