1
|
Fang J, Yang C, Liao Y, Wang Q, Deng Y. Transcriptomic and metabolomic analyses reveal sex-related differences in the gonads of Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101304. [PMID: 39116717 DOI: 10.1016/j.cbd.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Pinctada fucata martensii is an economically important bivalve mollusk, as this species makes a major contribution to seawater pearl production. Pearl production efficiency varies between the sexes of P. f. martensii, but many aspects of the molecular mechanisms underlying sex determination and sex differentiation in P. f. martensii remain unclear. Here, transcriptomic and metabonomic analyses were conducted to identify the major genes and metabolic changes associated with sex determination and gametogenesis. We identified a total of 3426 differentially expressed genes (DEGs) between females and males. These included Fem-1c and Foxl2, which are involved in sex determination and sex differentiation, and SOHLH2, Nanos1 and TSSK4, which are involved in gametogenesis. We also identified a total of 5231 significant differential metabolites (SDMs) between females and males. These DEGs were enriched in 47 metabolic pathways, including "ABC transporters," "purine metabolism," and "glycerophospholipid metabolism." Our findings provide new insights into the molecular mechanisms underlying sex determination, sex differentiation, and gametogenesis and will aid future studies of P. f. martensii.
Collapse
Affiliation(s)
- Jiaying Fang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Freire JMS, Farias ND, Hégaret H, da Silva PM. Morphological and functional characterization of the oyster Crassostrea gasar circulating hemocytes: Cell types and phagocytosis activity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100089. [PMID: 36941832 PMCID: PMC10023951 DOI: 10.1016/j.fsirep.2023.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023] Open
Abstract
Hemocytes are the circulating cells of the hemolymph of oysters and are responsible for numerous physiological functions, including immune defense. The oyster Crassostrea gasar is a native species inhabiting mangrove habitat and is of great commercial interest, cultured throughout the Brazilian coast, mainly in the north and northeast. Despite its commercial importance, little is known about its immunological aspects and defense cells, the hemocytes. This work aimed to morphologically characterize hemocytes of the oyster C. gasar and to study one of the main cellular defense response, phagocytosis, using light microscopy and flow cytometry. The results showed the presence of six hemocyte populations in C. gasar hemolymph. These comprise of large and small granulocytes, large and small hyalinocytes, blast-like cells and a rare type classified as vesicular or serous hemocytes. Hyalinocytes were highly abundant and the most heterogeneous cell population, while small granulocytes, along with vesicular hemocytes were the less abundant population. Hemocytes of C. gasar oysters demonstrated capabilities to phagocytose three different types of particles tested: zymosan A, latex particles and Escherichia coli, indicating a broad defense capacity. The zymosan A were the most engulfed particles, followed by beads, mainly phagocytized by granulocytes, the most phagocytic cells, and finally E. coli, which were the least phagocytized. This study is the first characterization of C. gasar oyster hemocytes and will support future studies that aim to understand the participation of different hemocyte types in defense responses against pathogens and/or environmental changes.
Collapse
Affiliation(s)
- Jesarela Merabe Silva Freire
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Natanael Dantas Farias
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – Campus I, 58051-900, João Pessoa, PB, Brazil
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin LEMAR-UMR6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Patricia Mirella da Silva
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – Campus I, 58051-900, João Pessoa, PB, Brazil
- Corresponding author.
| |
Collapse
|
3
|
Dang C, Donaghy L, Macnab A, Gholipour-Kanani H. Optimising flow-cytometry methods for marine mollusc haemocytes using the pearl oyster Pinctada maxima as a model. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109220. [PMID: 37977546 DOI: 10.1016/j.fsi.2023.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Flow-cytometry has become increasingly popular to assess the haemocytes morphology and functions of marine molluscs. Indeed, haemocytes are the first line of defence of the immune system in molluscs and are used as a proxy for oyster health. Authors publishing in the field of flow-cytometry and molluscs health seemed to utilise the same methods for all model species used, independently of their geographical location in the world (temperate, tropical, etc.). Hence, this paper dived into flow-cytometry methodology and investigated if using different plates, different thresholds, different incubation times and temperatures as well as different fluorochromes concentrations affected the results. This study revealed that the cell count did not change when using different thresholds on the FSC-H parameter of the instrument but was affected by the plate type, the temperature of incubation, and the time of incubation. Indeed, non-adherent plates yielded the highest cell count and lower cell counts were associated with a higher temperature and a longer time of incubation. Furthermore, the haemocytes functions such as the phagocytosis, the lysosomal content, the intracellular oxidative activity, and the mitochondria activity were also affected by the temperature and the time of incubation. An increase in the phagocytosis capacity, lysosomal content and mitochondria activity was observed with a higher temperature. At the exception of the phagocytosis rate, all the other parameters such as the phagocytosis capacity, the intracellular oxidative activity, and the lysosomal content increased with a longer incubation time. We also showed that it is best to optimise the amount of fluorochromes used to avoid unnecessary background or non-specific staining.
