1
|
Girigoswami K, Arunkumar R, Girigoswami A. Management of hypertension addressing hyperuricaemia: introduction of nano-based approaches. Ann Med 2024; 56:2352022. [PMID: 38753584 PMCID: PMC11100442 DOI: 10.1080/07853890.2024.2352022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Uric acid (UA) levels in blood serum have been associated with hypertension, indicating a potential causal relationship between high serum UA levels and the progression of hypertension. Therefore, the reduction of serum UA level is considered a potential strategy for lowering and mitigating blood pressure. If an individual is at risk of developing or already manifesting elevated blood pressure, this intervention could be an integral part of a comprehensive treatment plan. By addressing hyperuricaemia, practitioners may subsidize the optimization of blood pressure regulation, which illustrates the importance of addressing UA levels as a valuable strategy within the broader context of hypertension management. In this analysis, we outlined the operational principles of effective xanthine oxidase inhibitors for the treatment of hyperuricaemia and hypertension, along with an exploration of the contribution of nanotechnology to this field.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Radhakrishnan Arunkumar
- Department of Pharmacology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
2
|
Zheng X, Wang Y, Gong X, Chen W, Zheng W, Chen T. Quercetin activates autophagy in the distal ischemic area of random skin flaps through Beclin1 to enhance the adaptability to energy deficiency. Heliyon 2024; 10:e38181. [PMID: 39497976 PMCID: PMC11533565 DOI: 10.1016/j.heliyon.2024.e38181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Random flaps are frequently employed in treating substantial skin abnormalities and in surgical tissue-rebuilding interventions. The random flap technique provides flaps of specific dimensions and contours to fit the surgical incision. However, blood supply deficiency and subsequent ischemia-reperfusion injury can cause severe oxidative stress and apoptosis, eventually leading to distal necrosis, which limits the clinical application of the flap. Quercetin (QUE) is primarily found in the glycoside form in many plant parts, such as stem bark, flowers, leaves, buds, seeds, and fruits. Cellular, animal, and clinical studies have demonstrated the antioxidant, anti-apoptosis, anti-inflammatory, and activation of autophagy properties of QUE. In previous studies, high doses of QUE effectively suppressed the survival of human umbilical vein endothelial cells (HUVECs) stimulated by hydrogen peroxide. However, different concentration gradients of QUE on HUVECs revealed a significant protective effect at a concentration of 10 mM. The protective impact of QUE on HUVECs was evaluated using scratch tests, CCK-8 assays, and EDU assays. Simultaneously, a mouse model of random skin flap was created, and the impact of QUE on skin flap survival was examined by intragastric injection. The QUE group showed a significantly larger survival area of the random flap and higher blood flow intensity compared to the control group. Furthermore, the beneficial effects of QUE were reversed by the autophagy inhibitor 3-MA. Therefore, autophagy plays a significant role in the therapeutic benefits of QUE on flap survival.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Yiyu Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang Taizhou, 318000, China
| | - Xiaokang Gong
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Weijie Chen
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Wenbiao Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| | - Tao Chen
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou, 318000, China
| |
Collapse
|
3
|
Yao Z, Xue K, Chen J, Zhang Y, Zhang G, Zheng Z, Li Z, Li Z, Wang F, Sun X, Shen L, Mao C, Lin C. Biliverdin improved angiogenesis and suppressed apoptosis via PI3K/Akt-mediated Nrf2 antioxidant system to promote ischemic flap survival. Free Radic Biol Med 2024; 225:35-52. [PMID: 39332540 DOI: 10.1016/j.freeradbiomed.