1
|
Hu Y, Wang S, Zhang C, Shen C, Li Z, Jiang Y, Dai J, Chen X. Prx5 overexpression protect against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and inflammation via the TLR4/NF-κB pathway. Int Immunopharmacol 2024; 146:113788. [PMID: 39706046 DOI: 10.1016/j.intimp.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The clinical application of Doxorubicin (DOX) is constrained due to its cardiotoxic side effects. Oxidative stress and inflammation are crucial mechanisms driving doxorubicin-induced cardiotoxicity (DIC). Peroxiredoxin 5 (Prx5) is central to these inflammatory responses. However, the specific role of Prx5 in DIC remains unclear. This study aims to investigate the impacts of Prx5 on DIC and the underlying mechanisms. METHODS A cardiac-specific Prx5-overexpressing mice was used to establish a doxorubicin (DOX)-induced cardiotoxicity (DIC) model. Neonatal mouse cardiomyocytes (NMCMs) were cultured and stimulated with DOX. Prx5 overexpression or knockdown in cardiomyocytes was achieved using a Prx5-overexpressing adenovirus or small interfering RNA (siRNA), respectively. Echocardiography, histopathological assessments, and molecular techniques were employed to examine the effects and mechanisms of Prx5 on DIC. RESULTS Prx5 expression is upregulated in cardiac tissues following DOX administration. In DOX-exposed mice, overexpression of Prx5 significantly improved cardiac function and reduced myocardial injury. It inhibited myocardial hypertrophy and fibrosis, and diminished oxidative stress and inflammatory responses. Conversely, Prx5 knockdown in vitro aggravated DOX-induced cardiomyocyte inflammation and oxidative stress. Mechanistically, overexpression of Prx5 also resulted in the downregulation of Toll-like receptor 4 (TLR4) and phosphorylated P65 expression. Moreover, the protective effects of Prx5 were significantly abrogated by a TLR4 agonist. CONCLUSION Prx5 overexpression could protect against DOX-induced cardiac oxidative stress and inflammation. Mechanistically, Prx5 overexpression potentially inhibits the TLR4/NF-κB signaling pathway to improve DOX-induced myocardial injury. These findings strongly suggest that Prx5 could be a potential candidate target for the treatment of DOX-induced myocardial injury.
Collapse
Affiliation(s)
- Yewen Hu
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Shiqi Wang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Chaoxia Zhang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Zhenwei Li
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Yongxing Jiang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Jiating Dai
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang BC, Zhu WY, Wang SN, Zhu MM, Ma H, Dong L, Yang XX, Ma CR, Ma LK, Chen YL. Colchicine reduces neointima formation and VSMC phenotype transition by modulating SRF-MYOCD activation and autophagy. Acta Pharmacol Sin 2024:10.1038/s41401-024-01438-x. [PMID: 39663419 DOI: 10.1038/s41401-024-01438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotype transformation significantly contributes to vascular intimal hyperplasia. However, effective preventive and therapeutic measures are lacking. Colchicine, a binary alkaloid derived from Colchicum autumnale, is traditionally used for treating inflammatory diseases. Its role in neointima formation is not fully understood. Here, we investigated the role of colchicine in vascular intimal hyperplasia. We found that colchicine significantly reduced vascular intimal hyperplasia in an animal model at 7, 14, and 28 days post carotid artery ligation and increased the number of contractile-phenotype VSMCs (SMA-positive cells) in the neointimal areas. In vitro experiments demonstrated that colchicine facilitated the transition of VSMCs from a proliferative phenotype to a contractile phenotype. Additionally, colchicine attenuated PDGF-BB-induced phenotypic conversion and upregulated the expression of serum response factor (SRF) and myocardin (MYOCD). Further molecular mechanistic studies revealed that colchicine inhibited the expression of forkhead box protein O3A (FOXO3A) to increase the activation of the SRF‒MYOCD complex. FOXO3A can bind to MSX1/2, thereby inhibiting the expression of SRF-MYOCD and contractile genes. Moreover, colchicine maintains vascular homeostasis and stabilizes the contractile phenotype by affecting the expression of autophagy-related genes (LC3II, p62, and Beclin-1) induced by FOXO3A. Additionally, colchicine inhibited monocyte/macrophage infiltration and inflammatory cytokine expression. In summary, this study suggests that colchicine inhibits vascular intimal hyperplasia by modulating FOXO3A-mediated SRF-MYOCD activation and autophagy, providing new insights for future therapeutic approaches targeting occlusive vascular diseases.