Collapse
Affiliation(s)
- Cecile Dang
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia.
| | - Ludovic Donaghy
- Department of Marine Life Science (BK21 Four), Jeju National University, Jeju, 63243, Republic of Korea
| | - Annie Macnab
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Hosna Gholipour-Kanani
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia
| |
Collapse
|
4
|
Fonseca VB, Cruz BP, Silveira da Silva S, Soares MP, Cañedo AD, Vargas MA, Sandrini JZ. Morphological characterization of hemocytes of the brown mussel Perna perna: An update. FISH & SHELLFISH IMMUNOLOGY 2022; 120:139-141. [PMID: 34822995 DOI: 10.1016/j.fsi.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Considering the importance of hemocyte characterization for immunological studies, this work aimed to characterize the hemocyte types of Perna perna mussels combining transmission electron microscopy and flow cytometry with the classical optical microscopy. The results indicated four type of hemocytes: hyalinocytes, semigranulocytes, granulocytes and blast-like cells.
Collapse
Affiliation(s)
- Viviane Barneche Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil.
| | - Bruno Pinto Cruz
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil
| | - Simone Silveira da Silva
- Faculdade de Veterinária, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, 96010-900, Brazil
| | - Mauro Pereira Soares
- Faculdade de Veterinária, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, 96010-900, Brazil
| | | | - Marcelo Alves Vargas
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
5
|
Lu J, Shi Y, Yao T, Bai C, Jiang J, Ye L. Gender Differences in Hemocyte Immune Parameters of Hong Kong Oyster Crassostrea hongkongensis During Immune Stress. Front Immunol 2021; 12:659469. [PMID: 33868307 PMCID: PMC8044396 DOI: 10.3389/fimmu.2021.659469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Gender differences in individual immune responses to external stimuli have been elucidated in many invertebrates. However, it is unclear if gender differences do exist in the Hong Kong oyster Crassostrea hongkongensis, one of the most valuable marine species cultivated along the coast of South China. To clarify this, we stimulated post-spawning adult C. hongkongensis with Vibrio harveyi and lipopolysaccharide (LPS). Gender-based differences in some essential functional parameters of hemocytes were studied via flow cytometry. Obvious gender-, subpopulation-, and immune-specific alterations were found in the hemocyte immune parameters of C. hongkongensis. Three hemocyte subpopulations were identified: granulocytes, semi-granulocytes, and agranulocytes. Granulocytes, the chief phagocytes and major producers of esterase, reactive oxygen species, and nitric oxide, were the main immunocompetent hemocytes. Immune parameter alterations were notable in the accumulation of granulocyte esterase activities, lysosomal masses, nitric oxide levels, and granulocyte numbers in male oysters. These results suggest that post-spawning-phase male oysters possess a more powerful immune response than females. Gender and subpopulation differences in bivalve immune parameters should be considered in the future analysis of immune parameters when studying the impact of pathogenic or environmental factors.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jingzhe Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
6
|
Sun ZH, Wei JL, Cui ZP, Han YL, Zhang J, Song J, Chang YQ. Identification and functional characterization of piwi1 gene in sea cucumber, Apostichopus japonicas. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110536. [PMID: 33212209 DOI: 10.1016/j.cbpb.2020.110536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
The sea cucumber (Apostichopus japonicus) is an economically important mariculture species in Asia. However, the genetic breeding of sea cucumbers is difficult because the sexes cannot be identified by appearance. Therefore, studies on sex-related genes are helpful in revealing the mechanisms of sex determination and differentiation in sea cucumbers. P-element induced wimpy testis (piwi) is a germ cell marker involved in gametogenesis in vertebrates; however, the expression pattern and function during gametogenesis remain unclear in sea cucumbers. In this study, we identified a piwi homolog gene in A. japonicus (Ajpiwi1) and investigated its expression pattern, and function. Ajpiwi1 is a maternal factor and is ubiquitously expressed in adult tissues, including the ovary and testis. Ajpiwi1 expression is strong in early oocytes, spermatocytes, and spermatogonia; weak in mature oocytes; and undetected in spermatids and intra-gonadal somatic cells. The knockdown of Ajpiwi1 by RNA interference (RNAi) led to the downregulation of other conserved sex-related genes such as dmrt1, foxl2, and germ cell-less. Therefore, Ajpiwi1 might play a critical role during gametogenesis in A. japonicus. This study creates new possibilities for studying sex-related gene functions in the sea cucumber and builds a gene function research platform based on RNAi for the first time.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhou-Ping Cui
