1
|
Zhou Y, Chen L, Hao S, Cao X, Ni S. Zebrafish ANGPT4, member of fibrinogen-related proteins, is an LTA-, LPS- and PGN-binding protein with a bacteriolytic activity. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109451. [PMID: 38360193 DOI: 10.1016/j.fsi.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.
Collapse
Affiliation(s)
- Yang Zhou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Lu Chen
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Songtao Hao
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Xianke Cao
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Shousheng Ni
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
2
|
Zhang Z, Lin Z, Wei M, Chen Z, Shen M, Cao G, Wang Y, Zhang Z, Zhang D. Development of Single Nucleotide Polymorphism and Association Analysis with Growth Traits for Black Porgy ( Acanthopagrus schlegelii). Genes (Basel) 2022; 13:1992. [PMID: 36360229 PMCID: PMC9690740 DOI: 10.3390/genes13111992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Black porgy is an important marine aquaculture fish species whose production is at the fifth position in all kinds of marine-cultured fishes in China. In this study, Illumina high-throughput sequencing technology was used to sequence the total RNA of black porgy. Sixty-one candidate SNPs (Single Nucleotide Polymorphism) were screened out and genotyped through GATK4 (Genome Analysis ToolKit) software and MALDI-TOF MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry). The experimental results showed that a total of sixty SNPs were successfully genotyped, with a success rate of 98.36%. The results of principal component analysis and correlation analysis of growth traits showed that body weight was the first principal component, with a cumulative contribution rate of 74%. There were significant correlations (p < 0.05) or extremely significant correlations (p < 0.01) between different growth traits. The results of genetic parameter analysis and association analysis showed that scaffold12-12716321, scaffold13-4787950, scaffold2-13687576 and scaffold290-11890 were four SNPs that met the requirement of polymorphic information content and conformed to the Hardy-Weinberg equilibrium. There were significant differences between their genotype and the phenotype of growth traits. The four SNP molecular markers developed in this research will lay a foundation for further exploration of molecular markers related to the growth traits of black porgy and will provide a scientific reference for the further study of its growth mechanisms. At the same time, these molecular markers can be applied to the production practices of black porgy, so as to realize selective breeding at the molecular level and speed up the breeding process.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijie Lin
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingliang Wei
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ziqiang Chen
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjun Shen
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangyong Cao
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Wang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyong Zhang
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dianchang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
3
|
Kuang M, Tao X, Peng Y, Zhang W, Pan Y, Cheng L, Yuan C, Zhao Y, Mao H, Zhuge L, Zhou Z, Chen H, Sun Y. Proteomic analysis of plasma exosomes to differentiate malignant from benign pulmonary nodules. Clin Proteomics 2019; 16:5. [PMID: 30733650 PMCID: PMC6359787 DOI: 10.1186/s12014-019-9225-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is difficult to distinguish benign pulmonary nodules (PNs) from malignant PNs by conventional examination. Therefore, novel biomarkers that can identify the nature of PNs are needed. Exosomes have recently been identified as an attractive alternative approach since tumor-specific molecules can be found in exosomes isolated from biological fluids. Methods Plasma exosomes were extracted via the exoEasy reagent method. The major proteins from plasma exosomes in patients with PNs were identified via labelfree analysis and screened for differentially expressed proteins. A GO classification analysis and KEGG pathway analysis were performed on plasma exosomal protein from patients with benign and malignant PNs. Results Western blot confirmed that protein expression of CD63 and CD9 could be detected in the exosome extract. Via a search of the human Uniprot database, 736 plasma exosome proteins from patients with PNs were detected using high-confidence peptides. There were 33 differentially expressed proteins in the benign and malignant PNs. Of these, 12 proteins were only expressed in the benign PNs group, while 9 proteins were only expressed in the malignant PNs group. We further obtained important information on signaling pathways and nodal proteins related to differential benign and malignant PNs via bioinformatic analysis methods such as GO, KEGG, and String. Conclusions This study provides a new perspective on the identification of novel detection strategies for benign and malignant PNs. We hope our findings can provide clues for the identification of benign and malignant PNs. Electronic supplementary material The online version of this article (10.1186/s12014-019-9225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muyu Kuang
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,3Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaoting Tao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhou Peng
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjing Zhang
- 4Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yafang Pan
- 4Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Lei Cheng
