1
|
Cai N, Gao X, Jia L, Liu Y, Zhao J, Qu J, Zhou Y. 2-Trifluoromethyl-2H-chromene ethers: The dual triumph of anti-inflammation and analgesia with minimal ulcer threat. Bioorg Chem 2025; 154:108050. [PMID: 39675096 DOI: 10.1016/j.bioorg.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
In this report, we disclose the design and synthesis of a series of 2-trifluoromethyl-2H- chromene ethers as novel COX-2 inhibitors with low ulcerogenicity. Among them, 6-fluoro-3-(4-methoxyphenyl)-2-(2-(thiophen-3-yl)ethoxy)-2-(trifluoromethyl)-2H-chromene (E25) significantly suppressed LPS-induced release of NO and PGE2, expression of COX-2 and iNOS, and activation of NF-κB pathway. The inhibitory effect of E25 on human recombinant COX-2 (IC50 = 70.7 ± 4.7 nM) and molecular docking studies suggest that E25 functions as a COX-2 inhibitor. Moreover, the results of the cellular thermal shift assay also substantiate the interaction between E25 and COX-2. E25 manifests potent anti-inflammatory and analgesic efficacy on a par with or even superior to indomethacin in rodent models including carrageenan-induced paw edema, cotton pellet-induced granuloma, acetic acid-induced writhes, and adjuvant-induced arthritis. The possible mechanism of action of E25 might be to bind to COX-2 and suppress the NF-κB pathway as well as the expression of related proteins, thereby exerting anti-inflammatory and analgesic effects. Encouragingly, compared with indomethacin, E25 induces smaller areas and fewer ulcers, a lower level of inflammatory infiltration, a lower expression of MMP-9 and apoptosis of mucosal epithelial cells in rat gastric tissues. Overall, E25 and other analogues are promising candidates worthy of further investigation for the treatment of inflammation and pain, as well as other symptoms in which COX-2 and PGE2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
2
|
Cai N, Gao X, Jia L, Liu Y, Zhou L, Zhao J, Qu J, Zhou Y. 3-(2-Trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles: Mastering anti-inflammation and analgesia while mitigating gastrointestinal side effects. Bioorg Chem 2024; 153:107805. [PMID: 39255608 DOI: 10.1016/j.bioorg.2024.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
A series of 3-(2-trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles (5-1 to 5-29) were developed and characterized. Most of compounds were found to be potent for inhibiting the production of NO in LPS-induced RAW264.7 cells, of which 3-(3-(4-chlorophenyl)-6-methoxy-2-(trifluoromethyl)-4H-chromen-4-yl)-1H-indole (5-25) was the most optimal (IC50 = 4.82 ± 0.34 μΜ) and was capable of significantly suppressing the release of PGE2. The inhibitory effect of 5-25 on human recombinant COX-2 (IC50 = 51.7 ± 1.3 nM) was measured and molecular docking was performed, determining 5-25 as a COX-2 inhibitor. Additionally, the interaction between 5-25 and COX-2 was determined by the CETSA technique. Then, 5-25 inhibited the degradation of IκB, the phosphorylation and nuclear translocation of NF-κB p65, and the expression of COX-2 and iNOS. Moreover, it was verified that 5-25 exhibited efficacy in rodent models of inflammation and pain, encompassing the paw edema, cotton pellet-induced granuloma, acid-induced writhing, and adjuvant-induced arthritis models. Therefore, the mechanism of 5-25 may be to bind to COX-2 and exert anti-inflammatory and analgesic effects in vitro and in vivo by suppressing the NF-κB pathway. Encouragingly, in comparison with indomethacin, 5-25 exhibited a lower ulcerative potential in rats, as manifested by generating smaller areas and fewer ulcers, less inflammatory infiltration, a lower expression of MMP-9, and less apoptosis. In conclusion, 5-25 is a candidate drug with high activity and low ulcerogenic potential, and it deserves further research for the treatment of inflammation, pain, and other symptoms in which COX-2 plays a role in their pathogenesis.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lingwei Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
3
|