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ya-Lun Han
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jian Zhang
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jian Song
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
7
|
Hine PM. Haplosporidian host:parasite interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 103:190-199. [PMID: 32437861 DOI: 10.1016/j.fsi.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The host:parasite interactions of the 3 serious haplosporidian pathogens of oysters, on which most information exists, are reviewed. They are Bonamia ostreae in Ostrea spp. and Crassostrea gigas; Bonamia exitiosa in Ostrea spp.; and Haplosporidium nelsoni in Crassostrea spp. Understanding the haemocytic response to pathogens is constrained by lack of information on haematopoiesis, haemocyte identity and development. Basal haplospridians in spot prawns are probably facultative parasites. H. nelsoni and a species infecting Haliotis iris in New Zealand (NZAP), which have large extracellular plasmodia that eject haplosporosomes or their contents, lyse surrounding cells and are essentially extracellular parasites. Bonamia spp. have small plasmodia that are phagocytosed, haplosporosomes are not ejected and they are intracellular obligate parasites. Phagocytosis by haemocytes is followed by formation of a parasitophorous vacuole, blocking of haemocyte lysosomal enzymes and the endolysosomal pathway. Reactive oxygen species (ROS) are blocked by antioxidants, and host cell apoptosis may occur. Unlike susceptible O. edulis, the destruction of B. ostreae by C. gigas may be due to higher haemolymph proteins, higher rates of granulocyte binding and phagocytosis, production of ROS, the presence of plasma β-glucosidase, antimicrobial peptides and higher levels of haemolymph and haemocyte enzymes. In B.exitiosa infection of Ostrea chilensis, cytoplasmic lipid bodies (LBs) containing lysosomal enzymes accumulate in host granulocytes and in B. exitiosa following phagocytosis. Their genesis and role in innate immunity and inflammation appears to be the same as in vertebrate granulocytes and macrophages, and other invertebrates. If so, they are probably the site of eicosanoid synthesis from arachidonic acid, and elevated numbers of LBs are probably indicative of haemocyte activation. It is probable that the molecular interaction, and role of LBs in the synthesis and storage of eicosanoids from arachidonic acid, is conserved in innate immunity in vertebrates and invertebrates. However, it seems likely that haplosporidians are more diverse than realized, and that there are many variations in host parasite interactions and life cycles.
Collapse
Affiliation(s)
- P M Hine
- 73, rue de la Fée au Bois, 17450, Fouras, France.
| |
Collapse
|
8
|
Le Guernic A, Geffard A, Le Foll F, Palos Ladeiro M. Comparison of viability and phagocytic responses of hemocytes withdrawn from the bivalves Mytilus edulis and Dreissena polymorpha, and exposed to human parasitic protozoa. Int J Parasitol 2019; 50:75-83. [PMID: 31857073 DOI: 10.1016/j.ijpara.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Bivalve molluscs are now considered indicator species of aquatic contamination by human parasitic protozoa. Nonetheless, the possible effects of these protozoa on the immune system of their paratenic hosts are poorly documented. The aim of this study was to evaluate the effects of two protozoa on hemocyte viability and phagocytosis from two mussels, the zebra mussel (freshwater habitat) and the blue mussel (seawater habitat). For these purposes, viability and phagocytic markers have been analysed on hemocytes from mussels without biological stress (control hemocytes), and on hemocytes exposed to a biological stress (Toxoplasma gondii and Cryptosporidium parvum oocysts). We report, for the first known time, the interactions between protozoa and hemocytes of mussels from different aquatic environments. Zebra mussel hemocytes showed a decrease in phagocytosis of fluorescent microbeads after exposure to both protozoa, while blue mussel hemocytes reacted only to T. gondii oocysts. These decreases in the ingestion of microbeads can be caused by competition between beads and oocysts and can be influenced by the size of the oocysts. New characterisations of their immune capacities, including aggregation, remain to be developed to understand the specificities of both mussels.
