1
|
Méndez LR, Soto-Dávila M, Wong-Benito V, Rodríguez-Ramos T, Carpio Y, Estrada MP, Dixon B. PACAP binds conserved receptors and modulates cytokine gene expression and protein secretion in trout cell lines. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109738. [PMID: 38971350 DOI: 10.1016/j.fsi.2024.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Antimicrobial peptides (AMPs) are an alternative to antibiotics for treatment and prevention of infections with a lower risk of bacterial resistance. Pituitary adenylate cyclase activating polypeptide (PACAP) is an outstanding AMP with versatile effects including antimicrobial activity and modulation of immune responses. The objective of this research was to study PACAP immunomodulatory effect on rainbow trout cell lines infected with Aeromonas salmonicida. PACAP from Clarias gariepinus (PACAP1) and a modified PACAP (PACAP5) were tested. RT-qPCR results showed that il1b and il8 expression in RTgutGC was significantly downregulated while tgfb expression was upregulated after PACAP treatment. Importantly, the concentration of IL-1β and IFN-γ increased in the conditioned media of RTS11 cells incubated with PACAP1 and exposed to A. salmonicida. There was a poor correlation between gene expression and protein concentration, suggesting a stimulation of the translation of IL-1β protein from previously accumulated transcripts or the cleavage of accumulated IL-1β precursor. In-silico studies of PACAP-receptor interactions showed a turn of the peptide characteristic of PACAP-PAC1 interaction, correlated with the higher number of interactions observed with this specific receptor, which is also in agreement with the higher PACAP specificity described for PAC1 compared to VPAC1 and VPACA2. Finally, the in silico analysis revealed nine amino acids related to the PACAP receptor-associated functionality.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Manuel Soto-Dávila
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Valentina Wong-Benito
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
2
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
3
|
Campbell JH, Dang X, Rodríguez-Ramos T, Carpio Y, Estrada MP, Dixon B. The effect of PACAP administration on LPS-induced cytokine expression in the Atlantic salmon SHK-1 cell line. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100116. [PMID: 37753327 PMCID: PMC10518582 DOI: 10.1016/j.fsirep.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Recent work has identified pituitary adenylate cyclase activating polypeptide (PACAP) as a potential antimicrobial and immune stimulating agent which may be suitable for use in aquaculture. However, its effects on teleost immunity are not well studied and may be significantly different than what has been observed in mammals. In this study we examined the effects of PACAP on the Atlantic salmon macrophage cell line SHK-1. PACAP was able to increase the expression of LPS-induced il-1β in at concentrations of 1 uM when administered 24h prior to LPS stimulation. Furthermore, concentrations as low as 40nM had an effect when administered both 24h prior and in tandem with LPS. PACAP was also capable of increasing the expression of il-1β and tnf-α in SHK-1 cells challenged with a low dose of heat-killed Flavobacterium columnare. We attempted to get a better understanding of the mechanism underlying this enhancement of il-1β expression by manipulating downstream signaling of PACAP with inhibitors of phosphodiesterase and phospholipase C activity. We found that inducing cAMP accumulation with phosphodiesterase inhibitors failed to recapitulate the effect of PACAP administration on LPS-mediated il-1β expression by PACAP, while use of a phospholipase C inhibitor caused a PACAP-like enhancement in LPS-mediated il-1β expression. Interestingly, the VPAC1 receptor inhibitor PG97-269, but not the PAC1 inhibitor max.d.4, also was capable of causing a PACAP-like enhancement in LPS-mediated il-1β expression. This suggests that fish do not utilize the PACAP receptors in the same manner as mammals, but that it still exerts an immunostimulatory effect that make it a good immunostimulant for use in aquaculture.
