1
|
Ma Y, Wang S, Hong B, Feng L, Wang J. Construction and Mechanism Exploration of Highly Efficient System for Bacterial Ghosts Preparation Based on Engineered Phage ID52 Lysis Protein E. Vaccines (Basel) 2024; 12:472. [PMID: 38793723 PMCID: PMC11126076 DOI: 10.3390/vaccines12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology. In this study, we screened out the most effective lysis protein ID52-E-W4A among 13 mutants based on phage ID52 lysis protein E and optimized the liquid culture medium for preparing Escherichia coli Nissle 1917 (EcN). The results revealed a significantly higher lysis rate of ID52-E-W4A compared to that of ID52-E in the 2xYT medium. Furthermore, EcN BGs were cultivated in a fermenter, achieving an initial OD600 as high as 6.0 after optimization, indicating enhanced BG production. Moreover, the yield of ID52-E-W4A-induced BGs reached 67.0%, contrasting with only a 3.1% yield from φX174-E-induced BGs. The extended applicability of the lysis protein ID52-E-W4A was demonstrated through the preparation of Salmonella pullorum ghosts and Salmonella choleraesuis ghosts. Knocking out the molecular chaperone gene slyD and dnaJ revealed that ID52-mediated BGs could still undergo lysis. Conversely, overexpression of integral membrane enzyme gene mraY resulted in the loss of lysis activity for ID52-E, suggesting that the lysis protein ID52-E may no longer rely on SlyD or DnaJ to function, with MraY potentially being the target of ID52-E. This study introduces a novel approach utilizing ID52-E-W4A for recombinant expression, accelerating the BG formation and thereby enhancing BG yield and productivity.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China (J.W.)
| | | | | | | | | |
Collapse
|
2
|
Abdelfattah A, Samir R, Amin HM. Production of highly immunogenic and safe Triton X-100 produced bacterial ghost vaccine against Shigella flexneri 2b serotype. Gut Pathog 2023; 15:41. [PMID: 37679798 PMCID: PMC10483756 DOI: 10.1186/s13099-023-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Bacterial ghost cells (BGCs) are cells were drained of their genetic and cytoplasmic components. This work aimed to develop vaccine candidates against the Shigella flexneri (S. flexneri) 2b serotype using the BGCs approach. For the first time, (S. flexneri) 2b serotype BGCs vaccine was prepared by incubation with Triton X-100 (TX100) for only 12 h. Its safety and immunogenicity were compared to another vaccine produced using a previously used surfactant, namely Tween 80 (TW80). Scanning electron microscopy (SEM), cellular DNA, protein contents measurements, and ghost cell re-cultivation were used to confirm the successful generation of the BGCs. Immunogenicity was assessed through mice's intraperitoneal (IP) immunization followed by infection with S. flexneri ATCC 12022. Finally, histopathological examination was carried out. RESULTS Viable colony forming units (CFUs) of S. flexneri were counted from stool samples as well as homogenized colon tissues of the non-immunized challenged group. Immunized mice sera showed a significant increase in serum bactericidal activity of both preparations (TX100 = 40% and TW80 = 56%) compared to the non-immunized challenged group (positive control). The IgG levels of the bacterial ghost-vaccinated groups were four and three times greater for the TX100 and TW80 ghost vaccines, respectively, compared to that of the positive control; both bacterial ghost vaccines (BGVs) were safe and effective, according to the results of the safety check tests and histopathological analysis. CONCLUSIONS When comparing the BGVs prepared using TX100 and TW80 methods, the use of TX100 as a new chemical treating agent for BGC production attained robust results in terms of shorter incubation time with the targeted cells and a strong immune response against S. flexneri 2b serotype ATCC 12022 in the IP challenge test. However, a clinical study is needed to confirm the efficacy and total safety of this novel vaccine.
Collapse
Affiliation(s)
- Amany Abdelfattah
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Nile Corniche, El Sayeda Zeinab, Cairo, 11562 Egypt
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| |
Collapse
|
3
|
Goh KW, Abdul Kari Z, Wee W, Zakaria NNA, Rahman MM, Kabir MA, Abdul Hamid NK, Tahiluddin AB, Kamarudin AS, Téllez–Isaías G, Wei LS. Exploring the roles of phytobiotics in relieving the impacts of Edwardsiella tarda infection on fish: a mini-review. Front Vet Sci 2023; 10:1149514. [PMID: 37476823 PMCID: PMC10355809 DOI: 10.3389/fvets.2023.1149514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.
Collapse
Affiliation(s)
- Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nik Nur Azwanida Zakaria
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Department of Agro-Based Industry, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | | | | | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines
| | - Ahmad Syazni Kamarudin
- School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut, Terengganu, Malaysia
| | | | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
4
|
Histopathology of head kidney tissues in challenged rohu, Labeo rohita Hamilton after vaccinating with Aeromonas hydrophila antigens. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100025. [DOI: 10.1016/j.fsirep.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
|
5
|
Gu QQ, Wang GH, Li NQ, Hao DF, Liu HM, Wang CB, Hu YH, Zhang M. Evaluation of the efficacy of a novel Vibrio vulnificus vaccine based on antibacterial peptide inactivation in turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:197-204. [PMID: 34509628 DOI: 10.1016/j.fsi.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; School of Weihai Ocean Vocational College, Weihai, Shandong Province, 264300, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yong-Hua Hu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
6
|
Li XP, Zhang J. A live attenuated Edwardsiella tarda vaccine induces immunological expression pattern in Japanese flounder (Paralichthys olivaceus) in the early phase of immunization. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108872. [PMID: 32814144 DOI: 10.1016/j.cbpc.2020.108872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
A previous study showed that an attenuated Edwardsiella tarda strain, TXhfq, as a live vaccine could elicit protective immune effects in fish against E. tarda infection. In the current study, in order to clarify the molecular mechanism of fish immune response at the early stage after TXhfq vaccination, RNA-Seq technology was used to compare the transcriptomes of skin, intestine, and spleen between bath-vaccinated and unvaccinated Japanese flounder (Paralichthys olivaceus). An average of 46.6 million clean reads per library was obtained, ~88.04% of which were successfully mapped to the reference genome, and approximately 24,600 genes were detected in each sample. A total of 565, 878, and 1258 differential expression genes (DEGs) were found in skin, intestine, and spleen, respectively, including 1263 up-regulated genes and 1438 down-regulated genes. The DEGs exhibited different characteristics in each tissue. One hundred and sixteen DEGs belonging to six immune related categories were scrutinized, i.e., inflammatory factors, cytokines, complement and coagulation system, mucins, phagocytosis, and antigen processing and presentation. A protein-protein interaction network was constructed to get the interaction network between immune genes during the early stage of immunization. The top six hub genes highly regulated by TXhfq formed complicated interaction relationship with each other, which were involved in immune processes, notably inflammation and phagocytosis. Our results provide valuable information for the understanding of the immune mechanism underlying the protection of live attenuated vaccines in fish.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Improved Stability and Activity of a Marine Peptide-N6NH2 against Edwardsiella tarda and Its Preliminary Application in Fish. Mar Drugs 2020; 18:md18120650. [PMID: 33348729 PMCID: PMC7766155 DOI: 10.3390/md18120650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its C-terminus to generate N6NH2. The antibacterial activity of N6 and N6NH2 against E. tarda was evaluated in vitro and in vivo; their stability, toxicity and mode of action were also determined. Minimal inhibitory concentrations (MICs) of N6 and N6NH2 against E. tarda were 1.29–3.2 μM. Both N6 and N6NH2 killed bacteria by destroying the cell membrane of E. tarda and binding to lipopolysaccharide (LPS) and genomic DNA. In contrast with N6, N6NH2 improved the stability toward trypsin, reduced hemolysis (by 0.19% at a concentration of 256 μg/mL) and enhanced the ability to penetrate the bacterial outer and inner membrane. In the model of fish peritonitis caused by E. tarda, superior to norfloxacin, N6NH2 improved the survival rate of fish, reduced the bacterial load on the organs, alleviated the organ injury and regulated the immunity of the liver and kidney. These data suggest that the marine peptide N6NH2 may be a candidate for novel antimicrobial agents against E. tarda infections.