Collapse
Affiliation(s)
- Antoine Le Guernic
- Reims Champagne-Ardenne University, UMR-I02 SEBIO, Campus Moulin de la Housse, 51687 Reims, France.
| | - Alain Geffard
- Reims Champagne-Ardenne University, UMR-I02 SEBIO, Campus Moulin de la Housse, 51687 Reims, France
| | - Frank Le Foll
- Normandie Univ, unilehavre, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France
| | - Mélissa Palos Ladeiro
- Reims Champagne-Ardenne University, UMR-I02 SEBIO, Campus Moulin de la Housse, 51687 Reims, France
| |
Collapse
|
9
|
Nguyen TV, Alfaro AC, Merien F, Young T, Grandiosa R. Metabolic and immunological responses of male and female new Zealand Greenshell™ mussels (Perna canaliculus) infected with Vibrio sp. J Invertebr Pathol 2018; 157:80-89. [PMID: 30110610 DOI: 10.1016/j.jip.2018.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022]
Abstract
Massive mortalities due to pathogens are routinely reported in bivalve cultivation that have significant economic consequences for the global aquaculture industry. However, host-pathogen interactions and infection mechanisms that mediate these interactions are poorly understood. In addition, gender-specific immunological responses have been reported for some species, but the reasons for such differences have not been elucidated. In this study, we used a GC/MS-based metabolomics platform and flow cytometry approach to characterize metabolic and immunological responses in haemolymph of male and female mussels (Perna canaliculus) experimentally infected with Vibrio sp. Sex-based differences in immunological responses were identified, with male mussels displaying higher mortality, oxidative stress and apoptosis after pathogen exposure. However, central metabolic processes appeared to be similar between sexes at 24 h post injection with Vibrio sp. DO1. Significant alterations in relative levels of 37 metabolites were detected between infected and uninfected mussels. These metabolites are involved in major perturbations on the host's innate immune system. In addition, there were alterations of seven metabolites in profiles of mussels sampled on the second day and mussels that survived six days after exposure. These metabolites include itaconic acid, isoleucine, phenylalanine, creatinine, malonic acid, glutaric acid and hydroxyproline. Among these, itaconic acid has the potential to be an important biomarker for Vibrio sp. DO1 infection. These findings provide new insights on the mechanistic relationship between a bivalve host and a pathogenic bacterium and highlight the need to consider host sex as a biological variable in future immunological studies.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Roffi Grandiosa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Fraser M, Fortier M, Foucher D, Roumier PH, Brousseau P, Fournier M, Surette C, Vaillancourt C. Exposure to low environmental concentrations of manganese, lead, and cadmium alters the serotonin system of blue mussels. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:192-200. [PMID: 28796292 DOI: 10.1002/etc.3942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Serotonin plays a crucial role in mussel survival and reproduction. Although the serotonin system can be affected by metals, the effects of environmental concentrations of metals such as manganese (Mn), lead (Pd), and cadmium (Cd) have never been studied in blue mussels. The present study aimed to determine the effects of exposure to Mn, Pb, or Cd on serotonin levels, monoamine oxidase (MAO) activity, and serotonin transporter (SERT) levels in the blue mussel Mytilus edulis. Mussels were exposed in vivo to increasing and environmentally relevant doses of Mn (10-1000 nM; 0.5-50 μg/L), Pb (0.01-10 nM; 0.002-2 μg/L), or Cd (0.01-10 nM; 0.001-1 μg/L) for 28 d. Serotonin levels, MAO activity, and SERT expression were analyzed in the mussel mantle. Expression of SERT protein was significantly decreased, by up to 81%, following Mn, Pb, or Cd exposure. The activity of MAO in females was almost 2-fold higher, versus males, in nonexposed control mussels. In mussels exposed to 0.1 nM of Pb (0.02 μg/L), MAO activity was increased in males and decreased in females. In Cd-exposed mussels, a sex-dependent, inverted nonmonotonic pattern of MAO activity was observed. These results clearly indicate that low environmental concentrations of Mn, Pb, and Cd affect the serotonin system in blue mussels. Environ Toxicol Chem 2018;37:192-200. © 2017 SETAC.
