1
|
Nie X, Jia X, Kang X, Pu H, Ling Z, Wang X, Yu X, Zhang Y, Liu D, Zhao Z. Effects of isolated Saccharomyces cerevisiae on the metabolites and volatile organic compounds of Chinese-style sausage. Food Res Int 2024; 197:115269. [PMID: 39593349 DOI: 10.1016/j.foodres.2024.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaohan Jia
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China; Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyue Kang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Haomou Pu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ziqing Ling
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China; Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinhui Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; National Agricultural Science and Technology Center (Chengdu), Chengdu 610000, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Zhang Q, Shen J, Meng G, Wang H, Liu C, Zhu C, Zhao G. Screening and application of functional autochthonous starter culture from cured meat, which can reduce nitrite content. Int Microbiol 2024:10.1007/s10123-024-00606-7. [PMID: 39400630 DOI: 10.1007/s10123-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Cured meat is a fermented meat product from the traditional Chinese culture made by natural fermentation. In this study, five bacteria strains were screened from cured meat using 16S rDNA technology, and a functional local starter was selected, which was applied to the production of cured meat to standardize the production of cured meat and improve the quality of cured meat. By studying the fermentation characteristics of strain these strains, this study found that the fermentation characteristics of L. mesenteroides and S. lactis are ideal. L. mesenteroides and S. lactis were used as starter cultures in fermented bacon. Then, this study compared the quality of fermented beef with Sichuan bacon, Hunan bacon, and Xinyang bacon. The results suggested that L. mesenteroides and S. lactis can improve the sensory and texture properties of the products and reduce the moisture content, water activity, pH value, and protein content of fermented beef products. More importantly, L. mesenteroides can significantly reduce the nitrite content (25.34%) and nitrosamine content (29.69%) in fermented beef, which provides an excellent guarantee for the safety of cured meat. In this study, a functional fermentation strain-L. mesenteroides could degrade the nitrite content of fermented meat products and improve their sensory and textural properties-was screened to provide some reference value for the later development of functional strains suitable for fermented meat products.
Collapse
Affiliation(s)
- Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jialong Shen
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaoge Meng
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Han Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chang Liu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
3
|
Sidari R, Tofalo R. Dual Role of Yeasts and Filamentous Fungi in Fermented Sausages. Foods 2024; 13:2547. [PMID: 39200474 PMCID: PMC11354145 DOI: 10.3390/foods13162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This contribution aims to review the presence and the potential double role-positive or beneficial and negative or harmful-of fungi in fermented sausages as well as their use as starter cultures. Traditionally, studies have been focused on lactic acid bacteria; however, over the years, interest in the study of fungi has increased. The important contribution of yeasts and filamentous fungi to the quality and safety of fermented sausages has emerged from reviewing the literature regarding these fermented products. In conclusion, this review contributes to the existing literature by considering the double role of filamentous fungi and yeasts, the global fermented sausage market size, the role and use of starters, and the starters mainly present in the worldwide market, as well as the main factors to take into account to optimize production. Finally, some suggestions for future broadening of the sector are discussed.
Collapse
Affiliation(s)
- Rossana Sidari
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Qin Y, Li W, Zhang W, Zhang B, Yao D, Zeng C, Cao J, Li L, Huang R. Characterization the microbial diversity and metabolites of four varieties of Dry-Cured ham in western Yunnan of China. Food Chem X 2024; 22:101257. [PMID: 38495458 PMCID: PMC10943036 DOI: 10.1016/j.fochx.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, high-throughput sequencing and metabolomics analysis were conducted to analyze the microbial and metabolites of dry-cured Sanchuan ham, Laowo ham, Nuodeng ham, and Heqing ham that have fermented for two years produced from western Yunnan China. Results showed that at the genus level, the dominant bacteria in the four types of ham were Halomonas and Staphylococcus, while the dominant fungi were Aspergillus and Yamadazyma. A total 422 different metabolites were identified in four types of ham, mainly amino acids, peptides, fatty acids, and their structural analogs, which were involved in pantothenate and coenzyme A biosynthesis, caffeine, and tyrosine metabolism. The dominant microorganisms of the four types of ham were mainly related to the metabolism of fatty acids and amino acids. This research enhances the identification degree of these four types of dry-cured ham and provides a theoretical basis for developing innovative and distinctive ham products.