Ye HY, Shang ZZ, Gao X, Zha XQ, Zhang FY, Li QM, Liu J, Luo JP. Dendrobium huoshanense stem polysaccharide exhibits gastroprotective effect via regulating PI3K/AKT, NF-κB and Nrf-2 signaling in high-salt diet-induced gastritis mice. FOOD BIOSCI 2024; 62:105309. [DOI: 10.1016/j.fbio.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Wang XY, Hao M, Li YP, Zhang J, Xu QS, Yang F, Yang ZC, Xiong YR, Gong ES, Luo JH, Zou Q. Structural characteristics of a purified Evodiae fructus polysaccharide and its gastroprotection and relevant mechanism against alcohol-induced gastric lesions in rats. Int J Biol Macromol 2024; 281:136410. [PMID: 39395514 DOI: 10.1016/j.ijbiomac.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Evodiae fructus polysaccharide (EFP) has been previously shown to protect against alcohol-induced gastric lesions. However, which and how active fractions in EFP exert gastroprotection remains unclear. This study aimed to characterize the structure of the purified fraction (EFP-2-1) of EFP, and investigate its gastroprotection and underlying mechanisms. EFP-2-1 was obtained through column chromatography, and was characterized using instrumental analytical techniques. Gastroprotective effect of EFP-2-1 was evaluated using alcohol-induced gastric lesions in rats, and its mechanism was explored through proteomics, metabolomics and diversity sequencing. Results showed that EFP-2-1 had a molecular weight of 7.3 kDa, and consisted mainly of rhamnose, galacturonic acid, galactose and arabinose. Its backbone contained HG and RG-I domains, and branched with →5)-α-l-Araf-(1→, α-l-Araf-(1→ and →4)-β-d-Galp-(1→ residues. EFP-2-1 reduced gastric lesions and the levels of MDA, TNF-α and IL-6, activated PPARγ, primarily altered protein digestion and absorption and bile secretion metabolic pathways, regulated gut microbiota like Faecalibaculum and Lachnoclostridium, and increased short-chain fatty acids production. Correlations were observed among the gut microbiota, metabolites and biochemical indexes influenced by EFP-2-1. These findings suggest that EFP-2-1 is an active fraction of EFP for protecting against alcohol-induced gastric lesions, which may be linked to PPARγ activation, gut microbiota and serum metabolism.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Hao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Quan-Sheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Zi-Chao Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yu-Rou Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Tang B, Li L, Yu Y, Wang G, Ma S, Yu S, Zhang J. Albizzia chinensis (Osbeck) Merr extract YS ameliorates ethanol-induced acute gastric ulcer injury in rats by regulating NRF2 signaling pathway. Animal Model Exp Med 2024; 7:275-282. [PMID: 38659237 PMCID: PMC11228084 DOI: 10.1002/ame2.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/24/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Around the world, there is a high incidence of gastric ulcers. YS, an extract from the Chinese herb Albizzia chinensis (Osbeck) Merr, has potential therapeutic applications for gastrointestinal diseases. Here we elucidated the protective effect and underlying mechanism of action of YS on gastric ulcer in rats injured by ethanol. METHODS The ethanol-induced gastric ulcer rat model was used to assess the protective effect of YS. A pathological examination of gastric tissue was performed by H&E staining. GES-1 cells damaged by hydrogen peroxide were used to simulate oxidative damage in gastric mucosal epithelial cells. Endogenous NRF2 was knocked down using small interfering RNA. Immunoprecipitation was used to detect ubiquitination of NRF2. Co-immunoprecipitation was used to detect the NRF2-Keap1 interaction. RESULTS YS (10 and 30 mg/kg, i.g.) significantly reduced the ulcer index, decreased MDA level, and increased SOD and GSH levels in gastric tissues damaged by ethanol. YS promoted NRF2 translocation from cytoplasm to nucleus and enhanced the NQO1 and HO-1 expression levels in injured rat gastric tissue. In addition, YS regulated NQO1 and HO-1 via NRF2 in H2O2-induced oxidative injured GES-1 cells. Further studies on the underlying mechanism indicated that YS reduced the interaction between NRF2 and Keap1 and decreased ubiquitylation of NRF2, thereby increasing its stability and expression of downstream factors. NRF2 knockdown abolished the effect of YS on MDA and SOD in GES-1 cells treated with H2O2. CONCLUSION YS reduced the NRF2-Keap1 interaction, promoting NRF2 translocation into the nucleus, which increasing the transcription and translation of NQO1 and HO-1 and improved the antioxidant capacity of rat stomach.