Collapse
|
8
|
Ji S, Gong Q, Zhang W, Zheng J, Peng B, Yang M. Recombinant Vibrio parahaemolyticus ghosts protect zebrafish against infection by Vibrio species. FISH & SHELLFISH IMMUNOLOGY 2020; 107:64-72. [PMID: 33038509 DOI: 10.1016/j.fsi.2020.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Aquatic animals are frequently threated by bacterial pathogens. The most economic and efficient protection against bacterial infection are through vaccine immunization. The various serotypes of the pathogens, such as Vibrios, hurdle the development of the vaccines, especially polyvalent vaccines. Here, we demonstrate that recombinant bacterial ghost is a good candidate for multivalent vaccine. By expressing PhiX174 gene E alone or co-expressing the gene E with two genes encoding outer membrane proteins (VP1667 and VP2369) in V. parahaemolyticus, we generated the recombinant V. parahaemolyticus ghosts VPG and rVPGs respectively. Fish immunized with either VPG or rVPG showed increased survival against the infection by either V. parahaemolyticus or V. alginolyticus, with a better protective effect by immunization with rVPG. Our furthermore studies show that rVPG stimulates stronger innate immune responses by increasing the expression of tnfα, il1β, il6, il8 and il10 as well as that of c3b, lyz, and tlr5, the key players linking the innate and adaptive immune responses upon microbial stimulation. In summary, VPG and rVPG can protect zebrafish against the infection from at least two Vibrio species, suggesting its potential value for further aquaculture vaccines development.
Collapse
Affiliation(s)
- Shengle Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qiyang Gong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
9
|
Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio). Biologicals 2019; 63:14-23. [PMID: 31889622 DOI: 10.1016/j.biologicals.2019.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023] Open
Abstract
Edwardsiella tarda phage (ETP-1) was isolated from marine fish farm water to characterize its effect against pathogenic multidrug-resistant E. tarda. According to transmission electron microscopy results, ETP-1 is classified as a member of the family Podoviridae. ETP-1 showed MOI dependent E. tarda growth inhibition, a latent period of 60 min, and burst size of 100 PFU per infected cells. In host range tests, five out of eight E. tarda strains were sensitive to ETP-1 which had efficiency of plating index in the range 1-1.28. ETP-1 was stable over a broad range of pH and temperature. The size of the ETP-1 genome was predicted to be approximately 40 kb. Zebrafish exposed to ETP-1 showed no adverse gene responses to the inflammatory mediator cytokines, il1-β, tnf-α, il-6, and il-10, the chemokine, cxcl-8a, and reactive oxygen species, sod-1. When zebrafish were bath exposed to ETP-1 for 12 days and simultaneously challenged with E. tarda (1.08 × 105 CFU fish-1), the survival rate was higher in phage exposed fish (68%) compared to that of the control (18%) until 4 days post challenge. Our results suggest that ETP-1 can be used as a potential bio-therapeutic candidate to control multi-drug resistant E. tarda infection in aquaculture.
Collapse
|
10
|
Jiang N, Luo L, Xing W, Li T, Yuan D, Xu G, Li W, Ma Z, Jin L, Ji M. Generation and immunity effect evaluation of biotechnology-derived Aeromonas veronii ghost by PhiX174 gene E-mediated inactivation in koi (Cyprinus carprio koi). FISH & SHELLFISH IMMUNOLOGY 2019; 86:327-334. [PMID: 30041051 DOI: 10.1016/j.fsi.2018.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Aeromonas veronii is a conditional pathogen causing high mortality in many freshwater fish species worldwide. Bacterial ghosts are nonliving Gram-negative bacteria devoid of cytoplasmic contents, which induce protective immunity against microbial pathogens. The aims of this study were: a) to produce A. veronii ghost (AVG) constructed by PhiX174 gene E; b) to evaluate the specific, non-specific immune effects and protective immunity of AVG against A. veronii in koi. The lysis plasmid pBBR-E was constructed by cloning PhiX174 gene E into the broad-host-range vector pBBR1MCS2, and then transformed into A. veronii 7231. AVG was generated by increasing the incubation temperature up to 42 °C. Lysis of A. veronii occurred 3 h after temperature induction and completed in 12 h. The efficiency of ghost induction was 99.9998 ± 0.0002%. Koi were immunized intraperitoneally with AVG, formalin-killed bacteria (FKC) or phosphate buffered saline (PBS) respectively, and then respiratory burst (RB), myeloperoxidase (MPO), lysozyme (LZM), malondialdehyde (MDA), complement 3 (C3) and antibody activities were examined in serum. Compared with negative control of PBS, the RB, MPO, LZM activities were significantly higher in koi immunized with AVG (P < 0.05). Nevertheless, the MDA activities of AVG treatment were significantly lower than those of PBS treatment (P < 0.05). The serum agglutination titers and IgM antibody titers in AVG group were significantly higher than those in FKC or PBS groups. After challenged with the parent strain A. veronii 7231, the average mortality of AVG group was significantly lower than that of FKC and PBS groups (P < 0.05) and the relative percent survival (RPS) of AVG group (73.92%) was higher than that of FKC group (43.48%). Therefore, AVG have the potential to induce protective immunity and they may be ideal vaccine candidates against A. veronii in koi.
Collapse
Affiliation(s)
- Na Jiang
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Lin Luo
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Wei Xing
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Tieliang Li
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Ding Yuan
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Guanling Xu
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Wentong Li
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Zhihong Ma
- Beijing Fisheries Research Institute, Beijing, 100068, China.
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Man Ji
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
11
|
Buján N, Toranzo AE, Magariños B. Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. DISEASES OF AQUATIC ORGANISMS 2018; 131:59-71. [PMID: 30324915 DOI: 10.3354/dao03281] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edwardsiella piscicida, a Gram-negative, facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis in fish and a significant problem in global aquaculture. E. piscicida has been reported from a broad geographical range and has been isolated from more than 20 fish host species to date, but this is likely to be an underestimation, because misidentification of E. piscicida as other species within the genus remains to be resolved. Common clinical signs associated with edwardsiellosis include, but are not limited to, exophthalmia, haemorrhages of the skin and in several internal organs, mild to moderate dermal ulcerations, abdominal distension, discoloration in the fish surface, and erratic swimming. Many antibiotics are currently effective against E. piscicida, although legal restrictions and the cost of medicated feeds have encouraged significant research investment in vaccination for the management of edwardsiellosis in commercial aquaculture. Here we summarise the current understanding of E. piscicida and highlight the difficulties with species assignment and the need for further research on epidemiology and strain variability.
