1
|
García-Álvarez MA, Chaves-Pozo E, Cuesta A. Cytotoxic activity and gene expression during in vitro adaptive cell-mediated cytotoxicity of head-kidney cells from betanodavirus-infected European sea bass. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105124. [PMID: 38145864 DOI: 10.1016/j.dci.2023.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Cell-mediated cytotoxicity (CMC) is essential in eradicating virus-infected cells, involving CD8+ T lymphocytes (CTLs) and natural killer (NK) cells, through the activation of different pathways. This immune response is well-studied in mammals but scarcely in teleost fish. Our aim was to investigate the adaptive CMC using head-kidney (HK) cells from European sea bass infected at different times with nodavirus (NNV), as effector cells, and the European sea bass brain cell line (DLB-1) infected with different NNV genotypes, as target cells. Results showed low and unaltered innate cytotoxic activity through the infection time. However, adaptive CMC against RGNNV and SJNNV/RGNNV-infected target cells increased from 7 to 30 days post-infection, peaking at 15 days, demonstrating the specificity of the cytotoxic activity and suggesting the involvement of CTLs. At transcriptomic level, we observed up-regulation of genes related to T cell activation, perforin/granzyme and Fas/FasL effector pathways as well as apoptotic cell death. Further studies are necessary to understand the adaptive role of European sea bass CTLs in the elimination of NNV-infected cells.
Collapse
Affiliation(s)
- Miguel A García-Álvarez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Valsamidis MA, White DM, Kokkoris GD, Bakopoulos V. Immune response of European sea bass (Dicentrarchus labrax L.) against combination of antigens from three different pathogens. Vet Immunol Immunopathol 2023; 256:110535. [PMID: 36621058 DOI: 10.1016/j.vetimm.2022.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Three of the most important diseases of Mediterranean intensive European sea bass farming are, viral nervous necrosis (VNN) caused by the red grouper nervous necrosis virus (RGNNV) genotype of b-nodavirus, photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp) and vibriosis caused mainly by the O1 serotype of Vibrio anguillarum (VaO1). Prevention against these diseases is performed through vaccination with a monovalent vaccine against the viral disease and, usually, with bivalent vaccines against the bacterial diseases. However, it is very difficult to program two vaccinations during the same season for the same fish stock and producers are forced to either vaccinate for the viral or the bacterial diseases or to perform double vaccination with both vaccines, without any prior knowledge on any interactions that may occur due to the plethora of antigens (Ag) injected. Ideally, therefore, a trivalent vaccine should be developed against all three diseases. The objective of this work was to analyse the immune response of sea bass against combinations of Ags from all three pathogens, namely viral particles, Phdp whole cells (WC), lipopolysaccharide (LPS), capsular polysaccharide (CPS) and extracellular products (ECPs) and VaO1 WC and ECPs in respect to the identification of any phenomena of immunodominance/immunosuppression between Ags with a view to select candidate Ags for inclusion in a trivalent vaccine formulation. Eight triplicate groups of fish were immunized with different combinations of the aforementioned Ags and another triplicate group served as negative control. Blood serum was isolated at various time-points post-immunization for the measurement of specific antibodies against each Ag and, in addition, leucocytes were isolated at day 29 post-immunization for analysis of various cellular activities. Results indicated that best levels of specific a-NNV virus antibodies (Abs) were produced when VaO1 ECPs were not included in the Ag combinations, in contrast to the leucocytes proliferation assay where best stimulation against NNV Ags was measured when VaO1 ECPs were present in Ag combinations. VaO1 ECPs apparently is a strong immunogen for both humoral and cellular responses but suppresses immunological reactions against the other Ags.VaO1 WC, Phdp LPS and ECPs raised good humoral immune responses in the groups with best responses against VNN Ags, but only VaO1 WC and Phdp ECPs provided good stimulation of leucocytes, with Phdp WC and CPS effecting either similar stimulation with untrained leucocytes (control groups) or down-stimulation. Results are discussed with a view to select Ags from all three pathogens for inclusion in trivalent vaccine against all three pathogens.