Collapse
Affiliation(s)
- Bo Tang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
| | - Liangning Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
| | - Yuanzhi Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
| | - Guibin Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
| | - Shuanggang Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Shishan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Jianjun Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Digestive Health, Beijing, China
| |
Collapse
|
6
|
Pumphrey SA, Harman CD, Anderson AL, Sweigart B, Komáromy AM. Relative ability of aqueous humor from dogs with and without primary angle-closure glaucoma and ADAMTS10 open-angle glaucoma to catalyze or inhibit collagenolysis. Vet Ophthalmol 2024; 27:238-247. [PMID: 37658474 PMCID: PMC10904665 DOI: 10.1111/vop.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE The objective of the study was to compare the ability of aqueous humor (AH) from dogs with primary angle-closure glaucoma (CPACG), companion dogs without overt evidence of CPACG, and Beagles with and without ADAMTS10 open-angle glaucoma (ADAMTS10-OAG) to catalyze or inhibit collagenolysis. ANIMALS STUDIED Seventeen normal pet dogs, 27 dogs with CPACG, 19 Beagles with ADAMTS10-OAG, and 4 unaffected Beagles. PROCEDURES A fluorescein-based substrate degradation assay was used to assess AH proteolytic capacity. Samples were then assayed using the same substrate degradation assay, with recombinant activated matrix metalloproteinase-2 (MMP-2) added to measure protease inhibition effects. RESULTS For the protease activity assay, relative fluorescence (RF) for AH from normal pet dogs was 13.28 ± 2.25% of control collagenase while RF for AH from dogs with CPACG was 17.47 ± 4.67%; RF was 8.57 ± 1.72% for ADAMTS10-OAG Beagles and 7.99 ± 1.15% for unaffected Beagles. For the MMP-2 inhibition assay, RF for AH from normal dogs was 34.96 ± 15.04% compared to MMP-2 controls, while RF from dogs with CPACG was 16.69 ± 7.95%; RF was 85.85 ± 13.23% for Beagles with ADAMTS10-OAG and 94.51 ± 8.36% for unaffected Beagles. Significant differences were found between dogs with CPACG and both normal pet dogs and dogs with ADAMTS10-OAG and between normal pet dogs and both groups of Beagles. CONCLUSIONS AH from dogs with CPACG is significantly more able to catalyze proteolysis and inhibit MMP-2 than AH from normal dogs or dogs with ADAMTS10-OAG. Results suggest that pathogenesis may differ between CPACG and ADAMTS10-OAG.
Collapse
Affiliation(s)
- Stephanie A. Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Christine D. Harman
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| | - Amanda L. Anderson
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| | - Benjamin Sweigart
- Biostatistics, Epidemiology, and Research Design (BERD) Center, Tufts Medical Center, Boston, MA, USA
| | - András M. Komáromy
- Michigan State University Veterinary Medical Center, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Gong H, Zhao N, Zhu C, Luo L, Liu S. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117793. [PMID: 38278376 DOI: 10.1016/j.jep.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric ulcer (GU) is the injury of the gastric mucosa caused by the stimulation of various pathogenic factors penetrating the deep mucosal muscle layer. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in treating GU due to its multitarget, multilevel, and multi-pathway effects. AIM OF THE STUDY To review the latest research progress in the treatment of GU by TCM, including clinical and experimental studies, focusing on the target and mechanism of action of drugs and providing a theoretical basis for the treatment of GU by natural herbs. MATERIALS AND METHODS Electronic databases (PubMed, Elsevier, Springer, Web of Science, and CNKI) were searched using the keywords "gastric ulcer", "gastric mucosal lesion", "TCM" and or paired with "peptic ulcer" and "natural drugs" for studies published in the last fifteen years until 2023. RESULTS TCM, including single components of natural products, Chinese patent medicines (CPM), and TCM decoction, is expected to treat GU by regulating various mechanisms, such as redox balance, inflammatory factors, angiogenesis, gastric mucosal protective factors, intestinal flora, apoptosis, and autophagy. CONCLUSIONS We discussed and summarized the mechanism of TCM in the treatment of GU, which provided a sufficient basis for TCM treatment of GU.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Li YF, Zhu BW, Chen T, Chen LH, Wu D, Hu JN. Construction of Magnolol Nanoparticles for Alleviation of Ethanol-Induced Acute Gastric Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7933-7942. [PMID: 38546719 DOI: 10.1021/acs.jafc.