Collapse
Affiliation(s)
- Marc Fraser
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marlène Fortier
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Delphine Foucher
- Département de chimie et de biochimie, Université de Moncton, Moncton, New Brunswick, Canada
| | | | - Pauline Brousseau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Michel Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Céline Surette
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
- Département de chimie et de biochimie, Université de Moncton, Moncton, New Brunswick, Canada
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Vieira GC, da Silva PM, Barracco MA, Hering AF, Albuquerque MCPD, Coelho JDR, Schmidt ÉC, Bouzon ZL, Rosa RD, Perazzolo LM. Morphological and functional characterization of the hemocytes from the pearl oyster Pteria hirundo and their immune responses against Vibrio infections. FISH & SHELLFISH IMMUNOLOGY 2017; 70:750-758. [PMID: 28923525 DOI: 10.1016/j.fsi.2017.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Hemocyte populations of the pearl oyster Pteria hirundo were characterized at morphological, ultrastructural and functional levels. Three main hemocyte populations were identified: hyalinocytes, granulocytes and blast-like cells. Hyalinocytes were the most abundant population (88.2%) characterized by the presence of few or no granules in the cytoplasm and composed by two subpopulations, large and small hyalinocytes. Comparatively, granulocytes represented 2.2% of the hemocyte population and were characterized by the presence of numerous large electron-lucid granules in the cytoplasm. Finally, the blast-like cells (9.5%) were the smallest hemocytes, showing spherical shape and a high nucleus/cytoplasm ratio. Hemocytes exhibited a significant phagocytic capacity for inert particles (38.5%) and showed to be able to produce microbicidal molecules, such as reactive oxygen species (ROS) (ex vivo assays). The immune role of hemocytes was further investigated in the P. hirundo defense against the Gram-negative Vibrio alginolyticus. A significant decrease in the total number of hemocytes was observed at 24 h following injection of V. alginolyticus or sterile seawater (injury control) when compared to naïve (unchallenged) animals, indicating the migration of circulating hemocytes to the sites of infection and tissue damage. Bacterial agglutination was only observed against Gram-negative bacteria (Vibrio) but not against to marine Gram-positive-bacteria. Besides, an increase in the agglutination titer was observed against V. alginolyticus only in animals previously infected with this same bacterial strain. These results suggest that agglutinins or lectin-like molecules may have been produced in response to this particular microorganism promoting a specific recognition. The ultrastructural and functional characterization of P. hirundo hemocytes constitutes a new important piece of the molluscan immunity puzzle that can also contribute for the improvement of bivalve production sustainability.