Collapse
Affiliation(s)
- Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece.
| | - Daniella-Mari White
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Giorgos D Kokkoris
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| |
Collapse
|
3
|
Álvarez-Torres D, Gómez-Abellán V, Arizcun M, García-Rosado E, Béjar J, Sepulcre MP. Identification of an interferon-stimulated gene, isg15, involved in host immune defense against viral infections in gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2018; 73:220-227. [PMID: 29277364 DOI: 10.1016/j.fsi.2017.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Interferons (IFNs) play a key role in the innate immunity of vertebrates against viral infections by inducing hundreds of IFN-stimulated genes (ISGs), such as isg15. Isg15 is an ubiquitin-like protein, which can conjugate cellular and viral proteins in a process called ISGylation, although it can also act as a cytokine-like protein. Gilthead seabream (Sparus aurata L.) is an important asymptomatic carrier of viral haemorrhagic septicaemia virus (VHSV) and nodavirus, representing a threat to other co-cultivated susceptible species. In order to better understand virus-host interactions in this fish species, this study addresses the identification and molecular characterization of seabream isg15 (sb-isg15). In addition, the modulation of transcript levels of sb-isg15 was analysed in SAF-1 cells and seabream acidophilic granulocytes (AGs) stimulated in vitro with different pathogen-associated molecular patterns (PAMPs) or inoculated with VHSV and striped jack nervous necrosis virus (SJNNV). The full-length cDNA of sb-isg15 gene, encoding a predicted protein of 155 amino acids, was identified and seen to share the same characteristics as other fish and mammalian isg15 genes. Here we report the clear induction of sb-isg15 transcript levels in SAF-1 cells and AGs stimulated with toll-like receptor (TLR) ligands, such as polyinosinic:polycytidylic acid (poly I:C) or genomic DNA from Vibrio anguillarum (VaDNA), respectively. Furthermore, VHSV and SJNNV inoculation induced a significant degree of sb-isg15 transcription in SAF-1 cells and AGs. However, the relative levels of viral RNA transcription showed that SJNNV replication seems to be more efficient than VHSV in both in vitro systems. Interestingly, sb-isg15 transcript induction elicited by VaDNA was reduced in VHSV- and SJNNV-inoculated AGs, suggesting an interference prompted by the viruses against the type I IFN system. Taken together, these findings support the use of seabream AGs as a valuable experimental system to study virus-host interactions, in which sb-isg15 seems to play an important role.
Collapse
Affiliation(s)
- Daniel Álvarez-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Victoria Gómez-Abellán
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), 30860 Murcia, Spain
| | - Esther García-Rosado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Béjar
- Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
4
|
Cordero H, Cuesta A, Meseguer J, Esteban MA. Characterization of the gilthead seabream (Sparus aurata L.) immune response under a natural lymphocystis disease virus outbreak. JOURNAL OF FISH DISEASES 2016; 39:1467-1476. [PMID: 27133966 DOI: 10.1111/jfd.12481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Lymphocystis or lymphocystis disease virus (LCDV) is distributed worldwide and affects many fresh and marine water fish species. LCDV is commonly found in aquaria fish species but also in farmed fish species, among them the gilthead seabream (Sparus aurata L.). The immune status of gilthead seabream (S. aurata) specimens under a natural outbreak of LCDV was studied. The replication of the virus was demonstrated in infected fish, but not in control fish. The results showed decreased total serum IgM levels and increased innate cellular immune response (peroxidase and respiratory burst activities) of head kidney leucocytes in LCDV-infected fish, compared to the values obtained in uninfected specimens. In addition, transcription of antiviral genes (ifn and irf3) was down-regulated in the skin of LCDV-positive fish as well as genes involved in cellular immunity (csf1r, mhc2a, tcra and ighm) that were down-regulated in skin and head kidney of infected fish. By contrast, the transcription of nccrp1 was up-regulated in head kidney after LCDV infection. These present results show that head kidney leucocytes are activated to encounter the virus at the sites of replication.