- 5Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chongze Yuan
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hengyu Mao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingdun Zhuge
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenhua Zhou
- 6Department of Orthopaedic Oncology, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, China
| | - Haiquan Chen
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihua Sun
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,7Present Address: Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, Shanghai, 200030 China
| |
Collapse
|
4
|
Schrama D, Cerqueira M, Raposo CS, Rosa da Costa AM, Wulff T, Gonçalves A, Camacho C, Colen R, Fonseca F, Rodrigues PM. Dietary Creatine Supplementation in Gilthead Seabream ( Sparus aurata): Comparative Proteomics Analysis on Fish Allergens, Muscle Quality, and Liver. Front Physiol 2018; 9:1844. [PMID: 30622481 PMCID: PMC6308192 DOI: 10.3389/fphys.2018.01844] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
The quality of fish flesh depends on the skeletal muscle's energetic state and delaying energy depletion through diets supplementation could contribute to the preservation of muscle's quality traits and modulation of fish allergens. Food allergies represent a serious public health problem worldwide with fish being one of the top eight more allergenic foods. Parvalbumins, have been identified as the main fish allergen. In this study, we attempted to produce a low allergenic farmed fish with improved muscle quality in controlled artificial conditions by supplementing a commercial fish diet with different creatine percentages. The supplementation of fish diets with specific nutrients, aimed at reducing the expression of parvalbumin, can be considered of higher interest and beneficial in terms of food safety and human health. The effects of these supplemented diets on fish growth, physiological stress, fish muscle status, and parvalbumin modulation were investigated. Data from zootechnical parameters were used to evaluate fish growth, food conversion ratios and hepatosomatic index. Physiological stress responses were assessed by measuring cortisol releases and muscle quality analyzed by rigor mortis and pH. Parvalbumin, creatine, and glycogen concentrations in muscle were also determined. Comparative proteomics was used to look into changes in muscle and liver tissues at protein level. Our results suggest that the supplementation of commercial fish diets with creatine does not affect farmed fish productivity parameters, or either muscle quality. Additionally, the effect of higher concentrations of creatine supplementation revealed a minor influence in fish physiological welfare. Differences at the proteome level were detected among fish fed with different diets. Differential muscle proteins expression was identified as tropomyosins, beta enolase, and creatine kinase among others, whether in liver several proteins involved in the immune system, cellular processes, stress, and inflammation response were modulated. Regarding parvalbumin modulation, the tested creatine percentages added to the commercial diet had also no effect in the expression of this protein. The use of proteomics tools showed to be sensitive to infer about changes of the underlying molecular mechanisms regarding fish responses to external stimulus, providing a holistic and unbiased view on fish allergens and muscle quality.
Collapse
Affiliation(s)
- Denise Schrama
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Marco Cerqueira
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | | | - Ana M. Rosa da Costa
- Centro de Investigação de Química do Algarve, Universidade do Algarve, Faro, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Amparo Gonçalves
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Carolina Camacho
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Rita Colen
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Flávio Fonseca
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Brazil
| | | |
Collapse
|
5
|
Moreira M, Schrama D, Soares F, Wulff T, Pousão-Ferreira P, Rodrigues P. Physiological responses of reared sea bream (Sparus aurata Linnaeus, 1758) to an Amyloodinium ocellatum outbreak. JOURNAL OF FISH DISEASES 2017; 40:1545-1560. [PMID: 28449283 DOI: 10.1111/jfd.12623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Amyloodiniosis represents a major bottleneck for semi-intensive aquaculture production in Southern Europe, causing extremely high mortalities. Amyloodinium ocellatum is a parasitic dinoflagellate that can infest almost all fish, crustacean and bivalves that live within its ecological range. Fish mortalities are usually attributed to anoxia, associated with serious gill hyperplasia, inflammation, haemorrhage and necrosis in heavy infestations; or with osmoregulatory impairment and secondary microbial infections due to severe epithelial damage in mild infestation. However, physiological information about the host responses to A. ocellatum infestation is scarce. In this work, we analysed the proteome of gilthead sea bream (Sparus aurata) plasma and relate it with haematological and immunological indicators, in order to enlighten the different physiological responses when exposed to an A. ocellatum outbreak. Using 2D-DIGE, immunological and haematological analysis and in response to the A. ocellatum contamination we have identified several proteins associated with acute-phase response, inflammation, lipid transport, homoeostasis, and osmoregulation, wound healing, neoplasia and iron transport. Overall, this preliminary study revealed that amyloodiniosis affects some fish functional pathways as revealed by the changes in the plasma proteome of S. aurata, and that the innate immunological system is not activated in the presence of the parasite.