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Plastic and reconstructive surgeons frequently utilize random skin flap transplantation to repair skin defects. However, the procedure carries a substantial risk of necrosis. Previous research has suggested that Biliverdin (Bv), the main component of Calculus Bovis, possessed potent anti-ischemic properties, making it a potential therapeutic agent for skin flap survival. Hence, in this study, the potential of Bv in promoting flap survival has been comprehensively investigated. Network pharmacology analysis revealed that the pharmacological effects of Bv on ischemic diseases may be attributed to its modulation of various signaling molecules, including the PI3K-Akt pathway. In vitro results demonstrated that Bv treatment significantly promoted angiogenesis in human umbilical vein endothelial cells (HUVEC), even in the presence of H2O2. This was evident by the increased cell proliferation, enhanced migration, and improved tube formation. Bv also effectively attenuated the intracellular generation of reactive oxygen species (ROS) induced by H2O2, which was achieved by suppressing mitochondrial ROS production through the PI3K/Akt-mediated activation of Nrf2/HO-1 signaling pathway. Consequently, Bv treatment led to a significant reduction in apoptosis and an increase in cell viability of HUVEC. Furthermore, in vivo experiment demonstrated that Bv treatment vastly elevated flap survival through enhancing angiogenesis while decreasing oxidative stress and apoptosis, which was comparable to the results of positive control of N-acetylcysteine (Nac). In conclusion, this study not only established a solid foundation for future study on therapeutic potential of Bv, but also proposed a promising treatment approach for enhancing the success rate of flap transplants and other ischemic-related tissue repair.
Collapse
Affiliation(s)
- Zhe Yao
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaikai Xue
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinghao Chen
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Zhang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Guojian Zhang
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zimin Zheng
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zihao Li
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zi Li
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fulin Wang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqi Sun
- Department of Psychiatry, Ruian Fifth People's Hospital, China
| | - Liyan Shen
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Cong Mao
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Cai Lin
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Zhu X, Yu G, Lv Y, Yang N, Zhao Y, Li F, Zhao J, Chen Z, Lai Y, Chen L, Wang X, Xiao J, Cai Y, Feng Y, Ding J, Gao W, Zhou K, Xu H. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. BURNS & TRAUMA 2024; 12:tkae035. [PMID: 38855574 PMCID: PMC11162832 DOI: 10.1093/burnst/tkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Background Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.
Collapse
Affiliation(s)
- Xuwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Ya Lv
- The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Science of Zhejiang Chinese Medical University, NO. 548 Binwen Road, Binjiang District, Hangzhou 310000, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | | | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| |
Collapse
|
5
|
Liu X, Chen H, Lei L, Yang P, Ju Y, Fan X, Fang B. Exosomes-carried curcumin based on polysaccharide hydrogel promote flap survival. Int J Biol Macromol 2024; 270:132367. [PMID: 38750860 DOI: 10.1016/j.ijbiomac.2024.132367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Flap grafting is a common technique used to repair skin defects in orthopedics and plastic and reconstructive surgeries. However, oxidative stress injury caused by ischemia and ischemia-reperfusion injury at the distal end of the skin flap can cause flap necrosis. Curcumin is a natural compound with anti-inflammatory and antioxidant properties that tackle oxidative stress. However, its applicability is limited by its poor water solubility. Exosomes are membranous vesicles that can be loaded with hydrophobic drugs. They are widely studied in drug delivery applications and can be investigated to augment curcumin efficiency. In this study, a self-healing oxidized pullulan polysaccharide-carboxymethylated chitosan composite hydrogel was used as a curcumin-loaded exosome delivery system to evaluate its impact on the viability of skin flaps. The hydrogel exhibited good self-healing properties that allowed the continuous and stable release of drugs. It had anti-inflammatory and antioxidant properties that could reduce oxidative stress damage due to early ischemia and hypoxia of the skin flap in vitro. Moreover, this composite hydrogel attenuated inflammatory responses, promoted angiogenesis, and reduced the distal necrosis of the flap in vivo. Therefore, our hydrogel provides a novel strategy for skin flap graft protection with reduced necrosis and the potential for broad clinical applications.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China.
