1
|
Zhang J, Liu X, Wang YK, Yu ZH, Wang WJ, Jia WZ. Transcriptome and metabolome analyses reveal gender-specific expression genes in sea cucumber (Holothuria leucospilota). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101117. [PMID: 37591053 DOI: 10.1016/j.cbd.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
The sea cucumber Holothuria leucospilota, a nutritive and commercial marine species, has a high protein and low lipid content. To date, the mechanisms underlying gender determination and differentiation in sea cucumbers remain unclear. Identifying gender-specific molecular markers is an effective method of revealing the genetic basis of gender determination and differentiation. The inability to distinguish between male and female individuals causes reproductive efficiency to decline in aquaculture. In this study, we used the gonads of the sea cucumber H. leucospilota as samples to conduct the experiment. The differentially abundant metabolites (DAMs) detected by liquid chromatography-mass spectrometry were enriched in pathways associated with prolactin metabolism, insulin metabolism, hypoxia-inducible factor-1 signaling, and calcium signaling. At the transcriptome level, Illumina sequencing was performed on H. leucospilota, demonstrating that gender-specific expression genes were enriched in the retinoic acid-inducible gene I-like receptor signaling pathway, C-type lectin receptor signaling pathway, alpha-linolenic acid metabolism, and ether lipid metabolism by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. By analyzing the common pathways between DAMs and differentially expressed genes, we found that gender-related genes of H. leucospilota were mostly enriched in the necroptosis pathway and the cysteine and methionine metabolism pathways. According to the common pathways, uch-sc1 and uch-sc2 are male-specific expression genes, and uch-sc3 and bhmt are female-specific expression genes at the mRNA level. These results provide information on gender differences in H. leucospilota.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xi Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya-Kun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zong-He Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Jie Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Zhang Jia
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
3
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
4
|
Peng M, Li Z, Niu D, Liu X, Dong Z, Li J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family. FASEB J 2019; 33:13323-13333. [PMID: 31550175 DOI: 10.1096/fj.201901142rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complement factor B/C2 family (Bf/C2F) proteins are core complement system components in vertebrates that are absent in invertebrates and have been lost by numerous species, raising evolutionary questions. At least 3 duplication events have occurred from Cnidaria (ancestor) to mammals. Type II Bf/C2 genes appeared during separation of Proterostomia and Deuterostomes. The second event occurred during separation of vertebrates and invertebrates, yielding type II-2 Bf/C2. The third event occurred when jawed and jawless fish were separated, eventually producing Bf and C2 genes. Herein, we report the second mollusc Sinonovacula constricta Bf/C2-type gene (ScBf). ScBf is similar to Ruditapes decussatus Bf-like because both lack the first complement control protein module at the N terminus present in mammalian Bf/C2 proteins. Uniquely, the Ser protease (SP) module at the C terminus of ScBf is ∼50 aa longer than in other complement factor B/C2-type (Bf/C2T) proteins, and is Glu-rich. Bf/C2T proteins in molluscs lack the catalytic Ser in the SP module. Surprisingly, ScBf regulates rabbit erythrocyte agglutination, during which it is localized on the erythrocyte surface. Thus, ScBf may mediate the agglutination cascade and may be an upstream regulator of this process. Our findings provide new insight into the origin of the Bf/C2F.-Peng, M., Li, Z., Niu, D., Liu, X., Dong, Z., Li, J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Xiaojun Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhiguo Dong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| |
Collapse
|
5
|
Urbanová V, Hajdušek O, Šíma R, Franta Z, Hönig-Mondeková H, Grunclová L, Bartošová-Sojková P, Jalovecká M, Kopáček P. IrC2/Bf - A yeast and Borrelia responsive component of the complement system from the hard tick Ixodes ricinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:86-94. [PMID: 29061482 DOI: 10.1016/j.dci.2017.