Collapse
Affiliation(s)
- Graziela Cleuza Vieira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patrícia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil
| | - Margherita Anna Barracco
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Augusto Ferrari Hering
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - Jaqueline da Rosa Coelho
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Éder Carlos Schmidt
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Zenilda Laurita Bouzon
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luciane Maria Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Zannella C, Mosca F, Mariani F, Franci G, Folliero V, Galdiero M, Tiscar PG, Galdiero M. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense. Mar Drugs 2017. [PMID: 28629124 PMCID: PMC5484132 DOI: 10.3390/md15060182] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem’s complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Francesca Mariani
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Gianluigi Franci
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Veronica Folliero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Marilena Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Pietro Giorgio Tiscar
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Massimiliano Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| |
Collapse
|
13
|
Jiang J, Zhou Z, Dong Y, Gao S, Sun H, Chen Z, Yang A, Su H. Comparative analysis of immunocompetence between females and males in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:438-443. [PMID: 28238861 DOI: 10.1016/j.fsi.2017.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
In order to preliminarily understand the immune difference between females and males in the sea cucumber Apostichopus japonicus, the activities assay of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), phenoloxidase (PO), acid phosphatase (ACP) and alkaline phosphatase (ALP) with biochemical methods, the detection of PO isozymes with native-PAGE and catechol staining, and the test of antibacterial activities with bacterial growth curve determination method were performed in this study using cell-free coelomic fluid (CCF) and coelomocyte lysate supernatant (CLS) from females and males as the samples. The PO activities were not detected in the CLS and showed no significant difference between the CCF from females and males. However, totally five PO isozyme bands were detected in the CLS of females while only four were detected in the CLS of males after zymogram analysis. These results implied that the PO isozymes in the coelomocytes of viripotent A. japonicus were inactive under natural condition and may be activated by some certain treatments during native-PAGE, and PO might play different immune and physiological roles between females and males. In addition, the activities of SOD, CAT, POD and ALP in the CCF and the activities of CAT, POD, ACP and ALP in the CLS from males were all significantly higher than those from females. The results collectively suggested that in viripotent A. japonicus, the gender had a remarkable effect on the immunity, and the immunocompetence of males might have an advantage over that of females. Furthermore, the activities of all determined enzymes except PO and the number of detected PO isozymes showed higher values in CLS than in CCF, implying that in viripotent A. japonicus, the coelomocytes might take more immune responsibility in comparison with CCF.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Hesheng Su
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| |
Collapse
|
14
|
Fraser M, Fortier M, Roumier PH, Parent L, Brousseau P, Fournier M, Surette C, Vaillancourt C. Sex determination in blue mussels: Which method to choose? MARINE ENVIRONMENTAL RESEARCH 2016; 120:78-85. [PMID: 27448778 DOI: 10.1016/j.marenvres.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Sexing methods of blue mussels are mostly based on the presence or absence of gametes, and do not take into account reproductive cycle stages. Exposure effects can be affected by the sex of mussels, thus the aim of this study is to determine an efficient sex determination protocol taking into account the reproductive cycle stage. Eight mussel sexing methods were compared. This study demonstrates that the first step in discerning sex in blue mussels should be assessing the reproductive stage, which can be done by mantle histology. During gametogenesis, histology allows the differentiation of males from females by the observation of gametes. However, when mussels are in sexual rest, the only method that should be used is the sex-specific gene method.
Collapse
Affiliation(s)
- Marc Fraser
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, Montreal, QC, Canada
| | - Marlène Fortier
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Lise Parent
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, Montreal, QC, Canada; Unité d'enseignement et de recherche science et technologie, Télé-université (TÉLUQ), Montreal, QC, H2S 3L5, Canada
| | - Pauline Brousseau
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Michel Fournier
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Céline Surette
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, Montreal, QC, Canada; Département de chimie et de biochimie, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Cathy Vaillancourt
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Evariste L, Auffret M, Audonnet S, Geffard A, David E, Brousseau P, Fournier M, Betoulle S. Functional features of hemocyte subpopulations of the invasive mollusk species Dreissena polymorpha. FISH & SHELLFISH IMMUNOLOGY 2016; 56:144-154. [PMID: 27374433 DOI: 10.1016/j.fsi.2016.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Dreissena polymorpha is a mussel species that invaded many lotic and lentic inland waters in Western Europe and North America. Its positive or negative interactions with biotic and abiotic components of ecosystems are numerous, making this bivalve the subject of numerous studies in ecology, ecophysiology and ecotoxicology. In these contexts, the functional characterization of the zebra mussel hemocytes is of particular interest, as hemocytes are central cells involved in vital functions (immunity, growth, reproduction) of molluscan physiology. Dreissena polymorpha circulating hemocytes populations were characterized by a combination of structural and functional analysis. Assessments were performed during two contrasted physiological periods for mussels (gametogenesis and spawning). Three hemocyte types were identified as hyalinocytes and blast-like cells for agranular hemocytes and one granulocyte population. Flow cytometry analysis of hemocytes functionalities indicated that blast-like cells had low oxidative and mitochondrial activities and low lysosomal content. Hyalinocytes and granulocytes are fully equipped to perform innate immune response. Hyalinocytes exhibit higher oxidative activity than granulocytes. Such observation is not common since numerous studies show that granulocytes are usually cells that have the highest cellular activities. This result demonstrates the significant functional variability of hemocyte subpopulations. Moreover, our findings reveal that spawning period of Dreissena polymorpha was associated with an increase of hyalinocyte percentage in relation to low levels of biological activities in hemocytes. This reduction in hemocyte activity would reflect the important physiological changes associated with the spawning period of this invasive species known for its high reproductive potential.