Collapse
Affiliation(s)
- H Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - A Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - J Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
| |
Collapse
|
5
|
Al-Hussinee L, Pham PH, Russell S, Tubbs L, Tafalla C, Bols NC, Dixon B, Lumsden JS. Temporary protection of rainbow trout gill epithelial cells from infection with viral haemorrhagic septicaemia virus IVb. JOURNAL OF FISH DISEASES 2016; 39:1099-1112. [PMID: 26850791 DOI: 10.1111/jfd.12442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The branchial epithelium is not only a primary route of entry for viral pathogens, but is also a site of viral replication and subsequent shedding may also occur from the gill epithelium. This study investigated the potential of agents known to stimulate innate immunity to protect rainbow trout epithelial cells (RTgill-W1) from infection with VHSV IVb. RTgill-W1 cells were pretreated with poly I:C, FuGENE(®) HD + poly I:C, lipopolysaccharide (LPS), LPS + poly I:C or heat-killed VHSV IVb and then infected with VHSV IVb 4 days later. Cytopathic effect (CPE) was determined at 2, 3, 4, 7 and 11 days post-infection. Virus in cells and supernatant was detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). All of the treatments delayed the onset of CPE (per cent of monolayer destruction), compared with untreated controls; however, killed VHSV or poly I:C combined with LPS was the most effective. Similarly, the detection of viral RNA in the supernatant was delayed, and the quantity was significantly (P < 0.05) reduced by all treatments with the exception of LPS alone (4 days). Unlike many of the other treatments, pretreatment of RTgill-W1 with heat-killed VHSV did not upregulate interferon 1, 2 or MX 1 gene expression.
Collapse
Affiliation(s)
- L Al-Hussinee
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - P H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - S Russell
- Novartis Animal Health Inc., Victoria, PEI, Canada
| | - L Tubbs
- Novartis Animal Health Inc., Victoria, PEI, Canada
| | - C Tafalla
- Centro de Investigacion en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - N C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - B Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J S Lumsden
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
González-Mariscal JA, Fernández-Trujillo MA, Alonso MC, García-Rosado E, Álvarez MC, Béjar J. Gilthead seabream (Sparus aurata) Mx gene promoters respond differentially to IPNV and VHSV infections in RTG-2 cells. Vet Immunol Immunopathol 2016; 171:73-80. [PMID: 26964720 DOI: 10.1016/j.vetimm.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
The understanding of virus-host interactions relies on the knowledge of the regulatory mechanisms of the type I interferon (IFN I)-stimulated genes (ISGs). Among ISGs, those coding Mx proteins play a main role due to their direct antiviral activity. The study of these genes in gilthead seabream is interesting, since this species displays high natural resistance to viral diseases, being asymptomatic carrier of infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV). Gilthead seabream has three Mx genes (Mx1, Mx2, and Mx3), encoding proteins with a wide spectrum of antiviral activity. The structure of the three promoters (pMx1, pMx2 and pMx3) has been previously disclosed, and their response to poly I:C in RTG-2 cells characterized. To further analyze these promoters, their response to two viral infections has been evaluated in the present study. For that purpose, RTG-2 cells transiently transfected with the luciferase gene under the control of each promoter were inoculated with either IPNV or VHSV at two different doses. The highest and lowest fold induction values were recorded for pMx2 and pMx3, respectively. The promoter induction was always stronger after VHSV inoculation than in IPNV-inoculated cells. In addition, the higher dose of VHSV tested induced higher response of the three promoters, whereas in IPNV-infected cells the highest induction was recorded after inoculation with the lower viral dose. To further study the response of the Mx2 promoter, RTG-2 cells stably transfected with the luciferase gene under the control of pMx2 were stimulated with poly I:C and subsequently infected with IPNV or VHSV. Interestingly, IPNV infection inhibited the induction caused by poly I:C, suggesting an antagonistic activity of IPNV on Mx2 transcription. In contrast, VHSV infection did not alter the response triggered by poly I:C. These results highlight the specific regulation that controls the activity of each promoter, and support the existence of complex interactions between host cells, specific Mx promoters, and viruses, which are responsible for the final outcome of a viral infection.