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Ticks possess components of a primordial complement system that presumably play a role in the interaction of the tick immune system with tick-borne pathogens and affect their transmission. Here we characterized a novel complement component, tagged as IrC2/Bf, from the hard tick Ixodes ricinus, the principal vector of Lyme disease in Europe. IrC2/Bf is a multi-domain molecule composed of 5-7 CCP modules, varied by alternative splicing, followed by a von Willebrand factor A domain and a C-terminal trypsin-like domain. The primary structure and molecular architecture of IrC2/Bf displays the closest homology to the C3-complement component convertases described in horseshoe crabs. The irc2/bf gene is mainly expressed in the tick fat body associated with the trachea and, as determined by western blotting, the protein is present in low amounts in tick hemolymph. Expression of irc2/bf mRNA was significantly up-regulated in response to the intra-hemocoelic injection of the yeast Candida albicans and all tested Borrelia sp. strains (B. burgdorferi NE5264, B. burgdorferi CB26, B. garinii MSLB, B. afzelii CB43), but was not affected by injection of model Gram-negative and Gram-positive bacteria or the aseptic injection control. In-line with these results, RNAi-mediated silencing of irc2/bf inhibited phagocytosis of B. afzelii and C. albicans but not the other bacteria. Tissue expression profiles, specific responses to microbial challenges, and patterns of phagocytic phenotypes upon RNAi silencing observed for IrC2/Bf match well with the previously reported characteristics of I. ricinus C3-related molecule 1 (IrC3-1). Therefore we presume that IrC2/Bf functions as a convertase in the same complement activation pathway protecting ticks against yeast and Borrelia infection.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Zdeněk Franta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Helena Hönig-Mondeková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Marie Jalovecká
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice CZ-370 05, Czech Republic.
| |
Collapse
|
6
|
Cheng S, Li C, Wang Y, Yang L, Chang Y. Characterization and expression analysis of a thioredoxin-like protein gene in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:165-173. [PMID: 27640155 DOI: 10.1016/j.fsi.2016.08.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
As the most important disulfide bond reducates of intracellular oxidordeuctase, thioredoxin (TRX) plays a crucial role in maintaining reducing state of intracellular proteins to normally perform their function. In this study, a cDNA of TRX-like protein gene from Apostichopus japonicus (denoted as AjTRX) was cloned and characterized. The full-length cDNA of AjTRXwas of 1870 bp, consisting of a 5'-UTR of 101 bp, a long 3'-UTR of 887 bp and a 882 bp open reading frame (ORF) encoding a 293 amino acids. The predicted molecular mass and the theoretical PI of the deduced amino acids of AjTRX were 32.3 kDa and 5.52, respectively. Phylogenetic trees showed that AjTRX had a closer evolution relationship with TRX from Strongylocentrotus purpuratus. AjTRX was found to be ubiquitously expressed in all examined tissues including longitudinal muscle, coelomocytes, tube feet, intestine, respiratory tree and body wall indicating a general role in physiological processes. Temporal expression pattern of AjTRX in coelomocytes showed that AjTRX reached two peak expression levels at 8 h and 48 h after Vibrio splendidus challenge with a 8.6 and 9.3-fold increase compared to their control groups, respectively. The recombinant AjTRX protein (rAjTRX) displayed obvious antioxidant activity in a dose-dependent manner, and the higher reducing activity was detected in 20 μM experimental group. All these results strongly suggested that AjTRX could play an important role as an antioxidant in a physiological context, and might be involved in the process of bacterial challenge.
Collapse
Affiliation(s)
- Shixiong Cheng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Chenghua Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Limeng Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China.
| |
Collapse
|
7
|
Yang Y, Yu H, Li H, Wang A, Yu HY. Effect of high temperature on immune response of grass carp (Ctenopharyngodon idellus) by transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:89-95. [PMID: 27633683 DOI: 10.1016/j.fsi.2016.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/28/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Exposure to high temperature is an inherent feature of grass carp culture in southern China and juvenile grass carps are predisposed to infectious disease in this condition. To understand how high temperature impacts the immune response to pathogens in grass carp, the transcriptomic profiles of the spleens from immune injected grass carp groups undergoing heat stress and normal temperature were investigated. An average of 72 million clean reads per library was obtained, and approximate 80% of these genes were successfully mapped to the reference genome. A total of 2287 up-regulated and 1068 down-regulated genes were identified. 10 immune-related categories involving 90 differently expressed genes were scrutinized. Expression patterns of 18 differentially expressed genes involving in immune response were validated by quantitative real-time RT-PCR. These results provide further significant insights into the influence mechanism of high temperature to immune response in grass carp.