Collapse
Affiliation(s)
- Yu Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Beibei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Dengjie Yao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chunyin Zeng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Lirong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Rui Huang
- Zhongken Huashan Mu Daity Co., LTD, Weinan, Shaanxi Province 714000, China
| |
Collapse
|
5
|
Glushakova A, Kachalkin A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int Microbiol 2024; 27:883-897. [PMID: 37874524 DOI: 10.1007/s10123-023-00437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Yeast complexes in the fecal samples of wild (Dendrocopos major, Picus viridis) and partially synanthropic (Bombycilla garrulus, Garrulus glandarius, Pica pica, and Pyrrhula pyrrhula) birds were studied in a forest ecosystem during winter. A total of 18 yeast species were identified: 16 ascomycetes and two basidiomycetes belonging to five subphyla of fungi: Saccharomycotina (15), Pezizomycotina (1), Agaricomycotina (1), and Pucciniomycotina (1). Most yeast species were found in the fecal samples of P. pyrrhula (Candida parapsilosis, C. zeylanoides, Debaryomyces hansenii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Meyerozyma carpophila, M. guilliermondii, Rhodotorula mucilaginosa); the lowest number of yeast species was observed in the feces of B. garrulus (C. parapsilosis, C. zeylanoides, Met. pulcherrima, and Rh. mucilaginosa). The opportunistic species of the genus Candida were found only in feces of partially synanthropic birds: C. parapsilosis was observed in the feces of B. garrulus, G. glandarius, P. pica, and P. pyrrhula; its relative abundance was 69.3%, 49.1%, 10.5%, and 1.1%, respectively; C. tropicalis was observed in the feces of P. pica and G. glandarius; its relative abundance was 54.6% and 7.1%, respectively. Strains of C. parapsilosis and C. tropicalis isolated from the feces of partially synanthropic birds were evaluated for their susceptibility to conventional antifungal agents (fluconazole, voriconazole, amphotericin B) and hydrolytic activity. A total of 160 strains were studied. Resistance to fluconazole was detected in 86.8% of C. parapsilosis strains and in 87% of C. tropicalis strains; resistance to voriconazole was detected in 71.7% of C. parapsilosis and in 66.7% of C. tropicalis strains, and the lowest percentage of resistant strains was detected to amphotericin B, 2.8% and 3.7% in C. parapsilosis and C. tropicalis strains, respectively. Multiresistance was detected in one strain of C. parapsilosis isolated from P. pica feces and in one strain of C. tropicalis isolated from G. glandarius feces. Phospholipase and hemolysin activities in the strains of C. parapsilosis were low (mean Pz values of 0.93 and 0.91, respectively); protease activity was moderate (mean Pz value of 0.53). The ability to produce hydrolytic enzymes was higher in the isolated strains of C. tropicalis. The mean Pz values of phospholipase and hemolysin activities were moderate (mean Pz values of 0.63 and 0.60, respectively), whereas protease activity was high (mean Pz value of 0.32). Thus, wild and partially synanthropic birds play an important role in disseminating of various yeast species. These yeasts can enter the topsoil via feces and contribute to the formation of allochthonous and uneven soil yeast diversity in natural ecosystems. In addition, partially synanthropic birds can be vectors of virulent strains of opportunistic Candida species from urban environments to natural biotopes.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
6
|
Li C, Zheng Z, Wang G, Chen G, Zhou N, Zhong Y, Yang Y, Wu H, Yang C, Liao G. Revealing the intrinsic relationship between microbial communities and physicochemical properties during ripening of Xuanwei ham. Food Res Int 2024; 186:114377. [PMID: 38729733 DOI: 10.1016/j.foodres.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