Collapse
Affiliation(s)
- M Moreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Olhão, Portugal
| | - D Schrama
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - F Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Olhão, Portugal
| | - T Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - P Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Olhão, Portugal
| | - P Rodrigues
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
6
|
iTRAQ-based proteomic analysis of combination therapy with taurine, epigallocatechin gallate, and genistein on carbon tetrachloride-induced liver fibrosis in rats. Toxicol Lett 2014; 232:233-45. [PMID: 25448286 DOI: 10.1016/j.toxlet.2014.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
Combination therapy with taurine, epigallocatechin gallate, and genistein was effective in alleviating the progression of liver fibrosis in our previous study. To better understand the anti-fibrotic mechanisms of combination therapy, an iTRAQ-based proteomics approach was used to study the expression profiles of proteins in carbon tetrachloride-induced liver fibrosis rats following combination therapy. The anti-fibrotic effects of combination therapy were assessed directly by liver histology, and indirectly by measurement of serum biochemical markers and antioxidant enzymes. The results showed that combination therapy could significantly improve the liver function, as indicated by decreasing levels of alanine aminotransferase (ALT), aspartate transaminase (AST), transforming growth factor-β1 (TGF-β1), and collagen I, increasing levels of total antioxidative capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), and reducing the pathological tissue damage. A total of 89 differential expressed proteins in response to combination therapy were identified by iTRAQ, which were interacted with each other and involved in different biological processes and pathways. Four differentially expressed proteins (Tpi1, Txn1, Fgb, and F7) involved in antioxidant defense system, glycolysis pathway and coagulation cascade pathway were validated by enzyme-linked immunosorbent assay. Our work provided valuable insights into the molecular mechanism of combination therapy against liver fibrosis, and the identified targets may be useful for treatment of liver fibrosis in future.
Collapse
|
7
|
Douxfils J, Deprez M, Mandiki SNM, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P. Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication--clues to physiological acclimation and humoral immune modulations. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1112-1122. [PMID: 22982557 DOI: 10.1016/j.fsi.2012.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the physiological and humoral immune responses of Eurasian perch submitted to 4-h hypoxia in either single or repeated way. Two generations (F1 and F5) were tested to study the potential changes in these responses with domestication. In both generations, single and repeated hypoxia resulted in hyperglycemia and spleen somatic index reduction. Glucose elevation and lysozyme activity decreased following repeated hypoxia. Complement hemolytic activity was unchanged regardless of hypoxic stress or domestication level. A 2D-DIGE proteomic analysis showed that some C3 components were positively modulated by single hypoxia while C3 up- and down-regulations and over-expression of transferrin were observed following repeated hypoxia. Domestication was associated with a low divergence in stress and immune responses to hypoxia but was accompanied by various changes in the abundance of serum proteins related to innate/specific immunity and acute phase response. Thus, it appeared that the humoral immune system was modulated following single and repeated hypoxia (independently of generational level) or during domestication and that Eurasian perch may display physiological acclimation to frequent hypoxic disturbances.
Collapse
Affiliation(s)
- Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur (FUNDP), Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Díaz-Rosales P, Romero A, Balseiro P, Dios S, Novoa B, Figueras A. Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after infection with viral haemorrhagic septicaemia virus (VHSV). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:515-529. [PMID: 22790792 DOI: 10.1007/s10126-012-9465-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is one of the major threats to the development of the aquaculture industry worldwide. The present study was aimed to identify genes differentially expressed in several turbot (Scophthalmus maximus) families showing different mortality rates after VHSV. The expression analysis was conducted through genome-wide expression profiling with an oligo-microarray in the head kidney. A significant proportion of the variation in the gene expression profiles seemed to be explained by the genetic background, indicating that the mechanisms by which particular species and/or populations can resist a pathogen(s) are complex and multifactorial. Before the experimental infections, fish from resistant families (low mortality rates after VHSV infection) showed high expression of different antimicrobial peptides, suggesting that their pre-immune state may be stronger than fish of susceptible families (high mortality rates after VHSV infection). After infection, fish from both high- and low-mortality families showed an up-modulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Low levels of several molecules secreted in the mucus were observed in high-mortality families, but different genes involved in viral entrance into target cells were down-regulated in low-mortality families. Moreover, these families also showed a strong down-modulation of marker genes related to VHSV target organs, including biochemical markers of renal dysfunction and myocardial injury. In general, the expression of different genes involved in the metabolism of sugars, lipids and proteins were decreased in both low- and high-mortality families after infection. The present study serves as an initial screen for genes of interest and provides an extensive overview of the genetic basis underlying the differences between families that are resistant or susceptible to VHSV infection.