Collapse
Affiliation(s)
- Ying Yang
- College of Life Science, Foshan University, Foshan, Guangdong 528231, China; College of Life Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hui Yu
- College of Life Science, Foshan University, Foshan, Guangdong 528231, China.
| | - Hua Li
- College of Life Science, Foshan University, Foshan, Guangdong 528231, China.
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hai-Yi Yu
- College of Life Science, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
8
|
Yang A, Zhou Z, Pan Y, Jiang J, Dong Y, Guan X, Sun H, Gao S, Chen Z. RNA sequencing analysis to capture the transcriptome landscape during skin ulceration syndrome progression in sea cucumber Apostichopus japonicus. BMC Genomics 2016; 17:459. [PMID: 27296384 PMCID: PMC4906609 DOI: 10.1186/s12864-016-2810-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sea cucumber Apostichopus japonicus is an important economic species in China, which is affected by various diseases; skin ulceration syndrome (SUS) is the most serious. In this study, we characterized the transcriptomes in A. japonicus challenged with Vibrio splendidus to elucidate the changes in gene expression throughout the three stages of SUS progression. Results RNA sequencing of 21 cDNA libraries from various tissues and developmental stages of SUS-affected A. japonicus yielded 553 million raw reads, of which 542 million high-quality reads were generated by deep-sequencing using the Illumina HiSeq™ 2000 platform. The reference transcriptome comprised a combination of the Illumina reads, 454 sequencing data and Sanger sequences obtained from the public database to generate 93,163 unigenes (average length, 1,052 bp; N50 = 1,575 bp); 33,860 were annotated. Transcriptome comparisons between healthy and SUS-affected A. japonicus revealed greater differences in gene expression profiles in the body walls (BW) than in the intestines (Int), respiratory trees (RT) and coelomocytes (C). Clustering of expression models revealed stable up-regulation as the main pattern occurring in the BW throughout the three stages of SUS progression. Significantly affected pathways were associated with signal transduction, immune system, cellular processes, development and metabolism. Ninety-two differentially expressed genes (DEGs) were divided into four functional categories: attachment/pathogen recognition (17), inflammatory reactions (38), oxidative stress response (7) and apoptosis (30). Using quantitative real-time PCR, twenty representative DEGs were selected to validate the sequencing results. The Pearson’s correlation coefficient (R) of the 20 DEGs ranged from 0.811 to 0.999, which confirmed the consistency and accuracy between these two approaches. Conclusions Dynamic changes in global gene expression occur during SUS progression in A. japonicus. Elucidation of these changes is important in clarifying the molecular mechanisms associated with the development of SUS in sea cucumber. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2810-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China.
| | - Yongjia Pan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, Peoples' Republic of China
| |
Collapse
|
9
|
Yang L, Chang Y, Wang Y, Wei J, Ge C, Song J. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:128-135. [PMID: 26828393 DOI: 10.1016/j.dci.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
TNF receptor associated factors (TRAFs) are a family of proteins primarily involved in both adaptive and innate immunity. In this study, we identified a novel TRAF3 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjTRAF3). The full-length of AjTRAF3 was of 2796 bp including a 5' untranslated region (UTR) of 83 bp, a 3' UTR of 1066 bp and a putative open reading frame of 1647 bp encoding a polypeptide of 548 amino acid residues. The representative domains such as a RING finger domain (residues 54-96), two TRAF domains with zinc finger structure (residues 141-228), a coiled coil and a meprin and TRAF homology (MATH) domain (residues 396-522) were all detected in the deduced amino acids of AjTRAF3. AjTRAF3 was ubiquitously expressed in all examined tissues with predominant expression in the body wall and slightly weaker in intestine, respiratory tree, tube feet, coelomocytes and longitudinal muscle. Time-course expression analysis in coelomocytes revealed that AjTRAF3 was significantly depressed towards Vibrio splendidus infection with a 0.20-fold decrease at 12 h, compared to control levels. AjTRAF3 silencing could elevate intracellular ROS levels by 2.08-fold and 2.09-fold compared to each control group in vitro and in vivo, respectively. Taken together, all these results suggested that AjTRAF3 may play a crucial role in the processes of anti-bacteria response in sea cucumber through regulating ROS production.