Collapse
Affiliation(s)
- James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Xiaoqing Dang
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Avenida 31 No. 15802, Havana, Cuba
| | - Mario P. Estrada
- Center for Genetic Engineering and Biotechnology, Avenida 31 No. 15802, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| |
Collapse
|
4
|
Velázquez J, Rodríguez-Cornejo T, Rodríguez-Ramos T, Pérez-Rodríguez G, Rivera L, Campbell JH, Al-Hussinee L, Carpio Y, Estrada MP, Dixon B. New Evidence for the Role of Pituitary Adenylate Cyclase-Activating Polypeptide as an Antimicrobial Peptide in Teleost Fish. Antibiotics (Basel) 2023; 12:1484. [PMID: 37887185 PMCID: PMC10604671 DOI: 10.3390/antibiotics12101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed and conserved across species. We have previously shown that in teleost fish, PACAP not only possesses direct antimicrobial properties but also immunomodulatory effects against the bacterial pathogens Flavobacterium psychrophilum and Pseudomonas aeruginosa using in vitro and in vivo experiments. These previous results suggest PACAP can be used as an alternative to antibiotics to prevent and/or treat bacterial infections in the aquaculture industry. To accomplish this goal, more studies are needed to better understand the effect of PACAP on pathogens affecting fish in live infections. In the present study, the transcripts PACAP, PRP/PACAP, and VPAC2 receptor were examined in rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri, which exhibited an increase in their expression in the spleen when compared to healthy fish. Synthetic Clarias gariepinus PACAP-38 has direct antimicrobial activity on Y. ruckeri and inhibits up to 60% of the bacterial growth when the peptide is at concentrations between 50 and 100 µM in TSB. The growth inhibition increased up to 90% in the presence of 12.5 µM of PACAP-38 when salt-free LB broth was used instead of TSB. It was also found to inhibit Y. ruckeri growth in a dose-dependent manner when the rainbow trout monocyte/macrophage-like cell line (RTS11) was pre-treated with lower concentrations of the peptide (0.02 and 0.1 µM) before going through infection. Differential gene expression was analyzed in this in vitro model. Overall, the results revealed new evidence to support the role of PACAP as an antimicrobial and immunomodulatory peptide treatment in teleosts.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Tania Rodríguez-Cornejo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Geysi Pérez-Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Laura Rivera
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| |
Collapse
|
5
|
Rodríguez A, Velázquez J, González L, Rodríguez-Ramos T, Dixon B, Miyares FH, Morales A, González O, Estrada MP, Carpio Y. PACAP modulates the transcription of TLR-1/TLR-5/MyD88 pathway genes and boosts antimicrobial defenses in Clarias gariepinus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:150-159. [PMID: 34146673 DOI: 10.1016/j.fsi.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that belongs to the secretin/glucagon/GHRH/VIP superfamily. Some of these molecules have antimicrobial activity and they are capable of stimulating the immune system. The present work studied the antibacterial and immunostimulatory activity of PACAP-38 from African catfish Clarias gariepinus against the Gram-negative bacterium Pseudomonas aeruginosa in an in vivo test. PACAP-38 improved antimicrobial activity of skin mucus molecules against P. aeruginosa. The peptide modulates the gene expression profile of TLR-1, TLR-5, MyD88, IL-1β, TNF-ɑ, IL-8, pardaxin, hepcidin and G/C-type lysozymes in skin, spleen and head kidney. The influenced exerted depended on the time after infection and tissue analyzed. This study provides the first evidence of a link between PACAP and antimicrobial peptides hepcidin and pardaxin. Our results suggest further use of PACAP as antimicrobial agent that could potentially be used to control disease in aquaculture.
Collapse
Affiliation(s)
- Alianet Rodríguez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Luis González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Fidel Herrera Miyares
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
6
|
Velázquez J, Pérez G, Semple SL, Rodríguez-Ramos T, Díaz-Rosales P, Ordás MDC, Lugo JM, Dixon B, Tafalla C, Estrada MP, Carpio Y. First in vivo evidence of pituitary adenylate cyclase-activating polypeptide antiviral activity in teleost. FISH & SHELLFISH IMMUNOLOGY 2020; 103:58-65. [PMID: 32334130 DOI: 10.1016/j.fsi.2020.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Geysi Pérez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - María Del Camino Ordás
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Juana María Lugo
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain.