To clarify the relationship between microorganisms and physicochemical indicators of Xuanwei ham. Six ham samples for the first, second and third year were selected, respectively. The changes of physicochemical properties, the free fatty acids and microbial communities of Xuanwei ham were investigated by GC-MS and high-throughput sequencing technology. Results showed that scores of colour, overall acceptability, texture, taste and aroma were the highest in the third year sample. With increasing ripening time, moisture content, water activity (Aw), lightness (L*), springiness, and resilience decreased continuously, and yellowness (b*) was the highest in the second year sample. 31 free fatty acids were detected, and unsaturated fatty acids such as palmitoleic acid, oleic acid, and linoleic acid were the major fatty acids. The content of palmitoleic acid, oleic acid and eicosenoic acid increased significantly during processing. At the phylum level, the dominant bacteria were Proteobacteria and Firmicutes, and fungi were Ascomycota. At the genus level, the dominant bacteria were Staphylococcus and Psychrobacter, and fungi were Aspergillus. Correlation analysis showed that water content and Aw were closely related to microorganisms, and most unsaturated fatty acids were significantly correlated with microorganisms. These findings showed that microorganisms played an important role in the quality of Xuanwei ham, and provided a scientific basis for the quality control of Xuanwei ham.
Collapse
Affiliation(s)
- Cong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhijie Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Nannan Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanru Zhong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunfang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
7
|
Ji L, Zhou C, Zhou Y, Nie Q, Luo Y, Yang R, Wang S, Ning J, Zhang J, Zhang Y. Study on simulation effect of physical and chemical characteristics of sausage by sausage model system. Front Nutr 2024; 11:1408618. [PMID: 38840702 PMCID: PMC11150632 DOI: 10.3389/fnut.2024.1408618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction The incorporation of Staphylococcus xylosus in sausage production is hypothesized to affect various physicochemical properties and flavor profiles of sausages. This study aimed to evaluate the simulation of these features in a sausage model and establish its applicability for in vitro studies. Methods Both a control and an experimental model, inclusive of Staphylococcus xylosus, were assessed for changes in physicochemical indexes (pH and water activity, Aw) and the concentration of flavoring components (esters and aldehydes). Thiobarbituric acid reactive substances (TBARS) values were also measured to evaluate lipid oxidation. Results The introduction of Staphylococcus xylosus resulted in no significant changes in pH and Aw between the sausage and the model. However, there was a considerable increase in the content of volatile flavor compounds, specifically esters and aldehydes, in the experimental groups compared to the control. Additionally, the TBARS values in experimental groups were significantly lower than those in the control group at the end of the testing period. Discussion The findings indicate that Staphylococcus xylosus plays a critical role in enhancing the flavor profile of sausages through the increased synthesis of volatile compounds and inhibiting fat oxidation. The sausage model effectively simulated the physicochemical and flavor index responses, demonstrating its potential utility for further in vitro research on sausage fermentation and preservation techniques.
