1
|
Brækkan SK, Onsaker AL, Nøst TH, Tang W, Hindberg KD, Morelli VM, Guan W, Jonasson C, Folsom AR, Hveem K, Hansen JB. The Plasma Proteome and Risk of Future Venous Thromboembolism-Results from the HUNT Study. Thromb Haemost 2024. [PMID: 39586830 DOI: 10.1055/a-2484-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND This study aimed to identify novel plasma proteins associated with first-lifetime venous thromboembolism (VTE) and molecular pathways involved in VTE pathogenesis. METHODS A case-cohort comprising incident VTE cases (n = 294) and a randomly sampled age- and sex-weighted subcohort (n = 1,066) was derived from the Trøndelag Health Study (HUNT3, n = 50,800). Blood samples were collected and stored at cohort inclusion (2006-2008), and participants were followed up to 5 years. Proteome-wide analyses was performed using the 7k SomaScan® proteomics platform, and weighted Cox-regression models adjusted for age, sex, and sample batch were conducted, with the Bonferroni method applied to account for multiple testing. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied on the top-ranked 200 proteins associated with VTE. RESULTS Out of 7,288 human proteins, 7 proteins were significantly associated with higher VTE risk with p-value <6.9 × 10-6 (hazard ratios per 1 standard deviation increase in protein levels ranging from 1.39 to 1.86). Except for coagulation factor VIII and tumor necrosis factor soluble receptor II, these proteins were novel associations and included collagen alpha-3(VI):BPTI/Kunitz inhibitor, histo-blood group ABO system transferase, peroxidasin, human epididymis protein 4, and regulator of G protein signaling 3. KEGG analyses of the top-ranked 200 proteins revealed significant pathway enrichment of nine proteins in the complement (mainly lectin pathway) and coagulation (mainly intrinsic pathway) cascades. CONCLUSION Our proteome-wide analysis led to discovery of five novel protein candidates associated with 5-year risk of future VTE. KEGG analyses supported an interplay between the complement and coagulation pathways in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Sigrid K Brækkan
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
- Thrombosis Research group (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Asbjørn L Onsaker
- Thrombosis Research group (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Therese H Nøst
- HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Community Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States
| | - Kristian D Hindberg
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Vania M Morelli
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
- Thrombosis Research group (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States
| | - Christian Jonasson
- HUNT Research Center, Norwegian University of Science and Technology, Levanger, Norway
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Norwegian University of Science and Technology, Levanger, Norway
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
- Thrombosis Research group (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Salman O, Zamani P, Zhao L, Dib MJ, Gan S, Azzo JD, Pourmussa B, Richards AM, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, Liu L, Gunawardhana KL, Greenawalt D, Carayannopoulos L, Chang C, van Empel V, Gogain J, Schafer PH, Gordon DA, Ramirez‐Valle F, Cappola TP, Chirinos JA. Prognostic Significance and Biologic Associations of Senescence-Associated Secretory Phenotype Biomarkers in Heart Failure. J Am Heart Assoc 2024; 13:e033675. [PMID: 39206715 PMCID: PMC11646520 DOI: 10.1161/jaha.123.033675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The role of cellular senescence in human heart failure (HF) remains unclear. The senescence-associated secretory phenotype (SASP) is composed of proteins released by senescent cells. We assessed the prognostic significance and biologic pathways associated with the SASP in human HF using a plasma proteomics approach. METHODS AND RESULTS We measured 25 known SASP proteins among 2248 PHFS (Penn HF Study) participants using the SOMAScan V4 assay. We extracted the common variance in these proteins to generate SASP factor scores and assessed the relationship between these SASP factor scores and (1) all-cause death and (2) the composite of death or HF hospital admission. We also assessed the relationship of each SASP factor to 4746 other proteins, correcting for multiple comparisons, followed by pathway analyses. Two SASP factors were identified. Both factors were associated with older age, lower estimated glomerular filtration rate, and more advanced New York Heart Association class, among other clinical variables. Both SASP factors exhibited a significant positive association with the risk of death independent of the Meta-Analysis of Global-Group in Chronic HF score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. The 2 identified SASP factors were associated with 1201 and 1554 proteins, respectively, belonging to various pathways including the coagulation system, complement system, acute phase response signaling, and retinoid X receptor-related pathways that regulate cell metabolism. CONCLUSIONS Increased SASP components are independently associated with adverse outcomes in HF. Biologic pathways associated with SASP are predominantly related to coagulation, inflammation, and cell metabolism.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | - Marie Joe Dib