| |
Collapse
|
6
|
Tian K, Jia Z, Xu W, Wang X, Xie X, Gu Y, Cao S, Gao S, Li K, Wu L. The Application of "Table Tennis Racquet" Random Skin Flap in the Treatment of Facial Skin Carcinoma. Ann Plast Surg 2024; 92:647-652. [PMID: 38717142 DOI: 10.1097/sap.0000000000003889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND The repair of facial skin and soft tissue defects remains a clinical challenge. The author introduced a novel "table tennis racquet" random skin flap for wound repair after facial skin cancer excision and discussed its survival mechanisms. METHODS A lateral mandibular neck skin flap shaped like a table tennis racquet with no well-known blood vessels at the narrow pedicle was designed in 31 cases to repair tissue defects. Among them, there were 8 cases of skin carcinoma in the frontotemporal area and 23 cases of skin carcinoma in the cheek. The flap area was 8.0 × 7.0 cm at maximum and 3.0 × 2.5 cm at minimum, with a pedicle width of 1.0-2.0 cm and a pedicle length of 2.0-6.0 cm. RESULTS All 31 "table tennis racquet" random skin flaps survived, although there were 3 cases with delayed healing of distal flap bruising. All of them had an ideal local shape after repair with a concealed donor area and inconspicuous scars. CONCLUSIONS This flap has a "table tennis racquet" shape with a pedicle without well-known blood vessels and has a length-to-width ratio that exceeds that of conventional random flaps, making it unconventional. Because of its long and narrow pedicle, it not only has a large rotation and coverage area but also can be designed away from the defect area, avoiding the defect of no donor tissue being localized near the defect. Overall, this approach is an ideal option for repairing tissue defects after enlarged excision of facial skin carcinoma.
Collapse
Affiliation(s)
- Kai Tian
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Zou Jia
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Wushuang Xu
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Xiaoyun Wang
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Xiaoming Xie
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Yifei Gu
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Shikun Cao
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| | - Suyue Gao
- Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University
| | - Ke Li
- Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijun Wu
- From the Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University
| |
Collapse
|
7
|
Yang J, Deng J, Wang K, Wang A, Chen G, Chen Q, Ye M, Wu X, Wang X, Lin D. Tetrahydropalmatine promotes random skin flap survival in rats via the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117808. [PMID: 38280663 DOI: 10.1016/j.jep.2024.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flap necrosis is the most common complication after flap transplantation, but its prevention remains challenging. Tetrahydropalmatine (THP) is the main bioactive component of the traditional Chinese medicine Corydalis yanhusuo, with effects that include the activation of blood circulation, the promotion of qi, and pain relief. Although THP is widely used to treat various pain conditions, its impact on flap survival is unknown. AIM OF THE STUDY To explore the effect and mechanism of THP on skin flap survival. MATERIALS AND METHODS In this study, we established a modified McFarlane flap model, and the flap survival rate was calculated after 7 days of THP treatment. Angiogenesis and blood perfusion were evaluated using lead oxide/gelatin angiography and laser Doppler, respectively. Flap tissue obtained from zone II was evaluated histopathologically, by hematoxylin and eosin staining, and in assays for malondialdehyde content and superoxide dismutase activity. Immunofluorescence was performed to detect interleukin (IL)-6, tumor necrosis factor (TNF)-α, hypoxia-inducible factor (HIF)-1α, Bcl-2, Bax, caspase-3, caspase-9, SQSTM1/P62, Beclin-1, and LC3 expression, and Western blot to assess PI3K/AKT signaling pathway activation and Vascular endothelial growth factor (VEGF) expression. The role played by the autophagy pathway in flap necrosis was examined using rapamycin, a specific inhibitor of mTOR. RESULTS Experimentally, THP improved the survival rate of skin flaps, promoted angiogenesis, and improved blood perfusion. THP administration reduced the inflammatory response, oxidative stress, and apoptosis in addition to inhibiting autophagy via the PI3K/AKT/mTOR pathway. Rapamycin partially reversed these effects. CONCLUSION THP promotes skin flap survival via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinyu Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical, China