Collapse
Affiliation(s)
| | | | - M C Alonso
- Universidad de Málaga, Department of Microbiology, Spain
| | | | - M C Álvarez
- Universidad de Málaga, Department of Genetics, Spain
| | - J Béjar
- Universidad de Málaga, Department of Genetics, Spain.
| |
Collapse
|
7
|
Fernández-Trujillo MA, García-Rosado E, Alonso MC, Álvarez MC, Béjar J. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata). Vet Immunol Immunopathol 2015; 168:83-90. [PMID: 26319936 DOI: 10.1016/j.vetimm.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023]
Abstract
Due to their direct antiviral activity, Mx proteins play a main role in the response mediated by type I interferon against viral infections. The study on gilthead seabream Mx proteins is especially interesting, since this species is unusually resistant to viral diseases, being asymptomatic carrier of several viruses pathogenic to other fish species. Gilthead seabream has three Mx proteins (Mx1, Mx2 and Mx3) that, separately, display antiviral activity against a wide range of viruses, showing interesting differences in their antiviral specificities. In this work, the possible synergy between the three Mx isoforms has been studied using in vitro systems consisting of CHSE-214 cells stably expressing two or the three gilthead seabream Mx proteins. The antiviral activity of these Mx combinations has been tested against the Infectious Pancreatic Necrosis Virus (IPNV), the Viral Haemorrhagic Septicaemia Virus (VHSV), the European Sheatfish Virus (ESV) and the Lymphocystis Disease Virus (LCDV). A synergistic effect of the Mx proteins was only detected against ESV, no synergy was observed against LCDV, and a negative interference was detected against the two RNA viruses tested, IPNV and VHSV, as viral replication was higher in cells expressing certain Mx combinations than in cells expressing these proteins separately. These results suggest a functional interaction between gilthead seabream Mx isoforms, which results in a higher or lower antiviral activity depending on the virus tested, thus supporting the idea of complex virus-host interactions and finely tuned mechanisms controlling the antiviral activity of Mx proteins.
Collapse
Affiliation(s)
- M A Fernández-Trujillo
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - E García-Rosado
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, 29071 Málaga, Spain
| | - M C Alonso
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, 29071 Málaga, Spain
| | - M C Álvarez
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - J Béjar
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
8
|
González-Mariscal JA, Gallardo-Gálvez JB, Méndez T, Álvarez MC, Béjar J. Cloning and characterization of the Mx1, Mx2 and Mx3 promoters from gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2014; 38:311-317. [PMID: 24704419 DOI: 10.1016/j.fsi.2014.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Mx proteins are main effectors of the antiviral innate immune response mediated by type I interferon (IFN I). Actually, diverse Mx proteins from fish proved highly active against fish viruses, standing out among them the Mx1, Mx2 and Mx3 from gilthead seabream (Sparus aurata), a species exhibiting a natural resistance to viral diseases. In this study, the structure and functional activity of their corresponding promoters (pMx1, pMx2 and pMx3) have been assessed. The three promoters present an identical 3' region of 157 bp, exhibiting a single canonical interferon-stimulated response element (ISRE), which is indispensible for the poli:IC induction of pMx1 and pMx3, while not for that of pMx2. In the remaining part of the three promoters other regulatory motifs were identified, as gamma IFN activated sites in variable number (1, 4 and 2 in pMx1, pMx2 and pMx3, respectively), as well as several independent GAAA elements or ISRE core sequences (13, 15 and 12 in pMx1, pMx2 and pMx3, respectively). The structural dissimilarities shown by the three promoters parallels with the differences observed in their response profiles, in terms of the time course of the induction, and basal and induced expression levels of each promoter. Altogether, these findings indicate that the expression of Mx1, Mx2 and Mx3 genes from the gilthead seabream might be specifically regulated, in accordance with the functional role of each Mx protein in the successful antiviral response shown by this species.
Collapse
Affiliation(s)
| | | | - T Méndez
- Department of Genetics, University of Málaga, Spain
| | - M C Álvarez
- Department of Genetics, University of Málaga, Spain
| | - J Béjar
- Department of Genetics, University of Málaga, Spain.