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
7
|
Semple SL, Rodríguez-Ramos T, Carpio Y, Lumsden JS, Estrada MP, Dixon B. PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages. Front Immunol 2019; 10:926. [PMID: 31105711 PMCID: PMC6498415 DOI: 10.3389/fimmu.2019.00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 μM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mario P Estrada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Lugo JM, Tafalla C, Oliva A, Pons T, Oliva B, Aquilino C, Morales R, Estrada MP. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. FISH & SHELLFISH IMMUNOLOGY 2019; 86:559-570. [PMID: 30481557 DOI: 10.1016/j.fsi.2018.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba; Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Ayme Oliva
- Animal Biotechnology Department, Veterinary Clinical Research Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Brizaida Oliva
- Pharmaceutical Department. Laboratory of Cancer Biology. Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Carolina Aquilino
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Reynold Morales
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba.
| |
Collapse
|
9
|
Prisco M, Rosati L, Agnese M, Aceto S, Andreuccetti P, Valiante S. Pituitary adenylate cyclase-activating polypeptide in the testis of the quail Coturnix coturnix: Expression, localization, and phylogenetic analysis. Evol Dev 2019; 21:145-156. [PMID: 30791203 DOI: 10.1111/ede.12285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/17/2023]
Abstract
To evaluate the involvement of pituitary adenylate cyclase-activating polypeptide (PACAP)/receptors system in the control of testis activity, we have investigated the expression and localization of PACAP and the distribution of its receptors in the testis of mature samples of quail Coturnix coturnix, and we have performed a phylogenetic analysis of PACAP in birds. Using histological, molecular, and bioinformatics tools, we demonstrated that (a) PACAP messenger RNA shows a high sequence identity with that reported in other birds studied so far and in other vertebrates. Furthermore, we showed that purifying selection acts on PACAP; (b) the PACAP peptide is present only in Leydig cells, whereas its receptors are localized within both Leydig and germ cells; (c) the synthesis of PACAP does not take place in seminiferous tubules. The role of PACAP in the control of spermatogenesis and steroidogenesis in birds is discussed. Finally, we talk about the phylogenetic and evolutionary relationships between PACAP in birds and in other vertebrates.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marisa Agnese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
10
|
Gorgoglione B, Carpio Y, Secombes CJ, Taylor NGH, Lugo JM, Estrada MP. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs. FISH & SHELLFISH IMMUNOLOGY 2015; 47:923-932. [PMID: 26481517 DOI: 10.1016/j.fsi.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, Weymouth, England, UK
| | - Yamila Carpio
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | | | - Juana María Lugo
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
11
|
Cardoso JCR, Félix RC, Martins RST, Trindade M, Fonseca VG, Fuentes J, Power DM. PACAP system evolution and its role in melanophore function in teleost fish skin. Mol Cell Endocrinol 2015; 411:130-45. [PMID: 25933704 DOI: 10.1016/j.mce.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rute S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vera G Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Blechman J, Levkowitz G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front Endocrinol (Lausanne) 2013; 4:55. [PMID: 23734144 PMCID: PMC3659299 DOI: 10.3389/fendo.2013.00055] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/24/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.