| | - Xinye Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Wu P, Xiao Y, Qing L, Mi Y, Tang J, Cao Z, Huang C. Emodin activates autophagy to suppress oxidative stress and pyroptosis via mTOR-ULK1 signaling pathway and promotes multi-territory perforator flap survival. Biochem Biophys Res Commun 2024; 704:149688. [PMID: 38387327 DOI: 10.1016/j.bbrc.2024.149688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Multi-territory perforator flap reconstruction has been proven effective in treating large skin and soft tissue defects in clinical settings. However, in view of that the multi-territory perforator flap is prone to partial postoperative necrosis, increasing its survival is the key to the success of reconstruction. In this study, we aimed to clarify the effect of emodin on multi-territory perforator flap survival. METHODS Flap survival was assessed by viability area analysis, infrared laser imaging detector, HE staining, immunohistochemistry, and angiography. Western blotting, immunofluorescence assays, and real-time fluorescent quantitative PCR were performed to detect the indicators of oxidative stress, pyroptosis and autophagy. RESULTS After emodin treatment, the multi-territory perforator flap showed a significantly increased survival rate, which was shown to be closely related to the inhibition of oxidative stress and pyroptosis and enhanced autophagy. Meanwhile, the use of autophagy inhibitor 3 MA was found to reverse the inhibitory effects of emodin on oxidative stress and pyroptosis and weaken the improving effect of emodin on flap survival, suggesting that autophagy plays a critical role in emodin-treated flaps. Interestingly, our mechanistic investigations revealed that the positive effect of emodin on multi-territory perforator flap was attributed to the mTOR-ULK1 signaling pathway activation. CONCLUSIONS Emodin can inhibit oxidative stress and pyroptosis by activating autophagy via the mTOR-ULK1 pathway, thereby improving the multi-territory perforator flap survival.
Collapse
Affiliation(s)
- Panfeng Wu
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xiao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Mi
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chengxiong Huang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Yang N, Yu G, Lai Y, Zhao J, Chen Z, Chen L, Fu Y, Fang P, Gao W, Cai Y, Li Z, Xiao J, Zhou K, Ding J. A snake cathelicidin enhances transcription factor EB-mediated autophagy and alleviates ROS-induced pyroptosis after ischaemia-reperfusion injury of island skin flaps. Br J Pharmacol 2024; 181:1068-1090. [PMID: 37850255 DOI: 10.1111/bph.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuedong Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Khalaf R, Duarte Bateman D, Reyes J, Najafali D, Rampazzo A, Bassiri Gharb B. Systematic review of pathologic markers in skin ischemia with and without reperfusion injury in microsurgical reconstruction: Biomarker alterations precede histological structure changes. Microsurgery 2024; 44:e31141. [PMID: 38361264 DOI: 10.1002/micr.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Ischemia and ischemia-reperfusion injury contribute to partial or complete flap necrosis. Traditionally, skin histology has been used to evaluate morphological and structural changes, however histology does not detect early changes. We hypothesize that morphological and structural skin changes in response to ischemia and IRI occur late, and modification of gene and protein expression are the earliest changes in ischemia and IRI. METHODS A systematic review was performed in accordance with PRISMA guidelines. Studies reporting skin histology or gene/protein expression changes following ischemia with or without reperfusion injury published between 2002 and 2022 were included. The primary outcomes were descriptive and semi-quantitative histological structural changes, leukocyte infiltration, edema, vessel density; secondary outcomes were quantitative gene and protein expression intensity (PCR and western blot). Model type, experimental intervention, ischemia method and duration, reperfusion duration, biopsy location and time point were collected. RESULTS One hundred and one articles were included. Hematoxylin and eosin (H&E) showed inflammatory infiltration in early responses (12-24 h), with structural modifications (3-14 days) and neovascularization (5-14 days) as delayed responses. Immunohistochemistry (IHC) identified angiogenesis (CD31, CD34), apoptosis (TUNEL, caspase-3, Bax/Bcl-2), and protein localization (NF-κB). Gene (PCR) and protein expression (western blot) detected inflammation and apoptosis; endoplasmic reticulum stress/oxidative stress and hypoxia; and neovascularization. The most common markers were TNF-α, IL-6 and IL-1β (inflammation), caspase-3 (apoptosis), VEGF (neovascularization), and HIF-1α (hypoxia). CONCLUSION There is no consensus or standard for reporting skin injury during ischemia and IRI. H&E histology is most frequently performed but is primarily descriptive and lacks sensitivity for early skin injury. Immunohistochemistry and gene/protein expression reveal immediate and quantitative cellular responses to skin ischemia and IRI. Future research is needed towards a universally-accepted skin injury scoring system.