| |
Collapse
|
9
|
Chen YM, Wang TY, Chen TY. Immunity to betanodavirus infections of marine fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:174-83. [PMID: 23916690 DOI: 10.1016/j.dci.2013.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 05/07/2023]
Abstract
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
10
|
Fernández-Trujillo M, García-Rosado E, Alonso M, Castro D, Álvarez M, Béjar J. Mx1, Mx2 and Mx3 proteins from the gilthead seabream (Sparus aurata) show in vitro antiviral activity against RNA and DNA viruses. Mol Immunol 2013; 56:630-6. [DOI: 10.1016/j.molimm.2013.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
11
|
Cai J, Wei S, Wang B, Huang Y, Tang J, Lu Y, Wu Z, Jian J. Cloning and expression analysis of nonspecific cytotoxic cell receptor 1 (Ls-NCCRP1) from red snapper (Lutjanus sanguineus). Mar Genomics 2013; 11:39-44. [DOI: 10.1016/j.margen.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 11/26/2022]
|
12
|
Chaves-Pozo E, Guardiola FA, Meseguer J, Esteban MA, Cuesta A. Nodavirus infection induces a great innate cell-mediated cytotoxic activity in resistant, gilthead seabream, and susceptible, European sea bass, teleost fish. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1159-1166. [PMID: 22981914 DOI: 10.1016/j.fsi.2012.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/12/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
Viral nervous necrosis (VNN) virus produces great mortalities in fish having susceptible and reservoir species between the most important marine aquaculture species. Cell-mediated cytotoxicity (CMC) is considered, towards the interferon (IFN), the most important mechanism of the immune response to fight against viral infections but it has been very scarcely evaluated. We aimed to evaluate the effects of VNNV infection in the reservoir gilthead seabream (Sparus aurata) and susceptible European sea bass (Dicentrarchus labrax). Firstly, after experimental infection we found mortalities in the sea bass (55%) but no in the seabream. Moreover, VNN virus replicates in the brain of both species as it was reflected by the high up-regulation of the Mx gene expression. Interestingly, the head-kidney leucocyte cell-mediated cytotoxic activity was significantly increased in both species reaching highest activity at 7 days: 3.65- and 2.7-fold increase in seabream and sea bass, respectively. This is supported by the significant up-regulation of the non-specific cytotoxic cell receptor (NCCRP-1) in the two fish species. By contrast, phagocytosis was unaffected in both species. The respiratory burst was increased in seabream 7 days post-infection whilst in sea bass this activity was significantly decreased at days 7 and 15. Our results demonstrate the significance of the CMC activity in both gilthead seabream and European sea bass against nodavirus infections but further studies are still needed to understand the role of cytotoxic cells in the antiviral immune response and the mechanisms involved in either reservoir or susceptible fish species.
Collapse
Affiliation(s)
- Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | | | | | | | | |
Collapse
|
13
|
Rivas-Aravena A, Martin MCS, Galaz J, Imarai M, Miranda D, Spencer E, Sandino A. Evaluation of the immune response against immature viral particles of infectious pancreatic necrosis virus (IPNV): A new model to develop an attenuated vaccine. Vaccine 2012; 30:5110-7. [DOI: 10.1016/j.vaccine.2012.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/25/2012] [Indexed: 01/13/2023]
|
14
|
Ordás MC, Cuesta A, Mercado L, Bols NC, Tafalla C. Viral hemorrhagic septicaemia virus (VHSV) up-regulates the cytotoxic activity and the perforin/granzyme pathway in the rainbow trout RTS11 cell line. FISH & SHELLFISH IMMUNOLOGY 2011; 31:252-259. [PMID: 21642001 DOI: 10.1016/j.fsi.2011.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
A survey of immune-relevant genes that might be up-regulated in response to viral hemorrhagic septicaemia virus (VHSV) in the rainbow trout monocyte-macrophage cell line, RTS11, unexpectedly revealed an increased expression of perforin (PRF) and granzyme (GRZ) genes, which represent components of the major cytotoxic pathway. The natural killer-enhancing factor (NKEF), also known to modulate cytotoxic activity, was up-regulated at the gene but strikingly down-regulated at protein level. The expression of these genes was not affected in head kidney leukocytes (HKLs) infected with VHSV, leading us to evaluate the potential cytotoxic activity of RTS11 and HKLs. For the first time, the cytotoxic activity of RTS11 against xenogeneic targets has been demonstrated, although this was modest relative to HKLs. Yet the activity in RTS11 was significantly increased by VHSV, as in HKLs. This cytotoxic activity elicited by viral infection appeared to require viral gene expression because inactivated VHSV failed to increase RTS11 cytotoxic activity. As for other immune functions, RTS11 cells provide a model for further studying cytotoxic activities of fish monocyte-macrophages.