Collapse
Affiliation(s)
- Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wen-Ya Zhu
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Sheng-Nan Wang
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Meng-Meng Zhu
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Hui Ma
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Liang Dong
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Xiao-Xiao Yang
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China.
| | - Chuan-Rui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Li-Kun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Yuan-Li Chen
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
3
|
Yang Z, Xi Y, Qi J, Li L, Bai L, Zhang J, Lv J, Li B, Liu H. Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck. Poult Sci 2024; 103:104211. [PMID: 39216264 PMCID: PMC11402601 DOI: 10.1016/j.psj.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
China has abundant local duck resource populations, and evaluating the characteristics of these breeds will help improve development and utilization. In this study, we conducted the first investigations of growth and slaughter performance on Sichuan Shelduck (n = 240), an endangered duck local breed. The average body weight is 1497.91 g at 90 d of age. According to the growth curve through data recorded every 2 wk, we observed a low relative growth rate (RGR) for the early growth stage. The RGR shows a decreasing trend with age increasing in the stage from 0 to 56 d of age. The SNP-based heritability estimation showed the growth rate has a relatively high heritability, indicating high genetic stability for this trait. In the correlation analysis, the percentage of leg muscle is positively correlated with the absolute growth rate (AGR) at 28 to 42 d of age, whereas it is negatively correlated with the earlier stages, exhibiting a time-specific correlation result. Additionally, genome-wide association studies (GWAS) identified PCSK6, TOX2, and TOMM7 as potential candidate genes influencing AGR (42-56) and AGR (56-90), while the candidate genes of slaughter traits were PTP4A2, FAM110B, TOX, UBXN2B, and FCHSD2. These results provide an important reference for further understanding the genetic basis of growth and meat production performance of Sichuan Shelduck.
Collapse
Affiliation(s)
- Zhao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jun Zhang
- Rural Revitalization Development Service Centre, Zigong, China
| | - Jia Lv
- Rural Revitalization Development Service Centre, Zigong, China
| | - Bo Li
- Farming Service Centre, Rong County, Zigong, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
4
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhang X, Huang C, Hou Y, Jiang S, Zhang Y, Wang S, Chen J, Lai J, Wu L, Duan H, He S, Liu X, Yu S, Cai Y. Research progress on the role and mechanism of Sirtuin family in doxorubicin cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155673. [PMID: 38677274 DOI: 10.1016/j.phymed.2024.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely utilized anthracycline chemotherapy drug in cancer treatment, yet its efficacy is hindered by both short-term and long-term cardiotoxicity. Although oxidative stress, inflammation and mitochondrial dysfunction are established factors in DOX-induced cardiotoxicity, the precise molecular pathways remain elusive. Further exploration of the pathogenesis and identification of novel molecular targets are imperative. Recent studies have implicated the Sirtuins family in various physiological and pathological processes, suggesting their potential in ameliorating DOX-induced cardiotoxicity. Moreover, research on Sirtuins has discovered small-molecule compounds or medicinal plants with regulatory effects, representing a notable advancement in preventing and treating DOX-induced cardiac injury. PURPOSE In this review, we delve into the pathogenesis of DOX-induced cardiotoxicity and explore the therapeutic effects of Sirtuins in mitigating this condition, along with the associated molecular mechanisms. Furthermore, we delineate the roles and mechanisms of small-molecule regulators of Sirtuins in the prevention and treatment of DOX-induced cardiotoxicity. STUDY-DESIGN/METHODS Data for this review were sourced from various scientific databases (such as Web of Science, PubMed and Science Direct) up to March 2024. Search terms included "Sirtuins," "DOX-induced cardiotoxicity," "DOX," "Sirtuins regulators," "histone deacetylation," among others, as well as several combinations thereof. RESULTS Members of the Sirtuins family regulate both the onset and progression of DOX-induced cardiotoxicity through anti-inflammatory, antioxidative stress and anti-apoptotic mechanisms, as well as by maintaining mitochondrial stability. Moreover, natural plant-derived active compounds such as Resveratrol (RES), curcumin, berberine, along with synthetic small-molecule compounds like EX527, modulate the expression and activity of Sirtuins. CONCLUSION The therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity represents a potential molecular target. However, further research is urgently needed to elucidate the relevant molecular mechanisms and to assess the safety and biological activity of Sirtuins regulators. This review offers an in-depth understanding of the therapeutic role of the Sirtuins family in mitigating DOX-induced cardiotoxicity, providing a preliminary basis for the clinical application of Sirtuins regulators in this condition.