Collapse
Affiliation(s)
- Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Chunyan Zhou
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Yanan Zhou
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Qing Nie
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Yi Luo
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Rui Yang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Shu Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Jiawen Ning
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Ying Zhang
- Chengdu Huixin Foods Co., Chengdu, China
| |
Collapse
|
8
|
Zhang Q, Shen J, Meng G, Wang H, Liu C, Zhu C, Zhao G, Tong L. Selection of yeast strains in naturally fermented cured meat as promising starter cultures for fermented cured beef, a traditional fermented meat product of northern China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:883-891. [PMID: 37698856 DOI: 10.1002/jsfa.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/13/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Fermented meat products are meat products with a unique flavor, color, and texture as well as an extended shelf life under natural or artificially controlled conditions. Microorganisms or enzymes are used to ferment the raw meat so that it undergoes a series of biochemical and physical changes. Common fermentation strains are lactic acid bacteria, yeasts, staphylococci, molds, and so forth. Studies on the inhibitory effect of yeast fermentation strain on N-nitrosamines in fermented meat products have not been reported. Two excellent yeast starters were identified to solve the problem of nitrosamines in fermented meat products. RESULTS Meyerozyma guilliermondii and Debaryomyces hansenii led to weak acid production, strong resistance to NaCl and NaNO2 , and high tolerance to low acidic conditions. The inoculated fermented beef exhibited decreased lightness, moisture content, water activity, pH, protein content, nitrite content, and N-nitrosamine content in comparison with the control group fermented bacon. M. guilliermondii had a better effect, reducing pH from 5.69 to 5.41, protein content from 254.24 to 221.92 g·kg-1 , nitrite content from 28.61 to 25.33 mg·kg-1 and N-nitrosamine by 18.97%, and giving the fermented beef the desired meat color, mouthfeel, odor, taste, and tissue quality. CONCLUSION In this study, two strains of yeast fermenters that can degrade N-nitrosamine precursors were identified, which to some extent solves the problem of the high risk of generating nitrosamines such as N-nitrosodiethylamine (NDEA) by processing fermented meat products with nitrites as precursors. These two strains are likely to be used as starter cultures for fermented meat products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jialong Shen
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Gaoge Meng
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Han Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chang Liu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, People's Republic of China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Lin Tong
- Tongliao Comprehensive Test Station, Tongliao, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Gao S, Cui Y, Wang L, Duan J, Yang X, Liu X, Zhang S, Sun B, Yu H, Gao X. Characteristics of Lactic Acid Bacteria as Potential Probiotic Starters and Their Effects on the Quality of Fermented Sausages. Foods 2024; 13:198. [PMID: 38254499 PMCID: PMC10813914 DOI: 10.3390/foods13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to explore the potential of commercial lactic acid bacteria (LAB) as probiotic starters in fermented sausages. We initially investigated the growth activity, acid production capability, and tolerance to fermentation conditions of Lactobacillus sakei, Lactiplantibacillus plantarum, and Pediococcus pentosaceus. All three LAB strains proved viable as starters for fermented sausages. Subsequently, we explored their potential as probiotics based on their antibacterial and antioxidant capabilities. L. plantarum exhibited stronger inhibition against Escherichia coli and Staphylococcus aureus. All three strains displayed antioxidant abilities, with cell-free supernatants showing a higher antioxidant activity compared to intact cells and cell-free extracts. Moreover, the activities of superoxide dismutase, glutathione peroxidase, and catalase were stronger in the cell-free supernatant, cell-free extract, and intact cell, respectively. Finally, we individually and collectively inoculated these three LAB strains into sausages to investigate their impact on quality during the fermentation process. External starters significantly reduced pH, thiobarbituric acid reactive substances, and sodium nitrite levels. The improvements in color and texture had positive effects, with the L. plantarum inoculation achieving higher sensory scores. Overall, all three LAB strains show promise as probiotic fermentation starters in sausage production.
Collapse
Affiliation(s)
- Yinchu Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Sai Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Lin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Junya Duan
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Xinyu Yang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| | - Xiaochang Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.Z.); (B.S.); (H.Y.)
| | - Songshan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.Z.); (B.S.); (H.Y.)
| | - Baozhong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.Z.); (B.S.); (H.Y.)
| | - Haojie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.Z.); (B.S.); (H.Y.)
| | - Xiaoguang Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.L.); (S.G.); (L.W.); (J.D.); (X.Y.)