Collapse
Affiliation(s)
- Ryan Khalaf
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jose Reyes
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Najafali
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
11
|
Jiang Z, Wang K, Lin Y, Zhou T, Lin Y, Chen J, Lan Q, Meng Z, Liu X, Lin H, Lin D. Nesfatin-1 regulates the HMGB1-TLR4-NF-κB signaling pathway to inhibit inflammation and its effects on the random skin flap survival in rats. Int Immunopharmacol 2023; 124:110849. [PMID: 37633241 DOI: 10.1016/j.intimp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Random skin flaps are often placed by plastic surgeons to treat limb deformities and dysfunction. Nesfatin-1 (NES) is a peptide that exerts angiogenic, anti-inflammatory, and anti-oxidant effects. We assessed the impact of NES on flap survival and the underlying mechanism. METHODS We modified the McFarlane random skin flap rat model. Thirty-six male Sprague-Dawley rats were randomly divided into a control group (corn oil solution with DMSO), low-dose group (NES-L at 10 µg/kg/day), and high-dose group (NES-H at 20 µg/kg/day). On day 7 after surgery, average flap survival areas were calculated. Laser Doppler blood flow monitoring and lead oxide/gelatin angiography were used to evaluate blood perfusion and neovascularization, respectively. Flap histopathological status was evaluated by hematoxylin and eosin (H&E) staining. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical techniques were used to evaluate the expression of angiogenetic and inflammatory factors. RESULTS In the experimental groups, the mean skin flap survival areas and blood perfusion increased considerably. The SOD activities in the experimental groups increased and the MDA contents decreased. Immunohistochemically, VEGF expression was upregulated in the experimental groups and the expression levels of inflammatory factors decreased markedly. CONCLUSION NES inhibited ischemic skin flap necrosis, promoted angiogenesis, and reduced ischemia-reperfusion injury and inflammation. Inhibition of the inflammatory HMGB1-TLR4-NF-κB signal pathway, which reduced flap inflammation and oxidative stress, may explain the enhanced flap survival.
Collapse
Affiliation(s)
- Zhikai Jiang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kaitao Wang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuting Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zhou
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianpeng Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qicheng Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhefeng Meng
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuao Liu
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Su ZH, Lv JL, Ou Q, Zhao ZQ, Zheng KY, Zhang XY, Lai WQ, Wang XY, Deng MJ, Li MW. Uric acid metabolism promotes apoptosis against Bombyx mori nucleopolyhedrovirus in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2023; 32:558-574. [PMID: 37209025 DOI: 10.1111/imb.12850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.