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Sushrima Gan
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Joe David Azzo
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore CitySingapore
- Christchurch Heart Institute, University of OtagoDunedinNew Zealand
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | | | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University and Ghent University HospitalGhentBelgium
| | - Manyun Zhao
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | | | - Laura Liu
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM)MaastrichtNetherlands
| | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
3
|
Edelmann S, Balaji J, Pasche S, Wiegand A, Nieratschker V. DNA Methylation of PXDN Is Associated with Early-Life Adversity in Adult Mental Disorders. Biomolecules 2024; 14:976. [PMID: 39199364 PMCID: PMC11353138 DOI: 10.3390/biom14080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Early-life adversity (ELA) is characterized by exposure to traumatic events during early periods of life, particularly involving emotional, sexual and/or physical adversities during childhood. Mental disorders are strongly influenced by environmental and lifestyle-related risk factors including ELA. However, the molecular link between ELA and the risk of an adult mental disorder is still not fully understood. Evidence is emerging that long-lasting changes in the epigenetic processes regulating gene expression, such as DNA methylation, play an important role in the biological mechanisms linking ELA and mental disorders. Based on a recent study, we analyzed the DNA methylation of a specific CpG site within the gene PXDN-cg10888111-in blood in the context of ELA across a set of psychiatric disorders, namely Borderline Personality Disorder (BPD), Major Depressive Disorder (MDD) and Social Anxiety Disorder (SAD), and its potential contribution to their pathogenesis. We found significant hypermethylation in mentally ill patients with high levels of ELA compared to patients with low levels of ELA, whereas cg10888111 methylation in healthy control individuals was not affected by ELA. Further investigations revealed that this effect was driven by the MDD cohort. Providing a direct comparison of cg10888111 DNA methylation in blood in the context of ELA across three mental disorders, our results indicate the role of PXDN regulation in the response to ELA in the pathogenesis of mental disorders, especially MDD. Further studies will be needed to validate these results and decipher the corresponding biological network that is involved in the transmission of ELA to an adult mental disorder in general.
Collapse
Affiliation(s)
- Susanne Edelmann
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Jeysri Balaji
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Sarah Pasche
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
| | - Ariane Wiegand
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
4
|
Fu B, Fang C, Li Z, Zeng Z, He Y, Chen S, Yang H. The Effect of Heat Stress on Sensory Properties of Fresh Oysters: A Comprehensive Study Using E-Nose, E-Tongue, Sensory Evaluation, HS-SPME-GC-MS, LC-MS, and Transcriptomics. Foods 2024; 13:2004. [PMID: 38998512 PMCID: PMC11241022 DOI: 10.3390/foods13132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Heat stress has received growing concerns regarding the impact on seafood quality. However, the effects of heat stress on the sensory properties of seafood remain unknown. In this study, the sensory properties of fresh oyster (Crassostrea ariakensis) treated with chronic heat stress (30 °C) for 8 weeks were characterized using electronic nose, electronic tongue, sensory evaluation, HS-SPME-GC-MS, LC-MS and transcriptomics. Overall, chronic heat stress reduced the overall sensory properties of oysters. The metabolic network constructed. based on enrichment results of 423 differential metabolites and 166 differentially expressed genes, showed that the negative effects of chronic heat stress on the sensory properties of oysters were related to oxidative stress, protein degradation, lipid oxidation, and nucleotide metabolism. The results of the study provide valuable insights into the effects of heat stress on the sensory properties of oysters, which are important for ensuring a sustainable supply of high-quality seafood and maintaining food safety.