Collapse
Affiliation(s)
- N Buján
- Departamento de Microbioloxía y Parasitoloxía, Facultade de Bioloxía-Edif, CIBUS, and Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | | |
Collapse
|
12
|
Liu C, Chang OQ, Zhang DF, Li KB, Wang F, Lin MH, Shi CB, Jiang L, Wang Q, Bergmann SM. Aeromonas shuberti as a cause of multi-organ necrosis in internal organs of Nile tilapia, Oreochromis niloticus. JOURNAL OF FISH DISEASES 2018; 41:1529-1538. [PMID: 30039866 DOI: 10.1111/jfd.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
A disease with white spots in internal organs of Nile tilapia occurred in Zhanjiang, southern China. Multiple, white nodules, 0.8-2.2 mm in diameter, were scattered throughout the liver, spleen and kidney of diseased fish. Signs of nodules reproduced after artificial infection with the isolated strain. Isolated bacteria were Gram-negative, facultative anaerobic, motile, short rod-shaped, with a length of 1.2-2.2 μm. Morphological and biochemical tests, as well as phylogenetic analysis, all strongly indicated that the isolate from tilapia is identical to Aeromonas schubertii (A. schubertii) which temporary named LF1708 strain. Antibiotic sensitivity assays showed the LF1708 is sensitive to 24 of 27 tested antibiotics. Pathogenicity test revealed that the isolate at the dose of 3.75 × 106 CFU/g killed 100% of experimental tilapia within 2 days and the dose of 1 × 107 CFU/g killed 100% of experimental zebrafish within 1 day. Histopathology of diseased tilapia infected with A. schubertii showed numerous necrotic lesions widely distributed in spleen, liver and kidney, and infiltration with a large number of bacteria. To our knowledge, this was the first report that associated A. schubertii with mortality in tilapia.
Collapse
Affiliation(s)
- C Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - O Q Chang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - D F Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - K B Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - F Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - M H Lin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - C B Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - L Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - Q Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - S M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Wu J, Liu G, Sun Y, Wang X, Fang H, Jiang H, Guo Z, Dong J. The role of regulator FucP in Edwardsiella tarda pathogenesis and the inflammatory cytokine response in tilapia. FISH & SHELLFISH IMMUNOLOGY 2018; 80:624-630. [PMID: 29886137 DOI: 10.1016/j.fsi.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
The animal intestine provides a competitive environment for the microbiota. Successful colonization by pathogens requires sensing chemical signals to regulate the expression of virulence genes. Some bacteria rely on a two-component chemical signal transduction system, named FusKR, to regulate virulence genes expression by intestinal fucose. Here we construct the fucP gene deletion strain prove FucP regulation of the T3SS in E. tarda. The result showed that the mutant strain had down-regulated significantly the gene expression of FusKR and T3SS compared to the wild-type strain (P < 0.05). This mutant strain significantly increased LD50 in zebrafish compared to the wild-type strain (P < 0.05), and significantly decreased penetration and motility in mucin than the wild-type strain (P < 0.05). Meanwhile, tilapia infected with mutant strain show significantly reduced E. tarda adherence and colonization than those infected with the wild-type strain (P < 0.05). Fish infected with EIB202 and ΔfucP showed significantly higher (P < 0.05) gene expression of IL-1β, TNF-α, IFN-γ, TGF-β and HSP-70 in head kidney than fish treated with PBS in the whole observed period; however CPP-3 did not show significant differences (P > 0.05) in all groups. Fish infected with EIB202 showed significantly higher (P < 0.05) gene expression of TGF-β in head kidney than fish treated with ΔfucP in the whole observed period; however other cytokines did not show significant differences (P > 0.05) in the whole observed period. In addition, Fish infected with EIB202 showed significantly higher (P < 0.05) gene expression of IL-1β, TNF-α and TGF-β in spleen than fish treated with ΔfucP in the whole observed period, however IFN-γ, CPP-3, and HSP-70 did not show significant differences (P > 0.05) in the whole observed period. Although the gene expression of cytokines was induced similarly by both strains, all results indicate that the fucP gene deletion down-regulates the key gene expression of FucKR and T3SS, reduces the pathogenicity of E. tarda in fish, particularly decreases inducing the gene expression of TGF-β in the head kidney and IL-1β, TNF-α and TGF-β in the spleen.
Collapse
Affiliation(s)
- Jiayan Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China
| | - Guangbin Liu
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China.
| | - Hao Fang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Heng Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Zhiming Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinggang Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|
14
|
Yan M, Liu J, Li Y, Wang X, Jiang H, Fang H, Guo Z, Sun Y. Different concentrations of Edwardsiella tarda ghost vaccine induces immune responses in vivo and protects Sparus macrocephalus against a homologous challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 80:467-472. [PMID: 29928994 DOI: 10.1016/j.fsi.2018.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Bacterial ghosts (BGs) can be generated by the controlled expression of the PhiX174 lysis gene E in gram-negative bacteria. They are intriguing vaccine candidates since ghosts retain functional antigenic cellular determinants often lost during traditional inactivation procedures. Here we prepared Edwardsiella tarda ghost (ETG) and tested different concentrations in vaccination trials. The results showed that serum IgM antibody titers were significantly higher in three different concentration immunization groups than control group (P < 0.05), However, there was no significant (P > 0.05) difference between the immunized groups. The phagocytic percentage (PP) was significantly higher (P < 0.05) in ETG immunized groups than in the control group from 3 days post-treatment. The PP continued to rise with time until day 21, when the values of three ETG immunized groups were 45.7%,51.2% and 50.7%, respectively. In addition, phagocytic index (PI) was significantly higher (P < 0.05) in ETG immunized groups than in the control group after 7 days post-treatment. However, there was no significant (P > 0.05) difference of PP or PI between immunized groups. In addition, non-specific immune immunity, such as acid phosphatase, alkaline phosphatase, superoxide dismutase and lysozyme activities displayed a similar pattern in all immunized groups, all immunized fish showed significantly higher activities than control group fish (P < 0.05). Most importantly three ETG immunized groups were all significantly more protected against the E. tarda challenge (19/25, 76% survival), (21/25, 84% survival) and (20/25, 80% survival) respectively, compared to (9/25, 36% survival) survival in the control group, but there was no significant (P > 0.05) difference of survival rate (SR) or relative percent survival (RPS) between immunized groups. All these results suggest that an ETG could stimulate cellular and humoral immunity, and could be used as a vaccine candidate in S.m. In summary, ETG can protect fish from Edwardsiellosis, and there is no significant difference in SR and RPS when three different concentrations of ETG are used, so it can easily be developed as a vaccine for mechanical and artificial operations.
