1
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
2
|
Žugić A, Martinović M, Tadić V, Rajković M, Racić G, Nešić I, Koren A. Comprehensive Insight into Cutaneous Application of Hemp. Pharmaceutics 2024; 16:748. [PMID: 38931870 PMCID: PMC11207338 DOI: 10.3390/pharmaceutics16060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript deals with hemp actives, such as cannabinoids, terpenes, and flavonoids, and their diverse biological properties relative to topical application, including anti-inflammatory, antimicrobial, and antioxidant effects. Also, the paper reviews strategies to overcome poor penetration of hemp actives, as well as the integration of hemp actives in cosmeceuticals that provide natural and sustainable alternatives to traditional skincare products offering a range of benefits, including anti-aging, moisturizing, and soothing properties. The review aims to provide a comprehensive understanding of the development and manufacturing processes of skin products containing hemp actives. By delving into the science behind hemp-based products, the paper provides valuable insights into the potential of hemp as a versatile ingredient in the pharmaceutical and cosmetic industries. The utilization of hemp in these innovative products not only offers therapeutic benefits but also promotes natural and sustainable approaches to skincare.
Collapse
Affiliation(s)
- Ana Žugić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Milica Martinović
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Vanja Tadić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Miloš Rajković
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Gordana Racić
- Faculty of Ecological Agriculture, University Educons, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Ivana Nešić
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Anamarija Koren
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Zingg JM. Finding vitamin Ex ‡. Free Radic Biol Med 2024; 211:171-173. [PMID: 38081438 DOI: 10.1016/j.freeradbiomed.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA.
| |
Collapse
|
4
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
5
|
Ma G, Chong W, Qi Y, Lu Z, Zhang Z, Nian B, Hu Y. Can vitamin E ester derivatives be excellent alternatives of vitamin E: state of art. Bioprocess Biosyst Eng 2023; 46:1695-1709. [PMID: 37555945 DOI: 10.1007/s00449-023-02918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Vitamin E (VE) is a natural antioxidant which is widely used in the food fields, while the shortcomings of easy oxidative inactivation and poor water solubility limit its application. Vitamin E esters' (VEEs) derivatives, such as vitamin E acetate (VEA), are more stable and easier to be absorbed while have similar biological activities and physiological functions compared with VE. In this systematic review, the digestion, absorption and physiological function of VEEs were summarized. To promote their further industrial applications, the synthesis strategies of VEEs were also summarized in-depth. In particular, as a new generation of green solvents, ionic liquids (ILs) have been widely used in enzymatic reactions due to the stabilization and activation of enzymes. Their applications in enzymatic synthesis of VEEs were summarized and discussed. Finally, several future perspectives for developing more efficiency strategies of VEEs synthesis, such as enzyme engineering and design of novel ILs, were also discussed.
Collapse
Affiliation(s)
- Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Wenya Chong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yuan Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Zihan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Song Y, Wang H, Sun R, Chang J, Tang J, Bai Y, Xia C. Serum Metabolic Characterization of Vitamin E Deficiency in Holstein Cows during the Transition Period Based on Proton Nuclear Magnetic Resonance Spectroscopy. Animals (Basel) 2023; 13:2957. [PMID: 37760357 PMCID: PMC10525730 DOI: 10.3390/ani13182957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin E, a potent antioxidant, is a necessary and complex micronutrient for cows. During the transition period, vitamin E deficiency (VED) is among the highest prevalent micronutrient deficits in dairy cows. It may eventually result in oxidative stress and immunological malfunction, and it increases the risk of peripartum disorders. At present, detailed data on blood metabolites in VED cows are limited. Consequently, the purpose of this research was to examine the alterations in the serum metabolic profile of VED cows throughout the early postpartum period. Using comprehensive 1H nuclear magnetic resonance (1H NMR), the alterations in serum metabolic activities of VED cows were analyzed. In total, 28 multiparous Holstein cows were assigned according to serum α-tocopherol (α-Toc) concentrations into normal (α-Toc ≥ 4 μg/mL, n = 14) and VED (α-Toc < 3 μg/mL, n = 14) groups at 21 days postpartum, and their blood samples were collected for biochemical and 1H NMR analyses. A t-test on independent samples as well as multivariate statistics were used to assess the findings. In comparison with normal cows, VED cows showed significantly worse body condition scores, milk yield, and dry matter intake (p < 0.05). Significantly higher levels of serum non-esterified fatty acids, aspartate aminotransferase, low-density lipoprotein, and malonaldehyde were found in VED-affected cows, as well as lesser concentrations of serum albumin, high-density lipoprotein, and total antioxidant capacity in comparison with normal cows (p < 0.01), while other vitamins and minerals concentrations showed no distinction between the groups (p > 0.05). Furthermore, 24 upregulated serum metabolites were identified under VED conditions. The metabolomics pathway analysis of these metabolites demonstrated that a global metabolic response to VED in cows was represented by changes in 11 metabolic pathways, comprising energy, carbohydrate, and amino acid metabolism. From these results, we conclude that VED cows were more likely to experience a negative energy balance characterized by alterations of common systemic metabolic processes and develop oxidative stress, inflammation, and ultimately liver injury. This study provides the first evidence of metabolic changes in cows with VED.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.S.); (H.W.); (R.S.); (J.C.); (J.T.); (Y.B.)
| |
Collapse
|
7
|
Fu JY, Meganathan P, Gunasegaran N, Tan DMY. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols. Food Res Int 2023; 171:113048. [PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
Collapse
Affiliation(s)
- Ju-Yen Fu
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Puvaneswari Meganathan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nisanthei Gunasegaran
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Doryn Meam Yee Tan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
8
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
9
|
Toledo-Solís FJ, Larrán AM, Martín B, de la Cuesta PL, Mateos-Aparicio I, Perez V, Moyano FJ, Fernández I. Uncovering the physiological impacts of soybean meal replacement by Narbonne vetch (Vicia narbonensis) meal in rainbow trout (Oncorhynchus mykiss) diets: towards the future and sustainable European aquaculture. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Catelli Rocha Torres L, Giovanini de Oliveira Sartori A, Paula de Souza Silva A, Matias de Alencar S. Bioaccessibility and uptake/epithelial transport of vitamin E: discoveries and challenges of in vitro and ex vivo assays. Food Res Int 2022; 162:112143. [DOI: 10.1016/j.foodres.2022.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
11
|
Toyokuni S, Noguchi N, Niki E. Editorial: Centennial anniversary of vitamin E discovery. Free Radic Biol Med 2022; 183:125-126. [PMID: 35339609 DOI: 10.1016/j.freeradbiomed.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.
| |
Collapse
|