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ethanol (EtOH) has been identified as a potential pathogenic factor in gastric ulcer development primarily due to its association with gastric injury and excessive production of reactive oxygen species. Magnolol (Mag), the principal active compound in Magnolia officinalis extract, is well studied for its notable anti-inflammatory and antioxidant properties. However, its limited solubility, propensity for agglomeration, and low absorption and utilization rates significantly restrict its therapeutic use. This study aims to overcome these challenges by developing a Mag nanoparticle system targeting the treatment and prevention of EtOH-induced gastric ulcers in mice. Utilizing a click chemistry approach, we successfully synthesized this system by reacting thiolated bovine serum albumin (BSA·SH) with Mag. The in vitro analysis revealed effective uptake of the BSA·SH-Mag nanoparticle system by human gastric epithelial cells (GES-1), showcasing its antioxidant and anti-inflammatory capabilities. Additionally, BSA·SH-Mag exhibited gradual disintegration and release in simulated gastric fluid, resulting in a notable reduction of oxidative stress in gastric tissues and mucosal tissue repair and effectively reducing inflammatory expression. Furthermore, BSA·SH-Mag attenuated EtOH-induced gastric inflammation by decreasing the level of NOX4 protein expression and augmenting the level of Nrf2 protein expression. In conclusion, our findings indicate that BSA·SH-Mag represents a promising candidate as an oral therapeutic for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Venturini CL, Damazo AS, Silva MJD, Muller JDAI, Oliveira DM, Figueiredo FDF, Serio BFD, Arunachalam K, Martins DTDO. Antiulcer activity and mechanism of action of the hydroethanolic extract of leaves of Terminalia argentea Mart. In different in vivo and in vitro experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116972. [PMID: 37517568 DOI: 10.1016/j.jep.2023.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. (Combretaceae) is a deciduous tree commonly found in Brazil, Bolivia, and Paraguay. It occurs in all regions of Brazil and is widespread in the Amazon, Cerrado, Pantanal, Atlantic Rain Forest, and Caatinga Biomes. In the traditional medicine of Brazil, people widely use tea or decoction of its leaf materials for treating gastritis, ulcers, wound healing, and inflammation. AIM OF THE STUDY The current study aims to evaluate the gastroprotective and ulcer-healing activities of the hydroethanolic extract of T. argentea leaves (HETa) and investigate the underlying mechanisms of action through in vivo and in vitro experiments. METHODS We extracted the leaves of T. argentea with a 70% hydroethanolic solution (HETa) and performed phytochemical analysis using high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MSn). We researched the antiulcer activity using in vivo and in vitro experiments, administering three doses (2, 10, and 50 mg/kg) and different concentrations of 1, 5, and 20 μg/mL, respectively. We verified the acute antiulcer activity using chemical models (acidified ethanol (EtOH/HCl) and indomethacin (IND)) and physiological models (water-immersion stress (WRS)). To induce chronic ulcers, used acetic acid and treated the animals for seven days. To investigate the mechanism of action, conducted assays of antioxidant activity, measured the dosage of inflammatory cytokines, quantified mucus, treated with inhibitors (IND, L-NAME, glibenclamide, and yohimbine), performed histopathological analysis, and measured gastric acid secretion. Furthermore, we performed in vitro experiments on murine macrophage cell lines (RAW 264-7 cells) to quantify nitrite/nitrate and cytokine production and on V79-4 cells to verify cell proliferation/migration. RESULTS We conducted HPLC and ESI-MSn analyses to obtain a fingerprint of the chemical composition of the HETa, revealing the presence of phenolics (caffeoyl ellagic acid), flavonoids (rutin, quercetin xyloside, quercetin rhamnoside, quercetin glucoside, quercetin galloyl xyloside, quercetin), and tannins (terminalin), respectively. The three doses of HETa reduced acute and chronic ulcers in different models. The mechanism of action involves increasing mucus production and angiogenesis, and it partially involves prostaglandins, nitric oxide, K+ATP channels, and α2-adrenergic receptors. HETa also exhibited antioxidant potential, reducing myeloperoxidase (MPO) activity, and increasing glutathione (GSH) levels. Moreover, it demonstrated anti-inflammatory action by reducing nitrite/nitrate