Collapse
Affiliation(s)
- Maocang Yan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Zhejiang Mariculture Research Institute, Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, PR China
| | - Jinyu Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Yu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China.
| | - Heng Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Hao Fang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Zhiming Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|
15
|
Galal AAA, Reda RM, Abdel-Rahman Mohamed A. Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. FISH & SHELLFISH IMMUNOLOGY 2018; 77:445-456. [PMID: 29626668 DOI: 10.1016/j.fsi.2018.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Little is known regarding the impact of penoxsulam, a fluorinated benzenesulfonamid rice herbicide, on Oreochromis niloticus (O. niloticus). Therefore, the current study was undertaken to highlight the effects of penoxsulam exposure on O. niloticus and to evaluate the advantages of Chlorella vulgaris (CV) dietary supplementation against the induced effects. The 96-h lethal concentration 50 (LC50) penoxsulam value for O. niloticus was estimated at 8.948 mg/L by probit analysis in a static bioassay experiment. Next, 360 healthy fish were randomly allocated into 6 treatment groups. The T1 group served as the negative control and was fed a basal diet. The T2 group served as the positive control and was fed a basal diet supplemented with 10% CV. The fish in the T3 and T4 groups were exposed to 1/10 the 96-h LC50 of penoxsulam (0.8948 mg/L) and were fed the basal diet alone or the basal diet supplemented with 10% CV, respectively. The fish in the T5 and T6 groups were exposed to 1/5 the 96-h LC50 of penoxsulam (1.7896 mg/L) and fed the basal diet alone or the basal diet supplemented with 10% CV, respectively. Sub-acute penoxsulam exposure significantly altered hematological indices, as well as compromised the fish's immune defense mechanisms, including the phagocytic percentage, phagocytic index, nitric oxide production, immunoglobulin M levels and lysozyme, anti-trypsin and bactericidal activities subsequently decreasing O. niloticus's resistance to the Aeromonus sobria challenge and increasing disease symptoms and the mortality rate. Furthermore, sub-chronic penoxsulam exposure markedly altered growth performance, oxidant/antioxidant status and liver status and down-regulated the expression of interleukin-1β (IL-1β) and tumor necrosis-α (TNF-α). Interestingly, incorporating 10% CV into the diet protects fish against sub-acute penoxsulam-induced immunotoxicity via improvement of immune responses that increases the resistance against bacterial infection. Further, it improved the growth performance, oxidant/antioxidant status, liver status and markedly up-regulated immune-related gene expression, IL-1β and TNF-α, in the spleens of fish sub-chronically exposed to penoxsulam. These outcomes showed that dietary CV supplementation can protect the commercially valuable freshwater fish O. niloticus against penoxsulam toxicity and may be a potential feed supplement for Nile tilapia in aquaculture.
Collapse
Affiliation(s)
- Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Rasha M Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
16
|
Rabea S, Salem-Bekhit MM, Alanazi FK, Yassin AS, Moneib NA, Hashem AEM. A novel protocol for bacterial ghosts' preparation using tween 80. Saudi Pharm J 2018; 26:232-237. [PMID: 30166921 PMCID: PMC6111193 DOI: 10.1016/j.jsps.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) can be prepared by both genetic and chemical means. Genetic method include using lysis gene E. Chemical method include incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations (MIC or MGC). The aim of this study is to prepare the BGs with a new protocol via exposing the bacterial cells to tween 80 for an extended period of time followed by sudden reduction of the surrounding pH. Salmonella enterica serovar typhimurium ATCC 13311 was used for this purpose. The cells were incubated in 7% v/v tween 80 solution in Muller-Hinton broth for 24 h at 37 °C then pH was decreased to 3.6 by adding lactic acid for one hour. The bacterial pellets were separated by high speed centrifugation, and then washed three times by half normal saline solution. High quality BGs were visualized by scanning electron microscopy (SEM) revealing punctured cells with intact outer shells and at least one intramembranous tunnel. The absence of vital cells was confirmed by subculturing. The release of respective amounts of proteins and DNA is another evidence of ghost's production. In addition, the integrity of cells was proved by visualization of Gram-stained cells using light microscopy. In conclusion, this new protocol is simple, economic and feasible for BGs preparation.
Collapse
Affiliation(s)
- Sameh Rabea
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aymen S. Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
| | - Nayera A. Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
| | - Abd Elgawad M. Hashem
- Faculty of Pharmacy, British University in Egypt (BUE), P.O. Box 43, Cairo 11837, Egypt
| |
Collapse
|
17
|
Abstract
Outer membrane vesicles (OMVs) (∼50-250 nm in diameter) are produced by both pathogenic and nonpathogenic bacteria as a canonical end product of secretion. In this review, we focus on the OMVs produced by gram-negative bacteria. We provide an overview of the OMV structure, various factors regulating their production, and their role in modulating host immune response using a few representative examples. In light of the importance of the diverse cargoes carried by OMVs, we discuss the different modes of their entry into the host cell and advances in the high-throughput detection of these OMVs. A conspicuous application of OMVs lies in the field of vaccination; we discuss its success in immunization against human diseases such as pertussis, meningitis, shigellosis and aqua-farming endangering diseases like edwardsiellosis.
Collapse
Affiliation(s)
- Deepak Anand
- a Max-Planck-Institut für terrestrische Mikrobiologie , Marburg , Germany
| | - Arunima Chaudhuri
- b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
18
|
Beck BR, Lee SH, Kim D, Park JH, Lee HK, Kwon SS, Lee KH, Lee JI, Song SK. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines. FISH & SHELLFISH IMMUNOLOGY 2017; 68:19-28. [PMID: 28687358 DOI: 10.1016/j.fsi.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/24/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine.
Collapse
Affiliation(s)
- Bo Ram Beck
- Research Center, Immunus Co., Ltd., Business Incubation Center 205, Handong University, Pohang 37554, Republic of Korea
| | - Soon Ho Lee
- School of Life Science, Handong University, Pohang 37554, Republic of Korea
| | - Daniel Kim
- School of Life Science, Handong University, Pohang 37554, Republic of Korea
| | - Ji Hye Park
- Research Center, Immunus Co., Ltd., Business Incubation Center 205, Handong University, Pohang 37554, Republic of Korea
| | - Hyun Kyung Lee
- School of Life Science, Handong University, Pohang 37554, Republic of Korea
| | - San-Sung Kwon
- School of Life Science, Handong University, Pohang 37554, Republic of Korea
| | - Kwan Hee Lee
- Research Center, Immunus Co., Ltd., Business Incubation Center 205, Handong University, Pohang 37554, Republic of Korea
| | - Jae Il Lee
- GyeongSangbuk-Do Fisheries Technology Center, Yeongdeok 36426, Republic of Korea
| | - Seong Kyu Song
- Research Center, Immunus Co., Ltd., Business Incubation Center 205, Handong University, Pohang 37554, Republic of Korea; School of Life Science, Handong University, Pohang 37554, Republic of Korea.