Collapse
Affiliation(s)
- Lauris Evariste
- Université de Reims Champagne-Ardenne, UMR_I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France; INRS, Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, LEMAR UMR CNRS 6539, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sandra Audonnet
- Université de Reims Champagne-Ardenne, URCACyt - Plateau technique de cytométrie en flux, Pôle Santé, 51096 Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR_I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France
| | - Elise David
- Université de Reims Champagne-Ardenne, UMR_I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France
| | - Pauline Brousseau
- INRS, Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Michel Fournier
- INRS, Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, UMR_I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France
| |
Collapse
|
16
|
Li S, Liu Y, Liu C, Huang J, Zheng G, Xie L, Zhang R. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2016; 51:263-270. [PMID: 26923245 DOI: 10.1016/j.fsi.2016.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of hemocytes in the pearl oyster, Pinctada fucata. The results indicated that intracellular CaCO3 crystals were observed in circulating hemocytes in P. fucata, implying that there was a suitable microenvironment for crystal formation in the hemocytes. This conclusion was further supported by the proteome analysis, in which various biomineralization-related proteins were detected. The crystal-bearing hemocytes, mainly granulocytes, may be released to extrapallial fluid (EPF) by the secretory cavities distributed on the outer surface of the mantle centre. These granulocytes in the EPF and between the regenerated shells were abundant and free. In the regenerated prismatic layer, the granulocytes were fused into each column and fragmented with the duration of shell maturation, suggesting the direct involvement of hemocytes in shell regeneration. Overall, this study provided evidence that hemocytes participated in CaCO3 crystal formation, transportation and shell regeneration in the pearl oyster. These results are helpful to further understand the exact mechanism of hemocyte-mediated biomineralization in shelled molluscs.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Li S, Liu Y, Liu C, Huang J, Zheng G, Xie L, Zhang R. Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming. FISH & SHELLFISH IMMUNOLOGY 2015; 45:194-202. [PMID: 25882634 DOI: 10.1016/j.fsi.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
Hemocytes play important roles in the innate immune response and biomineralization of bivalve mollusks. However, the hemocytes in pearl oysters are poorly understood. In the present study, we investigated the morphology and classification of hemocytes in the pearl oyster, Pinctada fucata. Three types of hemocytes were successfully obtained by light microscopy, electron microscopy and flow cytometry methods: small hyalinocytes, large hyalinocytes and granulocytes. The small hyalinocytes are the major hemocyte population. Morphological analyses indicated that these hemocytes have species-specific characterizations. In addition, we assessed the potential effects of ocean acidification (OA) and ocean warming (OW) on the immune parameters and calcium homeostasis of the hemocytes. OA and OW (31 °C) altered pH value of hemolymph, increased the total hemocyte count, total protein content, and percentage of large hyalinocytes and granulocytes, while it decreased the neutral red uptake ability, suggesting active stress responses of P. fucata to these stressors. Exposure to OW (25 °C) resulted in no significant differences, indicating an excellent immune defense to heat stress at this level. The outflow of calcium from hemocytes to hemolymph was also determined, implying the potential impact of OA and OW on hemocyte-mediated biomineralization. This study, therefore, provides insight into the classification and characterization of hemocyte in the pearl oyster, P. fucata, and also reveals the immune responses of hemocytes to OA and OW, which are helpful for a comprehensive understanding of the effects of global climate change on pearl oysters.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Jauzein C, Donaghy L, Volety AK. Flow cytometric characterization of hemocytes of the sunray venus clam Macrocallista nimbosa and influence of salinity variation. FISH & SHELLFISH IMMUNOLOGY 2013; 35:716-724. [PMID: 23765118 DOI: 10.1016/j.fsi.2013.