| |
Collapse
|
10
|
Liu K, Yang P, Zhang X, Zhang D, Wu L, Zhang L, Zhang H, Li G, Li R, Rong L. Metabolic cross-feeding enhances branched-chain aldehydes production in a synthetic community of fermented sausages. Int J Food Microbiol 2023; 407:110373. [PMID: 37696140 DOI: 10.1016/j.ijfoodmicro.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Microbial interactions play an important role in regulating the metabolic function of fermented food communities, especially the production of key flavor compounds. However, little is known about specific molecular mechanisms that regulate the production of key flavor compounds through microbial interactions. Here, we designed a synthetic consortium containing Debaryomyces hansenii D1, Staphylococcus xylosus S1, and Pediococcus pentosaceus PP1 to explore the mechanism of the microbial interactions underlying the branched-chain aldehydes production. In this consortium, firstly, D. hansenii secreted amino acids that promoted the growth of P. pentosaceus and S. xylosus. Specifically, D. hansenii D1 secreted alanine, aspartate, glutamate, glutamine, glycine, phenylalanine, serine, and threonine, which were the primary nutrients for bacterial growth. P. pentosaceus PP1 utilized all these eight amino acids through cross-feeding, whereas S. xylosus S1 did not utilize aspartate and serine. Furthermore, D. hansenii D1 promoted the production of branched-chain aldehydes from S. xylosus and P. pentosaceus through cross-feeding of α-keto acids (intermediate metabolites). Thus, the accumulation of 2-methyl-butanal was promoted in all co-culture. Overall, this work revealed the mechanism by which D. hansenii and bacteria cross-feed to produce branched-chain aldehydes in fermented sausages.
Collapse
Affiliation(s)
- Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Peng Yang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xudong Zhang
- Comprehensive Technology Service Center of Jinzhou Customs, Jinzhou, Liaoning 121013, China
| | - Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
11
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
12
|
Álvarez M, Andrade MJ, Cebrián E, Roncero E, Delgado J. Perspectives on the Probiotic Potential of Indigenous Moulds and Yeasts in Dry-Fermented Sausages. Microorganisms 2023; 11:1746. [PMID: 37512918 PMCID: PMC10385761 DOI: 10.3390/microorganisms11071746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The role of indigenous fungi in the appropriate development of sensory properties and the safety of dry-fermented sausages has been widely established. Nonetheless, their applications as probiotic agents have not been elucidated in such products yet, despite their promising functional features. Thus, it should be interesting to evaluate the probiotic potential of native Debaryomyces hansenii isolates from dry-fermented sausages and their application in the meat industry, because it is the most frequently isolated yeast species from these foodstuffs and its probiotic effects for animals as well as its possible probiotic activity for human beings have been demonstrated. Within the functional ability of foodborne yeasts, anti-inflammatory, antioxidant, antimicrobial, antigenotoxic, and immunomodulatory properties have been reported. Similarly, the use of dry-fermented sausages as vehicles for probiotic moulds remains a challenge because the survival and development of moulds in the gastrointestinal tract are still unknown. Nevertheless, some moulds have been isolated from faeces possibly from their spores as a form of resistance. Additionally, their beneficial effects on animals and humans, such as the decrease in lipid content and the anti-inflammatory activity, have been reported, although they seem to be more related to their postbiotic capacity due to the generated bioactive compounds with profunctional attributes than to their role as probiotics. Therefore, further studies providing knowledge useful for generating dry-fermented sausages with improved functionality are fully necessary.
Collapse
Affiliation(s)
- Micaela Álvarez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Eva Cebrián
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| |
Collapse
|
13
|
Zhang M, Li M, Bai F, Yao W, You L, Liu D. Effect of Fat to Lean Meat Ratios on the Formation of Volatile Compounds in Mutton Shashliks. Foods 2023; 12:foods12101929. [PMID: 37238747 DOI: 10.3390/foods12101929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the release of volatile compounds in mutton shashliks (named as FxLy, x-fat cubes: 0-4; y-lean cubes: 4-0) with different fat-lean ratios before and during consumption, respectively. In total, 67 volatile compounds were identified in shashliks using gas chromatography/mass spectrometry. Aldehyde, alcohol, and ketone were the major volatile substances, accounting for more than 75% of the total volatile compounds. There were significant differences in the volatile compounds of mutton shashliks with different fat-lean ratios. With the increase of the fat content, the types and content of volatile substances released also increase. However, when the percentage of fat exceeded 50%, the number of furans and pyrazine, which were characteristic of the volatile compounds of roasted meat, was decreased. The release of volatiles during the consumption of mutton shashliks was measured using the exhaled breath test and the results showed that adding an appropriate amount of fat (<50%) helps to enrich the volatile compound components in the mouth. However, shashliks with higher fat-lean ratios (>2:2) shorten the mastication duration and weaken the breakdown of bolus particles in the consumption process, which is not conducive to the release potential of volatile substances. Therefore, setting the fat to lean ratio to 2:2 is the best choice for making mutton shashliks, as it (F2L2) can provide rich flavor substances for mutton shashliks before and during consumption.