| |
Collapse
|
19
|
Abstract
Bacterial ghosts (BG) are empty cell envelopes derived from Gram-negative bacteria. They contain many innate immunostimulatory agonists, and are potent activators of a broad range of cell types involved in innate and adaptive immunity. Several considerable studies have demonstrated the effectiveness of BG as adjuvants as well as their ability to induce proinflammatory cytokine production by a range of immune and non-immune cell types. These proinflammatory cytokines trigger a generalized recruitment of T and B lymphocytes to lymph nodes that maximize the chances of encounter with their cognate antigen, and subsequent elicitation of potent immune responses. The plasticity of BG has allowed for the generation of envelope-bound foreign antigens in immunologically active forms that have proven to be effective vaccines in animal models. Besides their adjuvant property, BG also effectively deliver DNA-encoded antigens to dendritic cells, thereby leading to high transfection efficiencies, which subsequently result in higher gene expressions and improved immunogenicity of DNA-based vaccines. In this review, we summarize our understanding of BG interactions with the host immune system, their exploitation as an adjuvant and a delivery system, and address important areas of future research interest.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Pervaiz A Dar
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
20
|
Hao K, Chen XH, Qi XZ, Yu XB, Du EQ, Ling F, Zhu B, Wang GX. Protective immunity of grass carp induced by DNA vaccine encoding capsid protein gene (vp7) of grass carp reovirus using bacterial ghost as delivery vehicles. FISH & SHELLFISH IMMUNOLOGY 2017; 64:414-425. [PMID: 28300681 DOI: 10.1016/j.fsi.2017.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Grass carp reovirus (GCRV) is one of the most pathogenic aquareovirus and can cause lethal hemorrhagic disease in grass carp (Ctenopharyngodon idella). However, management of GCRV infection remains a challenge. Therefore, it is necessary to find effective means for the control of its infection. The uses of bacterial ghost (BG, non-living bacteria) as carriers for DNA delivery have received considerable attentions in veterinary and human vaccines studies. Nevertheless, there is still no report about intramuscular administration of bacterial ghost-based DNA vaccines in fish. In the current study, a novel vaccine based on Escherichia coli DH5α bacterial ghost (DH5α-BG), delivering a major capsid protein gene (vp7) of grass carp reovirus encoded DNA vaccine was developed to enhance the efficacy of a vp7 DNA vaccine against GCRV in grass carp. The grass carp was injected intramuscularly by different treatments -i) naked pcDNA-vp7 (containing plasmid 1, 2.5 and 5 μg, respectively), ii) DH5α-BG/pcDNA-vp7 (containing plasmid 1, 2.5 and 5 μg, respectively) and iii) naked pcDNA, DH5α-BG or phosphate buffered saline. The immune responses and disease resistance of grass carp were assessed in different groups, and results indicated that the antibody levels, serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, acid phosphatase (ACP) activity and alkaline phosphatase (AKP) activity and immune-related genes were significantly enhanced in fish immunized with DH5α-BG/pcDNA-vp7 vaccine (DNA dose ranged from 2.5 to 5 μg). In addition, the relative percentage survival were significantly enhanced in fish immunized with DH5α-BG/pcDNA-vp7 vaccine and the relative percentage survival reached to 90% in DH5α-BG/pcDNA-vp7 group than that of naked pcDNA-vp7 (42.22%) at the highest DNA dose (5 μg) after 14 days of post infection. Moreover, the level of pcDNA-vp7 plasmid was higher in DH5α-BG/pcDNA-vp7 groups than naked pcDNA-vp7 groups in muscle and kidneys tissues after 21 days. Overall, those results suggested that DH5α bacterial ghost based DNA vaccine might be used as a promising vaccine for aquatic animals to fight against GCRV infection.
Collapse
Affiliation(s)
- Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Zhou Qi
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - En-Qi Du
- College of Veterinary Medicine, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Thummabancha K, Onparn N, Srisapoome P. Analysis of hematologic alterations, immune responses and metallothionein gene expression in Nile tilapia (Oreochromis niloticus) exposed to silver nanoparticles. J Immunotoxicol 2016; 13:909-917. [DOI: 10.1080/1547691x.2016.1242673] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
| | - Nuttaphon Onparn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
22
|
Won G, Chaudhari AA, Lee JH. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate. Clin Exp Vaccine Res 2016; 5:148-58. [PMID: 27489805 PMCID: PMC4969279 DOI: 10.7774/cevr.2016.5.2.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/22/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| |
Collapse
|
23
|
Park JY, Awji EG, Suh JW, Park SC. Pharmacokinetics, pharmacokinetic–pharmacodynamic relationship, and withdrawal period of amoxicillin sodium in olive flounder (Paralichthys olivaceus). Xenobiotica 2015; 46:522-9. [DOI: 10.3109/00498254.2015.1089453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Choi SH, Kim MS, Kim KH. Generation of killed but metabolically active (KBMA) Edwardsiella tarda and evaluation of its potential as a protective vaccine. FISH & SHELLFISH IMMUNOLOGY 2015; 45:889-894. [PMID: 26074095 DOI: 10.1016/j.fsi.2015.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
A technology for inactivation of pathogens in human blood products by treatment with amotosalen hydrochloride (S-59) in combination with long wavelength ultraviolet light (UVA) to decrease transfusion-mediated sepsis has been applied to make safe vaccines against human pathogenic bacteria, and the resultants were called killed but metabolically active (KBMA) bacteria. In the present study, we first generated KBMA Edwardsiella tarda and evaluated its potential as a protective vaccine in olive flounder (Paralichthys olivaceus). To prevent the restoration of division ability by removal of psoralen adducts in the bacterial chromosome through the nucleotide excision repair (NER), the uvrA and uvrB genes knock-out E. tarda (ΔuvrAB E. tarda) was produced by the allelic exchange method. The optimal condition for generation of KBMA E. tarda was exposure of the ΔuvrAB E. tarda to 100 ng/ml of S-59 and 2.8 J/cm(2) of UVA irradiation. The KBMA E. tarda could not replicate but showed a high metabolic activity (measured by lactate dehydrogenase activity) that was comparable to the wild-type E. tarda. In comparison of survival rates between groups vaccinated with the same dose of bacteria, fish immunized with KBMA E. tarda showed significantly higher survival rates than fish immunized with formalin-killed cell (FKC) E. tarda. Furthermore, fish immunized with 1 × 10(7) CFU/fish of KBMA E. tarda showed no mortality, while PBS-injected fish showed 100% mortality. The serum agglutination titer was sharply increased by 10(7) CFU/fish of KBMA E. tarda compared to those of fish immunized with 10(6) CFU/fish of KBMA E. tarda or 10(7) CFU/fish of FKC E. tarda. The consistently lower serum agglutination titers against KBMA E. tarda than against FKC E. tarda in both KBMA and FKC E. tarda immunized groups suggest that some factors secreted from KBMA E. tarda might inhibit the serum agglutination activity. In conclusion, the present results showed the higher potential of KBMA E. tarda than FKC E. tarda as a prophylactic vaccine.
Collapse
Affiliation(s)
- Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea
| | - Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea.
| |
Collapse
|
25
|
Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. FISH & SHELLFISH IMMUNOLOGY 2014; 39:8-16. [PMID: 24746937 DOI: 10.1016/j.fsi.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/15/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications.