Collapse
Affiliation(s)
- Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zhongzhi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zeqian Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| |
Collapse
|
5
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
6
|
Matveeva D, Kashirina D, Ezdakova M, Larina I, Buravkova L, Ratushnyy A. Senescence-Associated Alterations in Matrisome of Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:5332. [PMID: 38791371 PMCID: PMC11120844 DOI: 10.3390/ijms25105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (D.M.); (D.K.); (M.E.); (I.L.); (L.B.)
| |
Collapse
|
7
|
Li Y, Jiang B, Chen B, Zou Y, Wang Y, Liu Q, Song B, Yu B. Integrative analysis of bulk and single-cell RNA-seq reveals the molecular characterization of the immune microenvironment and oxidative stress signature in melanoma. Heliyon 2024; 10:e28244. [PMID: 38560689 PMCID: PMC10979206 DOI: 10.1016/j.heliyon.2024.e28244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background The immune microenvironment and oxidative stress of melanoma show significant heterogeneity, which affects tumor growth, invasion and treatment response. Single-cell and bulk RNA-seq data were used to explore the heterogeneity of the immune microenvironment and oxidative stress of melanoma. Methods The R package Seurat facilitated the analysis of the single-cell dataset, while Harmony, another R package, was employed for batch effect correction. Cell types were classified using Uniform Manifold Approximation and Projection (UMAP). The Secreted Signaling algorithm from CellChatDB.human was applied to elucidate cell-to-cell communication patterns within the single-cell data. Consensus clustering analysis for the skin cutaneous melanoma (SKCM) samples was executed with the R package ConsensusClusterPlus. To quantify immune infiltrating cells, we utilized CIBERSORT, ESTIMATE, and TIMERxCell algorithms provided by the R package Immuno-Oncology Biological Research (IOBR). Single nucleotide variant (SNV) analysis was conducted using Maftools, an R package specifically designed for this purpose. Subsequently, the expression levels of PXDN and PAPSS2 genes were assessed in melanoma tissues compared to adjacent normal tissues. Furthermore, in vitro experiments were conducted to evaluate the proliferation and reactive oxygen species expression in melanoma cells following transfection with siRNA targeting PXDN and PAPSS2. Results Malignant tumor cell populations were reclassified based on a comprehensive single-cell dataset analysis, which yielded six distinct tumor subsets. The specific marker genes identified for these subgroups were then used to interrogate the Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) cohort, derived from bulk RNA sequencing data, resulting in the delineation of two immune molecular subtypes. Notably, patients within the cluster2 (C2) subtype exhibited a significantly more favorable prognosis compared to those in the cluster1 (C1) subtype. An alignment of immune characteristics was observed between the C2 subtype and unique immune functional tumor cell subsets. Genes differentially expressed across these subtypes were subsequently leveraged to construct a predictive risk model. In vitro investigations further revealed elevated expression levels of PXDN and PAPSS2 in melanoma tissue samples. Functional assays indicated that modulation of PXDN and PAPSS2 expression could influence the production of reactive oxygen species (ROS) and the proliferative capacity of melanoma cells. Conclusion The constructed six-gene signature can be used as an immune response and an oxidative stress marker to guide the clinical diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Yaling Li
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bin Jiang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bancheng Chen
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Qian Liu
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
8
|
Huang Z, Zhi Y, Cao H, Bian Z, He M. Exosomes Derived from Human Palatal Mesenchymal Cells Mediate Intercellular Communication During Palatal Fusion by Promoting Oral Epithelial Cell Migration. Int J Nanomedicine 2024; 19:3109-3121. [PMID: 38567379 PMCID: PMC10986629 DOI: 10.2147/ijn.s451491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Exosomes are important "messengers" in cell-cell interactions, but their potential effects on palatal fusion are still unknown. This study aimed to explore the role and mechanism of exosomes derived from palatal mesenchymal cells in epithelial-mesenchymal communication during palatogenesis. Methods The expression of exosome marker CD63 and CD81 in palatal cells during palatogenesis was detected by immunofluorescence staining. After being purified from the supernatant of human embryonic palatal mesenchymal (HEPM) cells, exosomes (HEPM-EXO) were characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. HEPM-EXO were co-cultured with human immortalized oral epithelial cells (HIOEC). The effects of HEPM-EXO on the cell proliferation, migration, apoptosis and epithelial-mesenchymal transition (EMT) of HIOEC were evaluated. The proteins encapsulated in HEPM-EXO were analyzed by proteomic analysis. Results The extensive expression of CD63 and CD81 in palatal epithelial and mesenchymal cells were continuously detected during E12.5~E14.5, suggesting that exosomes were involved in the process of palatal fusion. The expression of CD63 was also observed in the acellular basement membrane between the palatal epithelium and the mesenchyme in vivo, and HEPM-EXO could be internalized by HIOEC in vitro, suggesting that exosomes are potent to diffuse through the cellular tissue boundary to mediate palatal cell-cell communication. Exposure of HEPM-EXO to HIOEC substantially inhibited the proliferation and stimulated the migration of HIOEC, but had no significant effect on cell apoptosis and EMT. Proteomic analysis revealed the basic characteristics of the proteins in HEPM-EXO and that exosomal THBS1 may potentially regulate the cell behaviors of HIOEC, which needs further verification. Gene ontology (GO) analysis uncovered that the proteins highly expressed in HEPM-EXO are closely related to wound healing, implying a promising therapeutic opportunity of HEPM-EXO in tissue injury treatment with future studies. Conclusion HEPM-EXO mediated cell-cell communication by regulating cell proliferation and migration of oral epithelial cells during palatogenesis.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yusheng Zhi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Haiyan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhuan Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Miao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
10
|
Yin J, Li D, Zheng T, Hu B, Wang P. Gastrointestinal Degradation and Toxicity of Disinfection Byproducts in Drinking Water Using In Vitro Models and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16219-16231. [PMID: 37847491 DOI: 10.1021/acs.est.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.
Collapse
Affiliation(s)
- Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| |
Collapse
|
11
|
Wyllie K, Panagopoulos V, Cox TR. The role of peroxidasin in solid cancer progression. Biochem Soc Trans 2023; 51:1881-1895. [PMID: 37801286 PMCID: PMC10657184 DOI: 10.1042/bst20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.
Collapse
Affiliation(s)
- Kaitlin Wyllie
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas R. Cox
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Zhu M, Zhang N, Ma J. Hierarchical clustering identifies oxidative stress-related subgroups for the prediction of prognosis and immune microenvironment in gastric cancer. Heliyon 2023; 9:e20804. [PMID: 37928388 PMCID: PMC10622623 DOI: 10.1016/j.heliyon.2023.e20804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Gastric cancer (GC) is a prevalent malignancy of the digestive tract globally, demonstrating a substantial occurrence of relapse and metastasis, alongside the absence of efficacious treatment. Tumor progression and the development of cancer are linked to oxidative stress. Our objective was twofold: first, to determine distinct subcategories based on oxidative stress in GC patients, and second, to establish oxidative stress-related genes that would aid in stratifying the risk for GC patients. Methods TCGA-STAD and GSE84437 datasets were utilized to obtain the mRNA expression profiles and corresponding clinical information of GC patients. Through consensus clustering analysis, distinct subgroups related to oxidative stress were identified. To uncover the underlying mechanisms, GSEA and GSVA were performed. xCell, CIBERSORT, MCPCounter, and TIMER algorithms were employed to evaluate the immune microenvironment and immune status of the different GC subtypes. A prognostic risk model was developed using the TCGA-STAD dataset and substantiated using the GSE84437 dataset. Furthermore, qRT-PCR was employed to validate the expression of genes associated with prognosis. Results Two distinct subtypes of oxidative stress were discovered, with markedly different survival rates. The C1 subtype demonstrated an activated immune signal pathway, a significant presence of immune cell infiltration, high immune score, and a high microenvironment score, indicating a poor prognosis. Moreover, a prognostic signature related to oxidative stress (IMPACT and PXDN) was able to accurately estimate the likelihood of survival for patients with gastric cancer. A nomogram incorporating the patients' gender, age, and risk score was able to predict survival in gastric cancer patients. Additionally, the expression of IMPACT and PXDN showed a strong correlation with overall survival and the infiltration of immune cells. Conclusion Based on signatures related to oxidative stress, we developed an innovative system for categorizing patients with GC. This stratification enables accurate prognostication of individuals with GC.