Collapse
Affiliation(s)
- Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gil Levkowitz, Department of Molecular Cell Biology, Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel. e-mail:
| |
Collapse
|
13
|
Wang X, Wei H, Zhao T, Zhu X, Yang X, Chen D, Zhou H. Evidence for pituitary adenylate cyclase-activating peptide as a direct immunoregulator in teleost head kidney. FISH & SHELLFISH IMMUNOLOGY 2013; 34:265-272. [PMID: 23153905 DOI: 10.1016/j.fsi.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 10/20/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
In mammals, pituitary adenylate cyclase activating polypeptide (PACAP) is a potent anti-inflammatory factor, showing that it inhibits the expression and release of proinflammatory cytokines and enhances the production of anti-inflammatory factors. However, whether fish PACAP plays similar regulatory roles as seen in mammals remains unclear. In the present study, expression of PACAP-specific receptor PAC1-R was shown in grass carp head kidney and spleen, supporting that PACAP may have a direct effect on fish immune cells. To test this hypothesis, the immunoregulatory role of grass carp PACAP (gcPACAP) was examined in head kidney leucocytes (HKLs). Results showed that gcPACAP inhibited basal and further attenuated lipopolysaccharide (LPS)-stimulated cell viability of HKLs, indicating that gcPACAP may possess similar inhibitory property at cellular level as seen in mammals. Curiously, in vitro and in vivo studies revealed that gcPACAP stimulated proinflammatory factors (IL-1β and TNF-α) but not IL-10 mRNA expression in HKLs and head kidney. Moreover, bacterial infection and LPS enhanced IL-1β, TNF-α and IL-10 mRNA expression in grass carp head kidney and HKLs, respectively, and these stimulatory effects were not influenced by gcPACAP. These findings suggest that PACAP plays distinct roles, at least does not function as an anti-inflammatory factor, in fish compared with that in mammals.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Kim DG, Jee YJ, Lee SJ. Structural and functional characterization of pituitary adenylyl cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) and its receptor in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2012; 164:18-28. [PMID: 23026070 DOI: 10.1016/j.cbpb.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/28/2022]
Abstract
We identified full-length cDNAs encoding pituitary adenylyl cyclase-activating polypeptide (PACAP), PACAP-related peptide (PRP), and PACAP-specific receptor (PAC1R) from olive flounder, Paralichthys olivaceus. Two variant mRNA forms were created by alternative splicing. Comparison of genomic and cDNA sequences of the PRP-PACAP precursor revealed that skipping of exon 4 within PRP resulted in two variant transcripts: a long form encoding both PRP and PACAP and a short form encoding PACAP only. Both transcripts were constitutively observed only in the brain, whereas the short form appeared in gut tissues, such as the intestine and pyloric cecum in fish challenged with a pathogen, but not in healthy fish. Furthermore, expression of the long PRP/PACAP transcript gradually increased in the intestine of flounder challenged with bacteria, suggesting that PRP and/or PACAP may serve as a regulator(s) of the immune system, especially in the gastrointestinal tract of olive flounder. The biological functions of PACAP and PRP were investigated by exogenous treatment of flounder embryogenic cells (hirame natural embryonic cells, HINAE cells) with synthetic peptides of fPACAP-38 and/or fPRP-45. Intracellular cyclic adenosine monophosphate (cAMP) production in PAC1R-overexpressing HINAE cells was regulated by fPACAP-38 in a concentration-dependent manner, but was not regulated by fPRP-45. Results from real-time quantitative polymerase chain reaction revealed that PAC1R mRNA was specifically induced by fPACAP-38 but not by fPRP-45; PACAP significantly increased TNF-α mRNA but not growth hormone (GH) mRNA in HINAE cells; however, PRP affected GH but not TNF-α mRNA expression. These results suggest that the expression ratio of PRP and PACAP is regulated at the transcriptional level depending on the tissues and conditions, and that the unique biological roles of PRP and PACAP differ from that of mammalian PRP.
Collapse
Affiliation(s)
- Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Gijang-eup, Gijang-gun, Busan, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cloning and differential expression pattern of pituitary adenylyl cyclase-activating polypeptide and the PACAP-specific receptor in darkbarbel catfish Pelteobagrus vachelli. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:41-53. [DOI: 10.1016/j.cbpb.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/11/2011] [Accepted: 09/11/2011] [Indexed: 11/18/2022]
|