Collapse
Affiliation(s)
- P Díaz-Rosales
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello 6, Vigo, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Chai Y, Yu S, Zhu Q. The molecular cloning and characteristics of a fibrinogen-related protein (TfFREP1) gene from roughskin sculpin (Trachidermus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:614-618. [PMID: 22796421 DOI: 10.1016/j.fsi.2012.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Fibrinogen-related proteins are a family of glycoproteins containing fibrinogen-like domains. Many members of these proteins play important roles in innate immune responses. We isolated a fibrinogen-related protein gene (TfFREP1) from roughskin sculpin (Trachidermus fasciatus). The TfFREP1 encoded a protein of 264 amino acids, including 231 amino acids with fibrinogen-like domains. Both quantitative real-time polymerase chain reaction and western blot analysis showed that TfFREP1 was mainly expressed in skin and gill tissues of T. fasciatus. The expression level of TfFREP1 was upregulated at both mRNA and protein levels after stimulation of lipopolysaccharide. These results suggest that TfFREP1 may be involved in T. fasciatus immune reaction.
Collapse
Affiliation(s)
- Yingmei Chai
- Ocean College, Shandong University at Weihai, Weihai 264209, PR China
| | | | | |
Collapse
|
10
|
Han F, Wang X, Yang Q, Cai M, Wang ZY. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity. FISH & SHELLFISH IMMUNOLOGY 2011; 30:501-508. [PMID: 21130170 DOI: 10.1016/j.fsi.2010.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
The Rac proteins are members of the Rho family of small G proteins and are implicated in the regulation of several pathways, including those leading to cytoskeleton reorganization, gene expression, cell proliferation, cell adhesion and cell migration and survival. In this investigation, a Rac gene (named as LycRac gene) was obtained from the large yellow croaker and it was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LycRac). Moreover, the GTP-binding assay showed that the LycRac protein had GTP-binding activity. The LycRac gene was ubiquitously transcribed and expressed in 9 tissues. Quantitative real-time RT-PCR and Western blot analysis revealed the highest expression in gill and the weakest expression in spleen. Time-course analysis revealed that LycRac expression was obviously up-regulated in blood, spleen and liver after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahemolyticus and bacterial lipopolysaccharides (LPS). These results suggested that LycRac protein might play an important role in the immune response against microorganisms in large yellow croaker.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | | | | | | | | |
Collapse
|
11
|
Li B, Wang C, Yu A, Chen Y, Zuo Z. Identification of differentially expressed genes in the brain of Sebastiscus marmoratus in response to tributyltin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:248-255. [PMID: 20617544 DOI: 10.1016/j.aquatox.2010.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tributyltin (TBT), a ubiquitous marine environmental contaminant, has been reported to affect functioning of the central nervous system. However, the mechanism of its neurotoxicity remains unknown. In this study, an Anneal Control Primer-differential display Reverse Transcription-PCR method was employed to investigate differentially expressed genes in the brain of Sebastiscus marmoratus in response to acute TBT exposure. A total of 18 gene sequences were identified as having the potential for being differentially expressed, of which 9 could be identified with homologous database sequences. The expression profiles of 4 genes, namely cytochrome c oxidase subunit II, GRB2-associated binding protein 2, adaptor-related protein complex 2, and guanine nucleotide exchange factor p532, were analyzed in the brain using real time fluorescence quantitative PCR after treatment with 10, 100 and 1000 ng/L of TBT for 50 days. The results showed that chronic exposure to TBT induced down-regulation of these genes in a dose dependent manner. The present study provided a basis for studying the response of fish to TBT exposure and allowed the characterization of new potential neurotoxic biomarkers of TBT contamination in seawater.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
12
|
Zhang Z, Shen B, Wang Y, Chen Y, Wang G, Lin P, Zou Z. Molecular cloning of proliferating cell nuclear antigen and its differential expression analysis in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus. DNA Cell Biol 2010; 29:163-70. [PMID: 20230291 DOI: 10.1089/dna.2009.0958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand the molecular mechanisms of gonadal development and maturation in penaeid shrimp Marsupenaeus japonicus, eight differentially expressed genes were obtained using a modified annealing control primer system. One of these genes is a proliferating cell nuclear antigen (PCNA). Bioinformatics analyses showed that full-length cDNA of M. japonicus PCNA (mjPCNA) consists of 75 bp of 5' untranslated region, 783 bp of coding region, and 65 bp of 3' untranslated region (excluding the polyA tail), encoding a protein of 260 amino acids with a predicted molecular mass of 28.85 kDa and an isoelectric point of 4.59. Real-time polymerase chain reaction analyses demonstrated that the gene expression level changed significantly in the developing testis and ovary. In stage 1 of ovary and testis, mjPCNA showed its lowest level during development and reached its highest expression level in stage 2 of ovary and testis. In stages 4 and 5 of ovary and the stage 3 of testis, mjPCNA held a steady expression level. Data suggest that PCNA plays an important role in the testis and ovary development, especially in the process of mitosis and meiosis.
Collapse
Affiliation(s)
- Ziping Zhang
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, Fujian, China
| | | | | | | | | | | | | |
Collapse
|