Collapse
Affiliation(s)
- Mingcheng Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Mingyang Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangfang Bai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Wensheng Yao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Litang You
- Anshan Jiuguhe Food Co., Ltd., Anshan 114100, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China
| |
Collapse
|
14
|
Mohamed HMA, Aljasir SF, Moftah RF, Younis W. Mycological evaluation of frozen meat with special reference to yeasts. Vet World 2023; 16:571-579. [PMID: 37041834 PMCID: PMC10082747 DOI: 10.14202/vetworld.2023.571-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Fungi can play beneficial and detrimental roles in meat products; however, the diversity and significance of fungi in meat products are poorly understood. This study aimed to isolate and characterize fungal species from frozen beef samples collected from retail stores in the Qena Governorate, Egypt. Materials and Methods A total of 70 frozen beef samples were collected from retail stores in Qena, Egypt. All samples were subjected to mycological examination. Fungal colonies were identified using conventional approaches, as well as the VITEK 2 system and DNA sequencing of the internal transcribed spacer region. Analyses of enzymatic activity, biofilm formation ability, and the antimicrobial resistance profiles of the isolated yeasts were also conducted. Results Molds and yeasts were isolated from 40% and 60% of meat samples, respectively. Mold isolates were dominated by Aspergillus, Penicillium, and Cladosporium spp., whereas yeast isolates were identified as Candida albicans, Candida parapsilosis, Yarrowia lipolytica, Saccharomyces cerevisiae, and Rhodotorula mucilaginosa. Compared to other yeast species, the highest production of lipase and protease was observed in Candida species. The strongest ability to form biofilms was observed in Candida spp., followed by S. cerevisiae, Y. lipolytica, and R. mucilaginosa. The results of antimicrobial susceptibility testing revealed that all yeast isolates showed notable resistance to fluconazole and itraconazole. Conclusion A significant correlation between antimicrobial resistance and biofilm formation was observed in several species. This study highlights the importance of the dangers of yeasts in food products and the extent of their impact on public health.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Sulaiman F. Aljasir
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rofida F. Moftah
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Waleed Younis
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- Corresponding author: Waleed Younis, e-mail: Co-authors: HMAM: , SFA: , RFM:
| |
Collapse
|
15
|
Lv J, Lin X, Liu M, Yan X, Liang H, Ji C, Li S, Zhang S, Chen Y, Zhu B. Effect of Saccharomyces cerevisiae LXPSC1 on microorganisms and metabolites of sour meat during the fermentation. Food Chem 2023; 402:134213. [DOI: 10.1016/j.foodchem.2022.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
16
|
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023; 12:foods12020329. [PMID: 36673421 PMCID: PMC9857697 DOI: 10.3390/foods12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.