Collapse
Affiliation(s)
- Zhi-Hao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qi Ou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Ying Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wen-Qing Lai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Ming-Jie Deng
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
13
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|
14
|
Deng C, Dong K, Liu Y, Chen K, Min C, Cao Z, Wu P, Luo G, Cheng G, Qing L, Tang J. Hypoxic mesenchymal stem cell-derived exosomes promote the survival of skin flaps after ischaemia-reperfusion injury via mTOR/ULK1/FUNDC1 pathways. J Nanobiotechnology 2023; 21:340. [PMID: 37735391 PMCID: PMC10514998 DOI: 10.1186/s12951-023-02098-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Flap necrosis, the most prevalent postoperative complication of reconstructive surgery, is significantly associated with ischaemia-reperfusion injury. Recent research indicates that exosomes derived from bone marrow mesenchymal stem cells (BMSCs) hold potential therapeutic applications in several diseases. Traditionally, BMSCs are cultured under normoxic conditions, a setting that diverges from their physiological hypoxic environment in vivo. Consequently, we propose a method involving the hypoxic preconditioning of BMSCs, aimed at exploring the function and the specific mechanisms of their exosomes in ischaemia-reperfusion skin flaps. This study constructed a 3 × 6 cm2 caudal superficial epigastric skin flap model and subjected it to ischaemic conditions for 6 h. Our findings reveal that exosomes from hypoxia-pretreated BMSCs significantly promoted flap survival, decrease MCP-1, IL-1β, and IL-6 levels in ischaemia-reperfusion injured flap, and reduce oxidative stress injury and apoptosis. Moreover, results indicated that Hypo-Exo provides protection to vascular endothelial cells from ischaemia-reperfusion injury both in vivo and in vitro. Through high-throughput sequencing and bioinformatics analysis, we further compared the differential miRNA expression profiles between Hypo-Exo and normoxic exosomes. Results display the enrichment of several pathways, including autophagy and mTOR. We have also elucidated a mechanism wherein Hypo-Exo promotes the survival of ischaemia-reperfusion injured flaps. This mechanism involves carrying large amounts of miR-421-3p, which target and regulate mTOR, thereby upregulating the expression of phosphorylated ULK1 and FUNDC1, and subsequently further activating autophagy. In summary, hypoxic preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of BMSC-derived exosomes in the treatment of flap ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Kangkang Dong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongjun Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ken Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chuwei Min
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gaojie Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gechang Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
15
|
Ye H, Li F, Shen Y, Wu X, Zhao L, Zhang H, Yang J, Shui X. Rosuvastatin promotes survival of random skin flaps through AMPK-mTOR pathway-induced autophagy. Int Immunopharmacol 2023; 118:110059. [PMID: 37001384 DOI: 10.1016/j.intimp.2023.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Plastic surgery frequently employs random skin flaps. However, its clinical applicability is constrained by flap necrosis brought on by ischemia-reperfusion damage. Flap survival is aided by rosuvastatin, a naturally occurring flavonoid primarily obtained from plants. In this research, we looked into the processes mediating the effects of rosuvastatin on flap survival. All experimental mice were randomly assigned to three groups: control, rosuvastatin, and 3-methyladenine (3MA) plus rosuvastatin. These groups were, respectively, treated with dimethyl sulfoxide solution, rosuvastatin, and rosuvastatin combined with 3MA. After that, the animals were euthanized so that histology and protein analyses could determine the extent of angiogenesis, pyroptosis, oxidative stress, and autophagy. In addition to lessening tissue edema, rosuvastatin promoted the survival of the skin flap. Rosuvastatin also promoted angiogenesis, reduced oxidative stress, induced autophagy, and reduced pyroptosis. According to the study's findings, rosuvastatin increases angiogenesis, prevents pyroptosis, and reduces oxidative stress by inducing autophagy, which improves the survival rate of random skin flaps.