Collapse
Affiliation(s)
- Jimei Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jinmei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
26
|
Effect of Edwardsiella tarda immunization on systemic immune response, mucosal immune response and protection in catla (Catla catla). Vet Res Commun 2014; 38:115-22. [DOI: 10.1007/s11259-014-9593-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
27
|
Muhammad A, Champeimont J, Mayr UB, Lubitz W, Kudela P. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines 2014; 11:97-116. [DOI: 10.1586/erv.11.149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Xiao J, Chen T, Liu B, Yang W, Wang Q, Qu J, Zhang Y. Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. FISH & SHELLFISH IMMUNOLOGY 2013; 35:632-641. [PMID: 23732848 DOI: 10.1016/j.fsi.2013.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/18/2013] [Accepted: 05/18/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is an intractable Gram-negative pathogen in many fish species to cause edwardsiellosis. Its infection leads to extensive losses in a diverse array of commercially important fish. The type III secretion system (T3SS) has been considered as one of the major virulence factors and plays important roles in its intracellular lifestyle. In this study, an E. tarda EIB202 mutant WED with deletions in the T3SS genes for EseB, EseC, EseD and EscA, along with the aroC gene for the biosynthesis of chorismic acid, as well as the curing of endogenous plasmid pEIB202 was constructed by allelic exchange strategy. Compared to the wild-type EIB202 which was highly virulent towards turbot (Scophthamus maximus) via intraperitoneal (i.p.), intramuscular (i.m.) injection or immersion and caused systemic infection in turbot as well as the unexpected red mouth symptom when immersion challenged, WED was highly attenuated when inoculated into turbot via i.m., i.p. and immersion routes, and exhibited significantly impaired capacity to survive in fish tissues. WED showed 5700-fold higher 50% lethal dose (LD50) than that of the wild type when i.m. or i.p. challenged. Inoculation with WED by i.p. or immersion injection routes elicited significant protection against the challenge of the wild-type E. tarda after 5 weeks of vaccination. The vaccinated fish produced low while significant level of specific antibody and showed increased expression of immune-related factors including IL-1β, IFN-γ, MHC II, MHC-I and CD8, indicating that WED possesses significant immunoprotective potential. Furthermore, our data indicated that a single dose of i.p. and immersion vaccination with WED could produce significant protection as long as 12 and 6 months, respectively. These results demonstrated the feasibility of WED as a live attenuated vaccine in turbot against edwardsiellosis by immersion or i.p. injection routes.
Collapse
Affiliation(s)
- Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Guo SL, Wang Y, Guan RZ, Feng JJ, Yang QH, Lu PP, Hu LL, Zhao JP. Immune effects of a bivalent expressed outer membrane protein to American eels (Anguilla rostrota). FISH & SHELLFISH IMMUNOLOGY 2013; 35:213-20. [PMID: 23643876 DOI: 10.1016/j.fsi.2013.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 05/26/2023]
Abstract
The specific and non-specific immune parameters and protection of American eels (Anguilla rostrata) were evaluated after immunized eels with a bivalent expressed out membrane protein (OMP) of porin Ⅱ of Aeromonas hydrophila and ompS2 of Edwardsiella tarda. One hundred eighty eels were distributed into 3 equal groups and intraperitoneal (i.p) injection with phosphate-buffered saline (PBS group), formalin-killed-whole-cell (FKC) of A. hydrophila and E. tarda (FKC group) or the bivalent OMP (OMP group). The lymphocytes and red blood cells collected on 14, 21 and 42 days post-vaccination were used to evaluate the stimulation index (SI) and the sera collected on 14, 21, 28 and 42 days were used to assize the titers of specific antibody as well as lysozyme activity. Lysozyme activities in skin mucus, suspension of liver and kidney were also recorded on 14, 21 and 28 days. On 28 d post-vaccination, eels from all three groups were challenged by i.p injection of live A. hydrophila or E. tarda. The results show that, compared with the PBS group, proliferation of lymphocytes in OMP group was significantly (P < 0.05) enhanced on 21 days, and the serum titers of anti-A. hydrophila and anti- E. tarda antibody in eels of FKC and OMP group were significant increased (P < 0.05 or P < 0.01) on 14, 21 and 28 days. Activity of the lysozyme in serum, skin mucus, liver and kidney were significant changed (P < 0.05 or P < 0.01) between the three groups. Relative Percent Survival (RPS) after challenged with A. hydrophila on 28 days post immunization in two vaccinated groups vs. PBS group were 50%, and the RPS challenge E. tarda in FKC and OMP vs. PBS group were 50% and 37.5% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in freshwater farming.
Collapse
Affiliation(s)
- Song-Lin Guo
- Fishery College of Jimei University/Engineering Research Center of Modern Eel Industrial Technology of the Ministry of Education, PRC, Jimei University, Yindou Road, Fujian, Xiamen 361021, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Comparison of the immunogenicity between bacterial ghost and formalin-killed bacteria for Vibrio vulnificus. ACTA ACUST UNITED AC 2012. [DOI: 10.7847/jfp.2012.25.3.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Liang S, Wu H, Liu B, Xiao J, Wang Q, Zhang Y. Immune response of turbot (Scophthalmus maximus L.) to a broad spectrum vaccine candidate, recombinant glyceraldehyde-3-phosphate dehydrogenase of Edwardsiella tarda. Vet Immunol Immunopathol 2012; 150:198-205. [DOI: 10.1016/j.vetimm.2012.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
32
|
Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 2012; 43:67. [PMID: 23035843 PMCID: PMC3479428 DOI: 10.1186/1297-9716-43-67] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/07/2012] [Indexed: 01/29/2023] Open
Abstract
Edwardsiella tarda is one of the serious fish pathogens, infecting both cultured and wild fish species. Research on edwardsiellosis has revealed that E. tarda has a broad host range and geographic distribution, and contains important virulence factors that enhance bacterial survival and pathogenesis in hosts. Although recent progress in edwardsiellosis research has enabled the development of numerous, highly effective vaccine candidates, these efforts have not been translated into a commercialized vaccine. The present review aims to provide an overview of the identification, pathology, diagnosis and virulence factors of E. tarda in fish, and describe recent strategies for developing vaccines against edwardsiellosis. The hope is that this presentation will be useful not only from the standpoint of understanding the pathogenesis of E. tarda, but also from the perspective of facilitating the development of effective vaccines.
Collapse
|
33
|
Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. J Biomed Biotechnol 2012; 2012:760730. [PMID: 22719209 PMCID: PMC3376489 DOI: 10.1155/2012/760730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022] Open
Abstract
Flavobacterium columnare is a bacterial pathogen causing high mortality rates for many freshwater fish species. Fish vaccination with a safe and effective vaccine is a potential approach for prevention and control of fish disease. Here, in order to produce bacterial ghost vaccine, a specific Flavobacterium lysis plasmid pBV-E-cat was constructed by cloning PhiX174 lysis gene E and the cat gene with the promoter of F. columnare into the prokaryotic expression vector pBV220. The plasmid was successfully electroporated into the strain F. columnare G4cpN22 after curing of its endogenous plasmid. F. columnare G4cpN22 ghosts (FCGs) were generated for the first time by gene E-mediated lysis, and the vaccine potential of FCG was investigated in grass carp (Ctenopharyngodon idellus) by intraperitoneal route. Fish immunized with FCG showed significantly higher serum agglutination titers and bactericidal activity than fish immunized with FKC or PBS. Most importantly, after challenge with the parent strain G4, the relative percent survival (RPS) of fish in FCG group (70.9%) was significantly higher than FKC group (41.9%). These results showed that FCG could confer immune protection against F. columnare infection. As a nonliving whole cell envelope preparation, FCG may provide an ideal alternative to pathogen-based vaccines against columnaris in aquaculture.