Collapse
|
17
|
Gong X, Mi R, Chen X, Zhu Q, Xiong S, Qi B, Wang S. Evaluation and selection of yeasts as potential aroma enhancers for the production of dry-cured ham. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Correlation of characteristic flavor and microbial community in Jinhua ham during the post-ripening stage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Insight into the aroma dynamics of Dongpo pork dish throughout the production process using electronic nose and GC×GC-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lu K, Wang X, Wan J, Zhou Y, Li H, Zhu Q. Correlation and Difference between Core Micro-Organisms and Volatile Compounds of Suan Rou from Six Regions of China. Foods 2022; 11:foods11172708. [PMID: 36076900 PMCID: PMC9455853 DOI: 10.3390/foods11172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Suan Rou (SR), a traditional fermented meat, is widely favored by consumers due to its unique flavor and characteristics. To study the relationship between the core differential micro-organisms and differential volatile organic compounds (VOCs) of SR from six regions of China, high-throughput sequencing (HTS) and gas-chromatography−ion mobility spectrometry (GC-IMS) technologies were used to analyze the correlation between micro-organisms and VOCs in SR from Xiangxi of Hunan, Rongshui of Guangxi, Zunyi of Guizhou, Jinping of Guizhou, Congjiang of Guizhou, and Libo of Guizhou. A total of 13 core micro-organisms were identified at the genus level. Moreover, 95 VOCs were identified in the SR samples by GC-IMS analysis, with alcohols, aldehydes, ketones, and esters comprising the major VOCs among all the samples. The results showed a strong correlation (|r| > 0.8, p < 0.05) between the core differential micro-organisms and differential VOCs, including four bacteria, five fungi, and 12 VOCs. Pediococcus, Debaryomyces, Zygosaccharomyces, and Candida significantly contributed to the unique VOCs of SR.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jing Wan
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hongying Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Department of Agricultural, Food and Nutritional Science, 4–10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-8823-6890
| |
Collapse
|
21
|
Characterisation of key volatile compounds in fermented sour meat after fungi growth inhibition. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Li Q, Zhao Y, Siqin B, Xilin T, Zhang N, Li M. Changes in Microbial Diversity and Nutritional Components of Mare Milk Before and After Traditional Fermentation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.913763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The formation and quality of nutrients before and after fermentation depends on microbial community dynamics. In this study, the nutrients and microflora of mare milk were studied before and after traditional fermentation. To achieve this goal, ultra-performance liquid chromatography-mass spectrometry and Illumina MiSeq sequencing were used to study the changes in the main nutrients and microbial communities, respectively, before and after mare milk traditional fermentation. A total of 81 nutrients were identified before and after the fermentation of mare milk into koumiss; among these, 6 compounds [citraconic acid, 6-hydroxycaproic acid, creatine, adenine, d-(+)-proline, and histamine] were differentially upregulated. Histamine levels increased after traditional fermentation, whereas Lactobacillus, Dekkera, and Acetobacter grew rapidly and became the dominant microorganisms in the fermentation process. These three genera were positively correlated with creatine and proline levels, whereas Lelliottia was negatively correlated with citraconic acid and proline levels. Prediction of the functions of bacteria and fungi in the mare milk before and after fermentation included carbohydrate metabolism, cofactors and nutrition, and plant pathogens. The results of this study provide new insights into the formation of nutrients in koumiss; it is important to study changes in bacteria and fungi before and after traditional fermentation.
Collapse
|
23
|
Exploring the Fungal Community and Its Correlation with the Physicochemical Properties of Chinese Traditional Fermented Fish (Suanyu). Foods 2022; 11:foods11121721. [PMID: 35741919 PMCID: PMC9222310 DOI: 10.3390/foods11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Suanyu is a traditional natural fermented fish product from Southwest China that contains very complex microflora. The main purpose of this study was to explore the fungal community and its relationship with the physicochemical properties of Suanyu. The fungal community structure of Suanyu from the main provinces (Guizhou and Hunan) was studied via high-throughput sequencing. The correlation between dominant fungi and physicochemical characteristics was analyzed via Spearman's correlation coefficient. The results showed that the pH value, total volatile base nitrogen content, and thiobarbituric acid reactive substance content ranges of Suanyu samples were 4.30-5.50, 17.11-94.70 mg/100 g, and 0.61 to 3.62 mg/kg, respectively. The average contents of total volatile base nitrogen, thiobarbituric acid reactive substance, and total BAs in Suanyu from Guizhou were lower than those from Hunan. The main BAs were phenethylamine, putrescine, cadaverine, histamine, and tyramine. Ascomycota was the dominant fungal phylum, and Kodamaea, Debaryomyces, Wallemia, Zygosaccharomyces, and unclassified Dipodascaceae were the dominant fungal genera in different samples. Moreover, high abundance levels of Kodamaea and Zygosaccharomyces were found in Suanyu from Guizhou. According to the correlation analysis, Kodamaea and Zygosaccharomyces were negatively correlated with TBARS (R2 = -0.43, -0.51) and TVBN (R2 = -0.37, -0.29), and unclassified Dipodascaceae was significant negatively correlated with tyramine (R2 = -0.56). This study expands the understanding of the fungal community and the fermentation characteristics of the dominant fungi in Suanyu.