Collapse
|
16
|
Liraglutide attenuates intestinal ischemia/reperfusion injury via NF-κB and PI3K/Akt pathways in mice. Life Sci 2022; 309:121045. [DOI: 10.1016/j.lfs.2022.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
17
|
Niu Q, Yang Y, Li D, Guo W, Wang C, Xu H, Feng Z, Han Z. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Ischemia-Reperfusion Injury and Promote Survival of Skin Flaps in Rats. Life (Basel) 2022; 12:1567. [PMID: 36295004 PMCID: PMC9604753 DOI: 10.3390/life12101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023] Open
Abstract
Free tissue flap transplantation is a classic and important method for the clinical repair of tissue defects. However, ischemia-reperfusion (IR) injury can affect the success rate of skin flap transplantation. We used a free abdomen flap rat model to explore the protective effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-exosomes) against the IR injury of the skin flap. Exosomes were injected through the tail vein and the flaps were observed and obtained on day 7. We observed that BMSCs-exosomes significantly reduced the necrotic lesions of the skin flap. Furthermore, BMSCs-exosomes relieved oxidative stress and reduced the levels of inflammatory factors. Apoptosis was evaluated via the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and Western blot analysis of Bax, Bcl-2. Simultaneously, BMSCs-exosomes promoted the formation of new blood vessels in the IR flap, as confirmed by the increased expression level of VEGFA and the fluorescence co-staining of CD31 and PCNA. Additionally, BMSCs-exosomes considerably increased proliferation and migration of human umbilical vein endothelial cells and promoted angiogenesis in vitro. BMSCs-exosomes could be a promising cell-free therapeutic candidate to reduce IR injury and promote the survival of skin flaps.
Collapse
Affiliation(s)
- Qifang Niu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Yang Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Delong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Wenwen Guo
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
- Department of Oral and Maxillofacial Surgery, Beijing XingYe Stomatological Hospital, Beijing 102600, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Haoyue Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
18
|
Chethikkattuveli Salih AR, Asif A, Samantasinghar A, Umer Farooqi HM, Kim S, Choi KH. Renal Hypoxic Reperfusion Injury-on-Chip Model for Studying Combinational Vitamin Therapy. ACS Biomater Sci Eng 2022; 8:3733-3740. [PMID: 35878885 DOI: 10.1021/acsbiomaterials.2c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal ischemic-reperfusion injury decreases the chances of long-term kidney graft survival and may lead to the loss of a transplanted kidney. During organ excision, the cycle of warm ischemia from the donor and cold ischemia is due to storage in a cold medium after revascularization following organ transplantation. The reperfusion of the kidney graft activates several pathways that generate reactive oxygen species, forming a hypoxic-reperfusion injury. Animal models are generally used to model and investigate renal hypoxic-reperfusion injury. However, these models face ethical concerns and present a lack of robustness and intraspecies genetic variations, among other limitations. We introduce a microfluidics-based renal hypoxic-reperfusion (RHR) injury-on-chip model to overcome current limitations. Primary human renal proximal tubular epithelial cells and primary human endothelial cells were cultured on the apical and basal sides of a porous membrane. Hypoxic and normoxic cell culture media were used to create the RHR injury-on-chip model. The disease model was validated by estimating various specific hypoxic biomarkers of RHR. Furthermore, retinol, ascorbic acid, and combinational doses were tested to devise a therapeutic solution for RHR. We found that combinational vitamin therapy can decrease the chances of RHR injury. The proposed RHR injury-on-chip model can serve as an alternative to animal testing for injury investigation and the identification of new therapies.