levels and pro-inflammatory cytokine concentrations in vivo, and it increased in vitro proliferation/migration of fibroblasts. CONCLUSIONS The study shows that HETa presents a potent preventive and curative antiulcer effect in different ulcer models, supporting the popular use of homemade preparations of T. argentea leaves. The preventive and gastric healing ulcer activity of HETa involves multiple targets, including increasing the gastric mucus barrier, antioxidant defenses, and anti-inflammatory effects on gastric mucosa repair. Phytochemical analysis identified the presence of phenolic compounds, flavonoids, and tannins in HETa, and the antiulcer activity may be attributable to the combined effect of these constituents.
Collapse
Affiliation(s)
- Claudio Luis Venturini
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Amilcar Sabino Damazo
- Histology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Marcelo José Dias Silva
- Laboratory of Medicinal Plants and Herbal Medicines, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, Minas Gerais, Brazil.
| | - Jessica de Araujo Isaias Muller
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Darley Maria Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop Campus, Mato Grosso, Brazil.
| | - Fabiana de Freitas Figueiredo
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Bruna Fioravante Di Serio
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Faculty of Medicine, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Post-Graduate Program in Health and Development of the Midwest Region, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
10
|
Jabbar AA, Mothana RA, Ameen Abdulla M, Othman Abdullah F, Abdul-Aziz Ahmed K, Rizgar Hussen R, Hawwal MF, Fantoukh OI, Hasson S. Mechanisms of anti-ulcer actions of Prangos pabularia (L.) in ethanol-induced gastric ulcer in rats. Saudi Pharm J 2023; 31:101850. [PMID: 37965491 PMCID: PMC10641563 DOI: 10.1016/j.jsps.2023.101850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).
Collapse
Affiliation(s)
- Ahmed A.J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rawaz Rizgar Hussen
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
11
|
Ying S, Liu L, Luo C, Liu Y, Zhao C, Ge W, Wu N, Ruan Y, Wang W, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 induces TIMP3 expression by glomerular mesangial cells via TRAF6-dependent KLF5 K63-linked ubiquitination in rat Thy-1 nephritis. Int Immunopharmacol 2023; 124:110970. [PMID: 37748221 DOI: 10.1016/j.intimp.2023.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.
Collapse
Affiliation(s)
- Shuai Ying
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Longfei Liu
- Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Can Luo
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Microbiology and Immunology, Jiangsu Health Vocational College, Nanjing, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Ge
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Ningxia Wu
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Yuting Ruan
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Weiming Wang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China.
| | - Yingwei Wang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Rudra DS, Chatterjee S, Pal U, Mandal M, Chaudhuri SR, Bhunia M, Maiti NC, Besra SE, Jaisankar P, Swarnakar S. Newly Synthesized 3-Indolyl Furanoid Inhibits Matrix Metalloproteinase-9 Activity and Prevents Nonsteroidal Anti-inflammatory Drug-Induced Gastric Ulceration. J Med Chem 2023. [PMID: 37186543 DOI: 10.1021/acs.jmedchem.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Indomethacin, a known nonsteroidal anti-inflammatory drug (NSAID) induces gastric inflammation, causing degradation of the extracellular matrix by specific matrix metalloproteinases (MMPs). We investigated the antiulcer efficacy of 3-indolyl furanoids (3g and 3c, i.e., methoxy substitution at 4- and 5-positions of the indole ring, respectively), derived from indomethacin. Interestingly, 3g protected against indomethacin-induced gastropathy in vivo by inhibiting MMP-9. Our work established a chemical modification strategy for the development of safer NSAIDs. Moreover, in vitro and in silico studies confirmed that 3g inhibited MMP-9 activity with an IC50 value of 50 μM by binding to the catalytic cleft of MMP-9, leading to ulcer prevention. Pharmacokinetics was presented as the mean concentration-time profile in the rat plasma, and the extraction efficiency was greater than 70%, showing a Cmax of 104.48 μg/mL after 6.0 h (tmax) treatment with half-life and area under the curve being 7.0 h and 1273.8 h μg/mL, respectively, indicating the higher antiulcer potency of 3g.