Collapse
|
34
|
Choi S, Kwon S, Kim K. Generation of a temperature-sensitive Edwardsiella tarda mutant and its potential as a prophylactic vaccine in olive flounder (Paralichthys olivaceus). J Appl Microbiol 2012; 113:248-55. [DOI: 10.1111/j.1365-2672.2012.05328.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Chaudhari AA, Jawale CV, Kim SW, Lee JH. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens. Vet Res 2012; 43:44. [PMID: 22620989 PMCID: PMC3413521 DOI: 10.1186/1297-9716-43-44] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 05/11/2012] [Indexed: 11/13/2022] Open
Abstract
In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT.
Collapse
Affiliation(s)
- Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | | | | | | |
Collapse
|
36
|
Mohanty BR, Sahoo PK, Mahapatra KD, Saha JN. Differential resistance to edwardsiellosis in rohu (Labeo rohita) families selected previously for higher growth and/or aeromoniasis-resistance. J Appl Genet 2011; 53:107-14. [DOI: 10.1007/s13353-011-0072-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
37
|
Choi SH, Kim KH. Generation of two auxotrophic genes knock-out Edwardsiella tarda and assessment of its potential as a combined vaccine in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2011; 31:58-65. [PMID: 21397031 DOI: 10.1016/j.fsi.2011.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
Two auxotrophic genes that play essential roles in bacterial cell wall biosynthesis--alanine racemase (alr) gene and aspartate semialdehyde dehydrogenase (asd) gene--knock-out Edwardsiella tarda (Δalr Δasd E. tarda) was generated by the allelic exchange method to develop a combined vaccine system. Green fluorescent protein (GFP) was used as a model foreign protein, and was expressed by transformation of the mutant E. tarda with antibiotic resistant gene-free plasmids harboring cassettes for GFP and asd expression (pG02-ASD-EtPR-GFP). In vitro growth of the mutant E. tarda was similar to wild-type E. tarda when D-alanine and diaminopimelic acid (DAP) were supplemented to growth medium. However, without d-alanine and/or DAP supplementation, the mutant showed very limited growth. The Δalr Δasd E. tarda transformed with pG02-ASD-EtPR-GFP showed a similar growth pattern of wild-type E. tarda when D-alanine was supplemented in the medium, and the expression of GFP could be observed even with naked eyes. The virulence of the auxotrophic mutant E. tarda was decreased, which was demonstrated by approximately 10⁶ fold increase of LD₅₀ dose compared to wild-type E. tarda. To assess vaccine potential of the present combined vaccine system, olive flounder (Paralichthys olivaceus) were immunized with the GFP expressing mutant E. tarda, and analyzed protection efficacy against E. tarda challenge and antibody titers against E. tarda and GFP. Groups of fish immunized with 10⁷ CFU of the Δalr Δasd E. tarda harboring pG02-ASD-EtPR-GFP showed no mortality, which was irrespective to boost immunization. The cumulative mortality rates of fish immunized with 10⁶ or 10⁵ CFU of the mutant bacteria were lowered by a boost immunization. Fish immunized with the mutant E. tarda at doses of 10⁶-10⁷ CFU/fish showed significantly higher serum agglutination activities against formalin-killed E. tarda than PBS-injected control fish. Furthermore, fish immunized with 10⁶-10⁷ CFU/fish of the mutant E. tarda showed significantly higher ELISA titer against GFP antigen than fish in other groups. These results indicate that the present double auxotrophic genes knock-out E. tarda coupled with a heterologous antigen expression has a great strategic potential to be used as combined vaccines against various fish diseases.
Collapse
Affiliation(s)
- Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | | |
Collapse
|
38
|
Hu YH, Cheng S, Zhang M, Sun L. Construction and evaluation of a live vaccine against Edwardsiella tarda and Vibrio harveyi: Laboratory vs. mock field trial. Vaccine 2011; 29:4081-5. [DOI: 10.1016/j.vaccine.2011.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/09/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
39
|
Park SB, Jang HB, Nho SW, Cha IS, Hikima JI, Ohtani M, Aoki T, Jung TS. Outer membrane vesicles as a candidate vaccine against edwardsiellosis. PLoS One 2011; 6:e17629. [PMID: 21408115 PMCID: PMC3050902 DOI: 10.1371/journal.pone.0017629] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 02/03/2011] [Indexed: 01/08/2023] Open
Abstract
Infection with Edwardsiella tarda, a gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis.
Collapse
Affiliation(s)
- Seong Bin Park
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ho Bin Jang
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seong Won Nho
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - In Seok Cha
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Maki Ohtani
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Takashi Aoki
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- * E-mail: (TSJ); (TA)
| | - Tae Sung Jung
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- * E-mail: (TSJ); (TA)
| |
Collapse
|
40
|
Whang I, De Zoysa M, Nikapitiya C, Lee Y, Kim Y, Lee S, Oh C, Jung SJ, Oh MJ, Choi CY, Yeo SY, Kim BS, Kim SJ, Lee J. Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2011; 30:763-772. [PMID: 21195770 DOI: 10.1016/j.fsi.2010.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 12/27/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
Cathepsins are lysosomal cysteine proteases of the papain family that play an important role in intracellular protein degradation and turn over within the lysosomal system. In the present study, full-length sequences of cathepsin B (RbCathepsin B) and L (RbCathepsin L) were identified after transcriptome sequencing of rock bream Oplegnathus fasciatus mixed tissue cDNA. Cathepsin B was composed of 330 amino acid residues with 36 kDa predicted molecular mass. RbCathepsin L contained 336 amino acid residues encoding for a 38 kDa predicted molecular mass protein. The sequencing analysis results showed that both cathepsin B and L contain the characteristic papain family cysteine protease signature and active sites for the eukaryotic thiol proteases of cysteine, asparagine and histidine. In addition, RbCathepsin L contained EF hand Ca(2+) binding and cathepsin propeptide inhibitor domains. The rock bream cathepsin B and L showed the highest amino acid identity of 90 and 95% to Lutjanus argentimaculatus cathepsin B and Lates calcarifer cathepsin L, respectively. By phylogenetic analysis, cathepsin B and L exhibited a high degree of evolutionary relationship to respective cathepsin family members of the papain superfamily. Quantitative real-time RT-PCR analysis results confirmed that the expression of cathepsin B and L genes was constitutive in all examined tissues isolated from un-induced rock bream. Moreover, activation of RbCathepsin B and L mRNA was observed in both lipopolysaccharide (LPS) and Edwardsiella tarda challenged liver and blood cells, indicating a role of immune response in rock bream.