Collapse
|
24
|
Unfolding microbiota and volatile organic compounds of Portuguese Painho de Porco Preto fermented sausages. Food Res Int 2022; 155:111063. [DOI: 10.1016/j.foodres.2022.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
|
25
|
Zhao T, Cao Z, Yu J, Weng X, Benjakul S, Guidi A, Ying X, Ma L, Xiao G, Deng S. Gas-phase ion migration spectrum analysis of the volatile flavors of large yellow croaker oil after different storage periods. Curr Res Food Sci 2022; 5:813-822. [PMID: 35592694 PMCID: PMC9110977 DOI: 10.1016/j.crfs.2022.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
The large yellow croaker, a species of fish found in the northwestern Pacific, is favored by consumers because of its prevalence in saltwater bodies, golden yellow abdomen, high calcium content, high protein, high fat content, and a flavor that originates from its lipids and volatile components. Volatile organic compounds significantly affect the aroma of food. In this work, electronic nose and headspace gas chromatography-ion mobility spectrometry were applied to analyze the flavor differences in fish oil durations. Through electronic nose system analysis, sensors W1C, W3S, W6S, and W2S directly affected fish oil flavor, and their flavor components were different. Gas chromatography-ion mobility spectrometry identified 26 volatile components (19 aldehydes, 3 ketones, 2 alcohols, 1 furan, and 1 olefin). (E,E)-2,4-hexadienal (D), (E,E)-2,4-hexadienal (M), 2,4-heptadienal (M), (E)-2-octenal, 2-propanone, 2-heptanone (M), 3-pentanone (D), and 1-octen-3-ol were the key flavor components of the fish oil. In conclusion, the combination of GC-IMS and PCA can identify the differences in flavor changes of large yellow croaker oil during 0–120 days storage. After 60 days storage, the types and signals of 2-propanone, 2-heptanone (M) components increase significantly. When 120 days storage, at this time, (E,E)-2,4-hexadienal (D), (E,E)-2,4-hexadienal (M), 2,4-heptadienal (M), (E)-2-octenal,(E)-2-octenal significantly. It has become the main flavor substance of fish oil. In summary, as the storage period increases, the components increase, and the oxidizing substances will increase, resulting in the deterioration of fish oil. The oxidation state of Large yellow croaker oil in different storage periods was investigated. The volatile compounds of Large yellow croaker oil were studied by GC-IMS. The effects of storage period on the composition of large yellow croaker oil samples were tested. We believe GC-IMS will play a crucial role in controlling the flavor of fish oil.
Collapse
Affiliation(s)
- Tengfei Zhao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongqi Cao
- Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian Lioaning, 116045, China
| | - Jin Yu
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
| | - Xudong Weng
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry. Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Alessandra Guidi
- Department of Agriculture, Food and Environment (DAFE), Pisa University, Via Del Borghetto, 80, 56124, Pisa, Italy
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Longyou Aquaculture Development Center, Agricultural and Rural Bureau of Longyou County, Quzhou, 324000, China
- Corresponding author. No.1 Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang province, 316022, PR China.
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Corresponding author. No.24 Dongsha Road, Haizhu District, Guangzhou, Guangdong province, 510225, PR China.
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
26
|
Technological properties and flavour formation potential of yeast strains isolated from traditional dry fermented sausages in Northeast China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|