Collapse
|
13
|
Li J, Hu G, Liu W, Cao X, Chen G, Peng F, Xiaofang X, Peng C. Patchouli alcohol against renal fibrosis of spontaneously hypertensive rats via Ras/Raf-1/ERK1/2 signalling pathway. J Pharm Pharmacol 2023:7161501. [PMID: 37177974 DOI: 10.1093/jpp/rgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES The present study was designed to obverse the protection of patchouli alcohol (PA) ameliorates hypertensive nephropathy in spontaneously hypertensive rats (SHR) and reveals potential mechanism. METHODS Briefly, the adult spontaneously hypertensive rats (SHR) or Wistar-Kyoto (WKY) rats (half male and half female) were intragastric gavaged or not with PA (80, 40 and 20 mg/kg) for 8 weeks. Body weight, blood pressure (BP), renal weight, renal function and renal morphology were measured. Further, western blotting and immunohistochemical analysis were used to study the underlying mechanism. KEY FINDINGS Compared with the WKY group, plasmatic levels of renin, angiotensin II (Ang-II), transforming growth factor beta 1(TGF-β1), plasminogen activator inhibitor-1(PAI-1), creatinine (Cr), blood urea nitrogen (BUN), renal index, mRNA levels of ERK1/2 and α-SMA were significantly increased in SHR. Histology results showed that renal tubular injury and tubulointerstitial fibrosis occurred in SHR. After administration, SBP of captopril group decreased at each week after administration, especially at 3, 5, 6 7 and 8 weeks (P < 0.05 or P < 0.01). There is no significant effect was assessed in the olive oil group. Decreased plasma Cr, Renin, Ang-II, TGF-β1, PAI-1, SCFAs and Renin, TGF-β1, PAI-1 in renal tissues were observed significantly in captopril (P <0.05 or P < 0.01). Plasma BUN, Ang-II, TGF-β1 and PAI-1 in renal tissues decreased in the olive oil group significantly (P <0.05 or P < 0.01). PA (80, 40 and 20 mg/kg) lowered BP and plasmatic levels of Renin, Ang-II, TGF-β1 and PAI-1. Treatment with PA (40, 20 mg/kg) decreased levels of Cr, BUN and suppressed of activation of pro-fibrosis cytokines including TGF-β1 in kidney. There is no ameliorative change in the olive oil group and the captopril group (P > 0.05) while PA treatment alleviated renal tubular injury and produced dramatic collagen fibre area reductions in mesangial membrane, basement membrane, and renal interstitium obviously (P < 0.05 or P < 0.01). Treatment of SHR with PA-inhibited MFB activation and downregulated mRNA of α-SMA. Treatment with PA suppressed excessive production of the extracellular matrix (ECM) via decreasing Col I, III and FN, downregulating mRNA of tissue inhibitor of TIMP-1 along with upregulating mRNA of MMP-9. The expression of Col III and MMP-9 mRNA-reduced in the captopril group (P < 0.05). In addition, the expression of ERK1/2 and pERK1/2 also reduced in the captopril group significantly (P < 0.05 or P < 0.01). Treatment with PA (20 mg/kg) downregulated proteins expression of Raf-1, ERK1/2 and pERK1/2 and mRNA expression of Ras, Raf-1 and ERK1/2. CONCLUSIONS Overall, PA restored normal BP, alleviated renal dysfunction and renal fibrosis, possibly by suppressing Ang II and TGF-β1-mediated Ras/Raf-1/ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanying Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanru Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Xie Xiaofang
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
14
|