Collapse
Affiliation(s)
- Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Qingyuan 511500, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianmei Lai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lifeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinyi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
6
|
Ma YL, Kong CY, Guo Z, Wang MY, Wang P, Liu FY, Yang D, Yang Z, Tang QZ. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun 2024; 15:4757. [PMID: 38834564 PMCID: PMC11150406 DOI: 10.1038/s41467-024-48970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Semaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
7
|
Liu YT, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Ke D, Zhou H, Che Y, Tang QZ. Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD +-SIRT3 pathway. Acta Pharmacol Sin 2024; 45:1175-1188. [PMID: 38459256 PMCID: PMC11130259 DOI: 10.1038/s41401-024-01247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
8
|
Zheng H, Liang X, Liu B, Huang X, Shen Y, Lin F, Chen J, Gao X, He H, Li W, Hu B, Li X, Zhang Y. Exosomal miR-9-5p derived from iPSC-MSCs ameliorates doxorubicin-induced cardiomyopathy by inhibiting cardiomyocyte senescence. J Nanobiotechnology 2024; 22:195. [PMID: 38643173 PMCID: PMC11032595 DOI: 10.1186/s12951-024-02421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-β-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.
Collapse
Affiliation(s)
- Huifeng Zheng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intensive Care Unit, Chongqing General Hospital, Chongqing, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Lin
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Gao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Milani SZ, Rezabakhsh A, Karimipour M, Salimi L, Mardi N, Narmi MT, Sadeghsoltani F, Valioglu F, Rahbarghazi R. Role of autophagy in angiogenic potential of vascular pericytes. Front Cell Dev Biol 2024; 12:1347857. [PMID: 38380339 PMCID: PMC10877016 DOI: 10.3389/fcell.2024.1347857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The vasculature system is composed of a multiplicity of juxtaposed cells to generate a functional biological barrier between the blood and tissues. On the luminal surface of blood vessels, endothelial cells (ECs) are in close contact with circulating cells while supporting basal lamina and pericytes wrap the abluminal surface. Thus, the reciprocal interaction of pericytes with ECs is a vital element in the physiological activity of the vascular system. Several reports have indicated that the occurrence of pericyte dysfunction under ischemic and degenerative conditions results in varied micro and macro-vascular complications. Emerging evidence points to the fact that autophagy, a conserved self-digestive cell machinery, can regulate the activity of several cells like pericytes in response to various stresses and pathological conditions. Here, we aim to highlight the role of autophagic response in pericyte activity and angiogenesis potential following different pathological conditions.
Collapse
Affiliation(s)
- Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ferzane Valioglu
- Technology Development Zones Management CO., Sakarya University, Sakarya, Türkiye
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Wang Y, Li Y, Ding H, Li D, Shen W, Zhang X. The Current State of Research on Sirtuin-Mediated Autophagy in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:382. [PMID: 37754811 PMCID: PMC10531599 DOI: 10.3390/jcdd10090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.
Collapse
Affiliation(s)
- Yuqin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Dan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Wanxi Shen
- Qinghai Provincial People’s Hospital, Qinghai University, Xining 810007, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| |
Collapse
|