Collapse
Affiliation(s)
- Meng Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Ning Zhang
- Department of pathology, General Hospital of Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Jingwei Ma
- The second department of tumor surgery, General Hospital of Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| |
Collapse
|
13
|
Kuang L, Zhang M, Wang T, Huang T, Li J, Gan R, Yu M, Cao W, Yan X. The molecular genetics of anterior segment dysgenesis. Exp Eye Res 2023; 234:109603. [PMID: 37495069 DOI: 10.1016/j.exer.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Anterior segment dysgenesis is a severe developmental eye disorder that leads to blindness in children. The exact mechanisms underlying this condition remain elusive. Recently, an increasing amount of studies have focused on genes and signal transduction pathways that affect anterior segment dysgenesis;these factors include transcription factors, developmental regulators, extracellular matrix genes, membrane-related proteins, cytoskeleton proteins and other associated genes. To date, dozens of gene variants have been found to cause anterior segment dysgenesis. However, there is still a lack of effective treatments. With a broader and deeper understanding of the molecular mechanisms underlying anterior segment development in the future, gene editing technology and stem cell technology may be new treatments for anterior segment dysgenesis. Further studies on the mechanisms of how different genes influence the onset and progression of anterior segment dysgenesis are still needed.
Collapse
Affiliation(s)
- Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Min Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, China
| | - Ting Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Jin Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Mingyu Yu
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Wenchao Cao
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China.
| |
Collapse
|
14
|
Li C, Dong X, Yuan Q, Xu G, Di Z, Yang Y, Hou J, Zheng L, Chen W, Wu G. Identification of novel characteristic biomarkers and immune infiltration profile for the anaplastic thyroid cancer via machine learning algorithms. J Endocrinol Invest 2023:10.1007/s40618-023-02022-6. [PMID: 36725810 DOI: 10.1007/s40618-023-02022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Anaplastic thyroid cancer (ATC) is a rare and lethal malignant cancer. In recent years, the application of molecular-driven targeted therapy and immunotherapy has markedly improved the prognosis of ATC. This study aimed to identify characteristic genes for ATC diagnosis and revealed the role of ATC characteristic genes in drug sensitivity and immune cell infiltration. METHODS We downloaded ATC RNA-sequencing data from the GEO database. Following the combination and normalization of the dataset, we first divided the combined datasets into the training cohort and the validation cohort. We identified differentially expressed genes (DEGs) in ATC by differential expression analysis in the training cohort. We used two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) to identify ATC characteristic genes. The CIBERSORT algorithm was performed to calculate the abundance of various immune cells in ATC. Finally, we validated the expression of ATC characteristic genes by quantitative RT-PCR (RT-qPCR) in ATC cell lines and immunohistochemistry (IHC). RESULTS A total of 425 DEGs were identified in the training cohort, including 240 upregulated genes and 185 downregulated genes. Four ATC characteristic genes (ADM, PXDN, MMP1, and TFF3) were identified, and their diagnostic value was validated in the validation cohort (AUC in ROC analysis > 0.75). We established a practical gene expression-based nomogram to accurately predict the probability of ATC. We also found that ATC characteristic biomarkers are associated with the tumor immune microenvironment and drug sensitivity. CONCLUSION ADM, PXDN, MMP1, and TFF3 might serve as potential ATC diagnostic biomarkers and may be helpful for ATC molecular targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- C Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - X Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Q Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - G Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Z Di