Collapse
Affiliation(s)
| | - Arun Asif
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea.,BioSpero Inc., Jeju Science Park, Jeju-si, Jeju-do 63243 Korea.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| |
Collapse
|
19
|
Lee JH, You HJ, Lee TY, Kang HJ. Current Status of Experimental Animal Skin Flap Models: Ischemic Preconditioning and Molecular Factors. Int J Mol Sci 2022; 23:5234. [PMID: 35563624 PMCID: PMC9103896 DOI: 10.3390/ijms23095234] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Skin flaps are necessary in plastic and reconstructive surgery for the removal of skin cancer, wounds, and ulcers. A skin flap is a portion of skin with its own blood supply that is partially separated from its original position and moved from one place to another. The use of skin flaps is often accompanied by cell necrosis or apoptosis due to ischemia-reperfusion (I/R) injury. Proinflammatory cytokines, such as nuclear factor kappa B (NF-κB), inhibitor of kappa B (IκB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and oxygen free radicals are known causative agents of cell necrosis and apoptosis. To prevent I/R injury, many investigators have suggested the inhibition of proinflammatory cytokines, stem-cell therapies, and drug-based therapies. Ischemic preconditioning (IPC) is a strategy used to prevent I/R injury. IPC is an experimental technique that uses short-term repetition of occlusion and reperfusion to adapt the area to the loss of blood supply. IPC can prevent I/R injury by inhibiting proinflammatory cytokine activity. Various stem cell applications have been studied to facilitate flap survival and promote angiogenesis and vascularization in animal models. The possibility of constructing tissue engineered flaps has also been investigated. Although numerous animal studies have been published, clinical data with regard to IPC in flap reconstruction have never been reported. In this study, we present various experimental skin flap methods, IPC methods, and methods utilizing molecular factors associated with IPC.
Collapse
Affiliation(s)
- Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea;
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Tae-Yul Lee
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Hyo Jin Kang
- Biomedical Research Center, Korea University Ansan Hospital, Ansan 15355, Korea
- Core Research and Development Center, Korea University Ansan Hospital, Ansan 15355, Korea
| |
Collapse
|
20
|
Tanaka A, Toyoda S, Kato T, Yoshida H, Hamasaki S, Watarai M, Ishizu T, Ueda S, Inoue T, Node K. Association between serum urate level and carotid atherosclerosis: an insight from a post hoc analysis of the PRIZE randomised clinical trial. RMD Open 2022; 8:rmdopen-2022-002226. [PMID: 35410947 PMCID: PMC9003608 DOI: 10.1136/rmdopen-2022-002226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Elevated serum urate (SU) levels are associated with arterial atherosclerosis and subsequent cardiovascular events. However, an optimal therapeutic target SU level for delaying atherosclerotic progression in patients with hyperuricaemia remains uncertain. The aim of this analysis was to assess an association between changes in SU level and carotid intima–media thickness (IMT) to examine whether an optimal SU concentration exists to delay atherosclerotic progression. Methods This was a post hoc analysis of the PRIZE (programme of vascular evaluation under uric acid control by xanthine oxidase inhibitor, febuxostat: multicentre, randomised controlled) study of Japanese adults with asymptomatic hyperuricaemia. The primary endpoint of this analysis was an association between changes in SU levels and mean common carotid artery IMT (CCA-IMT) after 24 months of febuxostat treatment. Results Among subjects treated with febuxostat (n=239), a total of 204 who had both data on SU and mean CCA-IMT at baseline and 24 months were included in this analysis. The mean baseline SU level was 7.7±1.0 mg/dL, and febuxostat treatment significantly reduced SU concentrations at 24 months (estimated mean change ‒3.051 mg/dL, 95% CI ‒3.221 to ‒2.882). A multivariable linear regression analysis revealed that a reduction in SU level was associated with changes in mean CCA-IMT values at 24 months (p=0.025). In contrast, the achieved SU concentrations were not associated with changes in mean CCA-IMT at 24 months. Conclusion A greater reduction in SU, but not its achieved concentrations, may be associated with delayed progression of carotid IMT in patients with asymptomatic hyperuricaemia treated with febuxostat. Trial registration number UMIN000012911
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Toru Kato
- Department of Cardiovascular Medicine, National Hospital Organisation Tochigi Medical Center, Utsunomiya, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuichi Hamasaki
- Department of Cardiology, Imakiire General Hospital, Kagoshima, Japan
| | | | - Tomoko Ishizu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus, Nishihara, Japan
| | - Teruo Inoue
- Center for Advanced Medical Science Research, Dokkyo Medical University, Mibu, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| |
Collapse
|