Collapse
Affiliation(s)
- Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Comparative study of the immune effect of an Edwardsiella tarda antigen in two forms: Subunit vaccine vs DNA vaccine. Vaccine 2011; 29:2051-7. [DOI: 10.1016/j.vaccine.2011.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/29/2010] [Accepted: 01/08/2011] [Indexed: 11/17/2022]
|
42
|
Choi SH, Nam YK, Kim KH. Novel expression system for combined vaccine production in Edwardsiella tarda ghost and cadaver cells. Mol Biotechnol 2010; 46:127-33. [PMID: 20369310 DOI: 10.1007/s12033-010-9277-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To develop combined vaccine systems, we have generated Edwardsiella tarda ghosts (ETG) displaying a foreign protein on the outer membrane and also Ed. tarda cadaver (ETC) expressing a heterologous protein in the cytoplasm. Green fluorescent protein (GFP) was used as a model foreign protein. A constitutive promoter (EtPR C28-1) cloned newly from Ed. tarda was used as a promoter for the expression of foreign protein. Comparison of the strength of the new promoter with a commercially available constitutive promoter (P(HCE)) showed higher expression levels of the novel expression system. The N-terminal domain of ice nucleation protein (InaN), an outer membrane protein of Pseudomonas syringae, was used as an anchor motif for surface display of GFP. By transformation of Ed. tarda with the constructed vectors, GFP was successfully expressed on the surface of ETG and in the cytoplasm of ETC. When compared to P(HCE) driven expression, approximately more than 2 times of GFP was expressed on ETG and in ETC by EtPR C28-1 promoter when judged by fluorescent spectrophotometry. Furthermore, significantly higher expression of GFP on the surface of ETG by EtPR C28-1 than by P(HCE) was demonstrated by serum agglutination assay. These results suggest that the newly cloned Ed. tarda constitutive promoter is capable to express foreign proteins not only on the surface of Ed. tarda ghosts but also in the cytoplasm of Ed. tarda cadavers, and can be used as an efficient promoter for the expression of heterologous antigens of the ETG and ETC-based combined vaccines.
Collapse
Affiliation(s)
- Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, Korea
| | | | | |
Collapse
|
43
|
Identification of an Edwardsiella tarda surface antigen and analysis of its immunoprotective potential as a purified recombinant subunit vaccine and a surface-anchored subunit vaccine expressed by a fish commensal strain. Vaccine 2010; 28:6603-8. [DOI: 10.1016/j.vaccine.2010.07.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/24/2010] [Accepted: 07/15/2010] [Indexed: 11/20/2022]
|
44
|
Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine 2010; 28:6344-50. [PMID: 20637307 DOI: 10.1016/j.vaccine.2010.06.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 11/21/2022]
Abstract
Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines.
Collapse
|
45
|
Tu FP, Chu WH, Zhuang XY, Lu CP. Effect of oral immunization with Aeromonas hydrophila ghosts on protection against experimental fish infection. Lett Appl Microbiol 2010; 50:13-7. [PMID: 19843213 DOI: 10.1111/j.1472-765x.2009.02746.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIMS To investigate whether oral immunization with Aeromonas hydrophila ghosts (AHG) vaccine can elicit mucosal and systemic immune responses of Carp (Carassius auratus gibelio) compared to conventional formalin-killed bacteria (FKC). METHODS AND RESULTS Fish were fed diets coated with AHG, FKC or phosphate buffered saline (PBS) alone, after immunization, more antigen-specific antibody was significantly detected in serum and intestinal mucus in AHG group than FKC group and PBS group. In addition, after challenged with the parent strain J-1, the survival of bacterial ghost-vaccinated fish was higher than PBS group and FKC group, the relative per cent survival (RPS) being 76.8%, 58.9%, respectively. CONCLUSIONS Oral immunization with A. hydrophila ghosts can elicit systemic and mucosal adaptive immune responses and has higher potential to induce protective adaptive immunity than normal vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY Oral immunization with bacterial ghosts is a promising new solution with potential application to prevent diseases in fish.
Collapse
Affiliation(s)
- F P Tu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | | | | | | |
Collapse
|
46
|
Cheng S, Hu YH, Zhang M, Sun L. Analysis of the vaccine potential of a natural avirulent Edwardsiella tarda isolate. Vaccine 2010; 28:2716-21. [DOI: 10.1016/j.vaccine.2010.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/06/2009] [Accepted: 01/13/2010] [Indexed: 01/05/2023]
|
47
|
Qin H, Jin X, Huang W, Liu Y. Production of an anti-idiotypic antibody single chain variable fragment vaccine against Edwardsiella tarda. Acta Biochim Biophys Sin (Shanghai) 2010; 42:129-36. [PMID: 20119624 DOI: 10.1093/abbs/gmp117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Edwardsiella tarda is the pathogen responsible for edwardsiellosis, a serious infectious disease of freshwater and marine fish species, and currently recognized to be the species pathogenic for human. An anti-idiotypic monoclonal antibody (mAb), 1E11, has been developed. It mimics the protective epitope of E. tarda and can prevent fish from infection of E. tarda. In this study, the correct variable heavy (VH) and variable light (VL) genes were obtained from 1E11 by using bioinformatics methods, and a 15 amino acid (Gly4Ser)3 linker was used to hold the two V domains together for the construction of VL-linker-VH form of single chain variable fragment (scFv) gene. Then, the scFv was subcloned into the vector pET-28a, expressed in the Escherichia coli BL21 cells, and identified by SDS-PAGE and western blotting. Red drum (Sciaenops ocellatus L.) weighing about 50 g was subjected to challenge with different E. tarda strains after 4 weeks followed by vaccination, the mortality rates and relative percentage survival were recorded and calculated, and the survival rate of fish in the scFv subgroups was obviously higher than that of control subgroups (P<0.01). Enzyme-linked immunosorbent assay results show that after 4 weeks of post-vaccination, the level of specific antibody in fish sera of scFv groups was significantly higher than control groups. This study indicates that the recombinant antibody scFv was successfully developed, and it may serve as an effective vaccine candidate against E. tarda.
Collapse
Affiliation(s)
- Hong Qin
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|
48
|
Jiao XD, Cheng S, Hu YH, Sun L. Comparative study of the effects of aluminum adjuvants and Freund's incomplete adjuvant on the immune response to an Edwardsiella tarda major antigen. Vaccine 2010; 28:1832-7. [DOI: 10.1016/j.vaccine.2009.11.083] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/29/2009] [Accepted: 11/30/2009] [Indexed: 11/16/2022]
|
49
|
Jiao XD, Dang W, Hu YH, Sun L. Identification and immunoprotective analysis of an in vivo-induced Edwardsiella tarda antigen. FISH & SHELLFISH IMMUNOLOGY 2009; 27:633-638. [PMID: 19706328 DOI: 10.1016/j.fsi.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 05/28/2023]
Abstract
Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares approximately 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia coli, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5alpha/pTAET21, is an effective vaccine candidate against E. tarda infection.
Collapse
Affiliation(s)
- Xu-dong Jiao
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
50
|
Hossain MMM, Kawai K. Stability of Effective Edwardsiella tarda Vaccine Developed for Japanese Eel (Anguilla japonica). ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jfas.2009.296.305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|