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Y Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - L Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - W Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - G Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Zhou X, Sun Q, Xu C, Zhou Z, Chen X, Zhu X, Huang Z, Wang W, Shi Y. A systematic pan-cancer analysis of PXDN as a potential target for clinical diagnosis and treatment. Front Oncol 2022; 12:952849. [PMID: 35982948 PMCID: PMC9380648 DOI: 10.3389/fonc.2022.952849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxidasin (PXDN), also known as vascular peroxidase-1, is a newly discovered heme-containing peroxidase; it is involved in the formation of extracellular mesenchyme, and it catalyzes various substrate oxidation reactions in humans. However, the role and specific mechanism of PXDN in tumor are unclear, and no systematic pan-cancer studies on PXDN have been reported to date. This study employed data from multiple databases, including The Cancer Genome Atlas and The Genotype-Tissue Expression, to conduct a specific pan-cancer analysis of the effects of PXDN expression on cancer prognosis. Further, we evaluated the association of PXDN expression with DNA methylation status, tumor mutation burden, and microsatellite instability. Additionally, for the first time, the relationship of PXDN with the tumor microenvironment and infiltration of fibroblasts and different immune cells within different tumors was explored, and the possible molecular mechanism of the effect was also discussed. Our results provide a comprehensive understanding of the carcinogenicity of PXDN in different tumors and suggest that PXDN may be a potential target for tumor immunotherapy, providing a new candidate that could improve cancer clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Zhou
- Department of Head and Neck Surgery, Centre of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaoquan Chen
- Department of pediatric, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuping Zhu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoshuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Weilin Wang, ; Yanjun Shi,
| | - Yanjun Shi
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Weilin Wang, ; Yanjun Shi,
| |
Collapse
|
17
|
Tangeten C, Zouaoui Boudjeltia K, Delporte C, Van Antwerpen P, Korpak K. Unexpected Role of MPO-Oxidized LDLs in Atherosclerosis: In between Inflammation and Its Resolution. Antioxidants (Basel) 2022; 11:antiox11050874. [PMID: 35624738 PMCID: PMC9137493 DOI: 10.3390/antiox11050874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation and its resolution are the result of the balance between pro-inflammatory and pro-resolving factors, such as specialized pro-resolving mediators (SPMs). This balance is crucial for plaque evolution in atherosclerosis, a chronic inflammatory disease. Myeloperoxidase (MPO) has been related to oxidative stress and atherosclerosis, and MPO-oxidized low-density lipoproteins (Mox-LDLs) have specific characteristics and effects. They participate in foam cell formation and cause specific reactions when interacting with macrophages and endothelial cells. They also increase the production of intracellular reactive oxygen species (ROS) in macrophages and the resulting antioxidant response. Mox-LDLs also drive macrophage polarization. Mox-LDLs are known to be pro-inflammatory particles. However, in the presence of Mox-LDLs, endothelial cells produce resolvin D1 (RvD1), a SPM. SPMs are involved in the resolution of inflammation by stimulating efferocytosis and by reducing the adhesion and recruitment of neutrophils and monocytes. RvD1 also induces the synthesis of other SPMs. In vitro, Mox-LDLs have a dual effect by promoting RvD1 release and inducing a more anti-inflammatory phenotype macrophage, thereby having a mixed effect on inflammation. In this review, we discuss the interrelationship between MPO, Mox-LDLs, and resolvins, highlighting a new perception of the role of Mox-LDLs in atherosclerosis.
Collapse
Affiliation(s)
- Cecilia Tangeten
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
- Correspondence: ; Tel.: +32-2-650-5331
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Keziah Korpak
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
- Department of Geriatric Medicine, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
| |
Collapse
|