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Sunray venus clam Macrocallista nimbosa is a native bivalve mollusc of Florida, USA, currently evaluated as a potential new aquaculture species. Very little is known about the physiology and hemocyte characteristics of this species. Bivalve hemocytes are generally involved in various physiological functions including nutrition, tissue repair, detoxification and immune defense. Understanding hemocytes of M. nimbosa and their response to environmental variations is crucial. In estuarine Florida areas, salinity is probably the most important factor potentially affecting clams physiology since wide variations can occur within few days. In the present work, using flow cytometry, hemocyte types and cellular parameters (oxidative activity, lysosomal content, phagocytosis capacity) were first characterized in sunray venus clams, in relation with endogenous variables (i.e., size, body weight, gender). Clams were then transferred from salinity 30 psu to 18, 21, 25, 30, 35 and 38 psu. After 7 days, impact of salinity variations was determined on hemocyte parameters, along with estimation of physiological status of clams (mortality, valve closure, filtration activity). Hemocytes of sunray venus clam appeared as a unique population, both in terms of morphology (FSC vs. SSC) and intracellular parameters, but displayed high inter-individual variability. Allometric relationship was only described for intracellular oxidative activity. Transfer of clams to 18 psu and, at lower extent, 21 psu resulted in valve closure, mortality and decreased filtration activity. Low salinities resulted in reduction of the number of circulating hemocytes, potentially reflecting infiltration in tissues as part of an inflammatory response or to optimize nutrient distribution. Low salinities also highly impacted hemocytes as depicted by increased cell and lysosomal compartment volumes, decreased phagocytosis capacity as well as increased oxidative stress and mortality. Salinity drops depress physiology and immune defense capacities of sunray venus clams, potentially threatening survival in case of concomitant pathogen encounter or secondary stress.
Collapse
Affiliation(s)
- Cécile Jauzein
- Department of Marine and Ecological Sciences, Coastal Watershed Institute, College of Arts and Science, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | | | | |
Collapse
|
19
|
Queiroga FR, Marques-Santos LF, Hégaret H, Soudant P, Farias ND, Schlindwein AD, Mirella da Silva P. Immunological responses of the mangrove oysters Crassostrea gasar naturally infected by Perkinsus sp. in the Mamanguape Estuary, Paraíba state (Northeastern, Brazil). FISH & SHELLFISH IMMUNOLOGY 2013; 35:319-327. [PMID: 23664909 DOI: 10.1016/j.fsi.2013.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Perkinsus genus includes protozoan parasites of marine mollusks, especially bivalves. In the last four years, this parasite has been detected in mangrove oysters Crassostrea rhizophorae and Crassostrea gasar from the Northeastern region of Brazil. Hemocytes are the key cells of the oyster immune system, being responsible for a variety of cellular and humoral reactions, such as phagocytosis, encapsulation and the release of several effector molecules that control the invasion and proliferation of microorganisms. In Brazil, there is little information on perkinsosis and none on the immune responses of native oysters' species against Perkinsus spp. The objective of this study was to determine the effects of natural infection by Perkinsus sp. on the immunological parameters of mangrove oysters C. gasar cultured in the Mamanguape River Estuary (Paraíba, Brazil). Adults oysters (N = 40/month) were sampled in December 2011, March, May, August and October 2012. Gills were removed and used to determine the presence and intensity of the Perkinsus sp. infection, according to a scale of four levels (1-4), using the Ray's fluid thioglycollate medium assay. Immunological parameters were measured in hemolymph samples by flow cytometry, including: total hemocyte count (THC), differential hemocyte count (DHC), cell mortality, phagocytic capacity, and production of Reactive Oxygen Species (ROS). The plasma was used to determine the hemagglutination activity. The results showed the occurrence of Perkinsus sp. with the highest mean prevalence (93.3%) seen so far in oyster populations in Brazil. Despite that, no oyster mortality was associated. In contrast, we observed an increase in hemocyte mortality and a suppression of two of the main defense mechanisms, phagocytosis and ROS production in infected oysters. The increase in the percentage of blast-like cells on the hemolymph, and the increase in THC in oysters heavily infected (at the maximum intensity, 4) suggest an induction of hemocytes proliferation. The immunological parameters varied over the studied months, which may be attributed to the dynamics of infection by Perkinsus sp. The results of the present study demonstrate that Perkinsus sp. has a deleterious effect on C. gasar immune system, mainly in high intensities, which likely renders oysters more susceptible to other pathogens and diseases.
Collapse
Affiliation(s)
- Fernando Ramos Queiroga
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | | | | | | | | | | | | |
Collapse
|