Fu K, Li Y, Dai S, Li Y. Exploration of the Molecular Basis of Forsythia Fruit in the Prevention and Treatment of Cholestatic Liver Injury through Network Pharmacology and Molecular Docking. Nutrients 2023; 15:2065. [PMID: 37432229 DOI: 10.3390/nu15092065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Forsythia fruit, edible fruit of Forsythia suspensa (Thunb.) Vahl, which has been found to be effective in treating cholestasis. However, its key component for alleviating cholestasis has not been determined. In this study, four representative active ingredients in forsythia fruit were selected. Through network pharmacology and molecular docking technology, we tried to find the key component for its treatment of cholestasis. Furthermore, the model of cholestasis in mice was established to verify the protective effect of the key component on cholestasis. Network pharmacology and molecular docking showed that forsythoside A (FTA) is the key component of forsythia fruit in the treatment of cholestasis. In vivo experiments revealed that FTA treatment could alleviate liver injury, dysfunction, and collagen deposition induced by cholestasis in mice. At the same time, FTA treatment inhibited inflammatory factor release and fibrosis-related factor expression. In addition, FTA treatment also reduced MMP-2, TLR4, MYD88, NF-κB p65, and p-NF-κB p65 protein expression. In conclusion, FTA, a key component of forsythia fruit, alleviated liver damage and fibrosis caused by cholestasis via inhibiting the TLR4/NF-κB pathway, extracellular matrix accumulation, and inflammatory cytokine expression. The research results could provide a scientific reference for the development of forsythia fruit as a drug or functional food to prevent and treat cholestasis.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
15
|
Li L, Jing J, Yang S, Fang S, Liu W, Wang C, Li R, Liu T, Zheng L, Yang C. Bletilla striata Polysaccharide Nanoparticles Improved the Therapeutic Efficacy of Omeprazole on the Rat Gastric Ulcer Induced by Ethanol. Mol Pharm 2023; 20:1996-2008. [PMID: 36827081 DOI: 10.1021/acs.molpharmaceut.2c00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gastric ulcers are a common clinical presentation affecting anyone, regardless of their age or gender. Nanoparticles (NPs) containing Bletilla striata polysaccharide (BSP) and omeprazole (OME) were investigated in the study for their therapeutic effect on gastric ulcers. Ethanol-induced gastric ulcers in rats (240 ± 30 g) were established. Our OME-BSP NPs were more stable than free OME in the acidic environment and can increase the absorption of OME in rat stomach, which was confirmed by in situ gastric absorption and distribution experiments. The extended blood circulation of OME-BSP NPs was also observed in rats with gastric ulcer. More importantly, OME-BSP NPs not only decreased the area of gastric ulcer and inhibited gastric acid secretion but also reversed gastric tissue damage and cell apoptosis, as revealed by HE and TUNEL staining. Subsequent SOD, MDA, PGE2, IL-6, and TNF-α tests further verified the superiority of OME-BSP NPs against rat gastric ulcer, which properly originated from superior antioxidant and anti-inflammatory effects. As a result, our OME-BSP NPs' drug delivery system improved the stability and absorption of OME in the rat stomach and achieved targeted treatment of gastric ulcers.