Collapse
Affiliation(s)
- M C Ordás
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Reid A, Young KM, Lumsden JS. Rainbow trout Oncorhynchus mykiss ladderlectin, but not intelectin, binds viral hemorrhagic septicemia virus IVb. DISEASES OF AQUATIC ORGANISMS 2011; 95:137-143. [PMID: 21848121 DOI: 10.3354/dao02358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The innate immune system of fish is critical for rapid detection and immediate response to infection, as well as to orchestrate the adaptive branch of the immune system. Rainbow trout Oncorhynchus mykiss ladderlectin and intelectin are plasma pattern recognition receptors (PRR) for bacterial and fungal pathogens of rainbow trout, but their role as PRRs for virus is unknown. Viral hemorrhagic septicemia virus (VHSV) IVb is a recently described fish pathogen in the Great Lakes, and rainbow trout can be experimentally infected. Using an indirect enzyme-linked immunosorbent assay, rainbow trout plasma ladderlectin significantly (p < 0.05) bound purified VHSV while intelectin did not. In addition, plasma ladderlectin but not intelectin was eluted from a VHSV-conjugated Toyopearl column using EDTA. Protein identification was confirmed with polyclonal antiserum used with slot immunoblot, 1-dimensional sodium dodecyl sulphate polyacrylamide electrophoresis, and Western immunoblot.
Collapse
Affiliation(s)
- A Reid
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
16
|
Cuesta A, Dios S, Figueras A, Novoa B, Esteban M, Meseguer J, Tafalla C. Identification of six novel CC chemokines in gilthead seabream (Sparus aurata) implicated in the antiviral immune response. Mol Immunol 2010; 47:1235-43. [DOI: 10.1016/j.molimm.2009.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
|
17
|
Scapigliati G, Buonocore F, Randelli E, Casani D, Meloni S, Zarletti G, Tiberi M, Pietretti D, Boschi I, Manchado M, Martin-Antonio B, Jimenez-Cantizano R, Bovo G, Borghesan F, Lorenzen N, Einer-Jensen K, Adams S, Thompson K, Alonso C, Bejar J, Cano I, Borrego JJ, Alvarez MC. Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:303-311. [PMID: 19925869 DOI: 10.1016/j.fsi.2009.11.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/03/2009] [Accepted: 11/07/2009] [Indexed: 05/28/2023]
Abstract
Naïve sea bass juveniles (38.4 + or - 4.5 g) were intramuscularly infected with a sublethal dose of betanodavirus isolate 378/I03, followed after 43 days by a similar boosting. This infection resulted in an overall mortality of 7.6%. At various intervals, sampling of fish tissues was performed to investigate: i) B and T lymphocyte content in organs and tissues; ii), proliferation of leucocytes re-stimulated in vitro with inactivated virus; iii) presence of serum antibody specific for betanodavirus; iv) expression of genes coding for the following immunoregulatory molecules involved in innate and acquired responses: type I IFN, Mx, IL-1, Cox-2; IL-10, TGF-beta, TCRbeta, CD4, CD8alpha, IgM, by using a quantitative PCR array system developed for sea bass. The obtained results showed a detectable increase of T cells and B cells in PBL during betanodavirus infection. Furthermore, leucocytes obtained from blood, head kidney, and gills showed a detectable "in vitro" increase in viability upon addition of inactivated viral particles, as determined by measuring intracellular ATP concentration. ELISA analysis of sera showed that exposure to nodavirus induced a low, but specific antibody titer measured 43 days after infection, despite the presence of measurable levels of natural antibody. Finally, a strong upregulation of genes coding for type I IFN, Mx, and IgM was identified after both infection and boosting. Interestingly, an upregulation of Cox-2 until boosting, and of TGF-beta and IL-10 after boosting was also observed, while the other tested genes did not show any significant variations with respect to mock-treated fish. Overall, our work represents a first comprehensive analysis of cellular and molecular immune parameters in a fish species exposed to a pathogenic virus.
Collapse
Affiliation(s)
- G Scapigliati
- Dipartimento di Scienze Ambientali, Largo dell'Università, Università degli Studi della Tuscia, Viterbo 01100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|