Collapse
Affiliation(s)
- Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
16
|
Pham EC, Le Thi TV, Ly Hong HH, Vo Thi BN, Vong LB, Vu TT, Vo DD, Tran Nguyen NV, Bao Le KN, Truong TN. N,2,6-Trisubstituted 1 H-benzimidazole derivatives as a new scaffold of antimicrobial and anticancer agents: design, synthesis, in vitro evaluation, and in silico studies. RSC Adv 2022; 13:399-420. [PMID: 36605630 PMCID: PMC9782508 DOI: 10.1039/d2ra06667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Compounds containing benzimidazole moiety occupy privileged chemical space for discovering new bioactive substances. In continuation of our recent work, 69 benzimidazole derivatives were designed and synthesized with good to excellent yields of 46-99% using efficient synthesis protocol i.e. sodium metabisulfite catalyzed condensation of aromatic aldehydes with o-phenylenediamines to form 2-arylbenzimidazole derivatives followed by N-alkylation by conventional heating or microwave irradiation for diversification. Potent antibacterial compounds against MSSA and MRSA were discovered such as benzimidazole compounds 3k (2-(4-nitrophenyl), N-benzyl), 3l (2-(4-chlorophenyl), N-(4-chlorobenzyl)), 4c (2-(4-chlorophenyl), 6-methyl, N-benzyl), 4g (2-(4-nitrophenyl), 6-methyl, N-benzyl), and 4j (2-(4-nitrophenyl), 6-methyl, N-(4-chlorobenzyl)) with MIC of 4-16 μg mL-1. In addition, compound 4c showed good antimicrobial activities (MIC = 16 μg mL-1) against the bacteria strains Escherichia coli and Streptococcus faecalis. Moreover, compounds 3k, 3l, 4c, 4g, and 4j have been found to kill HepG2, MDA-MB-231, MCF7, RMS, and C26 cancer cells with low μM IC50 (2.39-10.95). These compounds showed comparable drug-like properties as ciprofloxacin, fluconazole, and paclitaxel in computational ADMET profiling. Finally, docking studies were used to assess potential protein targets responsible for their biological activities. Especially, we found that DHFR is a promising target both in silico and in vitro with compound 4c having IC50 of 2.35 μM.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Tuong Vi Le Thi
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, City Children's Hospital 700000 Ho Chi Minh City Vietnam
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Huong Ha Ly Hong
- Department of Pharmacognosy & Botany, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Bich Ngoc Vo Thi
- Department of Pharmacognosy & Botany, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Long B Vong
- School of Biomedical Engineering, International University 700000 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh 700000 Vietnam
| | - Thao Thanh Vu
- Department of Microbiology - Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Duy Duc Vo
- Uppsala University, Sweden, Tra Vinh University Vietnam
| | - Ngoc Vi Tran Nguyen
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Khanh Nguyen Bao Le
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| |
Collapse
|
17
|
Basha NJ. Therapeutic Efficacy of Benzimidazole and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous Bengaluru, India
| |
Collapse
|
18
|
Li C, Wen R, Liu D, Yan L, Gong Q, Yu H. Assessment of the Potential of Sarcandra glabra (Thunb.) Nakai. in Treating Ethanol-Induced Gastric Ulcer in Rats Based on Metabolomics and Network Analysis. Front Pharmacol 2022; 13:810344. [PMID: 35903344 PMCID: PMC9315220 DOI: 10.3389/fphar.2022.810344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric ulcer (GU) is one of the most commonly diagnosed diseases worldwide, threatening human health and seriously affecting quality of life. Reports have shown that the Chinese herbal medicine Sarcandra glabra (Thunb.) Nakai (SGN) can treat GU. However, its pharmacological effects deserve further validation; in addition, its mechanism of action is unclear. An acute gastric ulcer (AGU) rat model induced by alcohol was used to evaluate the gastroprotective effect of SGN by analysis of the histopathological changes in stomach tissue and related cytokine levels; the potential mechanisms of action of SGN were investigated via serum metabolomics and network pharmacology. Differential metabolites of rat serum were identified by metabolomics and the metabolic pathways of the identified metabolites were enriched via MetaboAnalyst. Furthermore, the critical ingredients and candidate targets of SGN anti-AGU were elucidated. A compound-reaction-enzyme-gene network was established using Cytoscape version 3.8.2 based on integrated analysis of metabolomics and network pharmacology. Finally, molecular docking was applied to verify the acquired key targets. The results showed that SGN exerted a certain gastroprotective effect via multiple pathways and targets. The effects of SGN were mainly caused by the key active ingredients isofraxidin, rosmarinic, and caffeic acid, which regulate hub targets, such as PTGS2, MAPK1, and KDR, which maintain the homeostasis of related metabolites. Signal pathways involved energy metabolism as well as immune and amino acid metabolism. Overall, the multi-omics techniques were proven to be promising tools in illuminating the mechanism of action of SGN in protecting against diseases. This integrated strategy provides a basis for further research and clinical application of SGN.
Collapse
Affiliation(s)
- Chao Li
- School of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rou Wen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - DeWen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - LiPing Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| |
Collapse
|