Collapse
Affiliation(s)
- Limeng Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jing Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Chen Ge
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
10
|
Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol 2016; 7:519. [PMID: 27148208 PMCID: PMC4840205 DOI: 10.3389/fmicb.2016.00519] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Collapse
Affiliation(s)
- Angela Z Poole
- Department of Integrative Biology, Oregon State UniversityCorvallis, OR, USA; Department of Biology, Western Oregon UniverstiyMonmouth, OR, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
11
|
Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands. PLoS One 2016; 11:e0146992. [PMID: 26771533 PMCID: PMC4714745 DOI: 10.1371/journal.pone.0146992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/25/2015] [Indexed: 11/19/2022] Open
Abstract
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.
Collapse
|
12
|
Zhong L, Zhang F, Zhai Y, Cao Y, Zhang S, Chang Y. Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing. Sci Rep 2015; 5:17763. [PMID: 26634300 PMCID: PMC4669494 DOI: 10.1038/srep17763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are important effectors in mediating host–pathogen interaction. In this report, coelomocytes miRNA libraries of three Japanese sea cucumbers Apostichopus japonicus were built by Illumina® Hiseq2000 from different time points after lipopolysaccharide challenge (at time 0 h, 6 h and 12 h). The clean data received from high throughput sequencing were used to sequences analysis. Referenced to the Strongylocentrotus purpuratus genome, 38 conserved miRNAs were found, and three miRNA candidates were predicted by software. According to the evidence resulting from the expression of AjC3, expressing levels of spu-miR-133, spu-miR-137 and spu-miR-2004 altered along with the expression of AjC3 changing at different time points after LPS injection. Thus, we speculated that the three miRNAs may have influence on A. japonicus complement C3. The spu-miR-137 and miR-137 gene family in miRBase were analyzed by bioinformatics. There is an obvious discrepancy between invertebrates and vertebrates. The first and ninth nucleotides in invertebrate miR-137 are offset compared vertebrate miR-137. Importantly, this is the first attempt to map the stage of immune response regulome in echinoderms, which might be considered as information for elucidating the intrinsic mechanism underlying the immune system in this species.
Collapse
Affiliation(s)
- Lei Zhong
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| | - Feng Zhang
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| | - Yu Zhai
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| | - Yanhui Cao
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| | - Si Zhang
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| | - Yaqing Chang
- Key Laboratory of Mariculture &Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, P.R. China
| |
Collapse
|
13
|
Yang L, Li C, Chang Y, Gao Y, Wang Y, Wei J, Song J, Sun P. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:927-932. [PMID: 26093208 DOI: 10.1016/j.fsi.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber.
Collapse
Affiliation(s)
- Limeng Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Chenghua Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Yinxue Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jing Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| | - Ping Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
14
|
Dong Y, Sun H, Zhou Z, Yang A, Chen Z, Guan X, Gao S, Wang B, Jiang B, Jiang J. Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge. Int J Mol Sci 2014; 15:19472-86. [PMID: 25421239 PMCID: PMC4264123 DOI: 10.3390/ijms151119472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.
Collapse
Affiliation(s)
- Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Hongjuan Sun
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Aifu Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Xiaoyan Guan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Bai Wang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| |
Collapse
|
15
|
Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:430-438. [PMID: 24877658 DOI: 10.1016/j.dci.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The complement system is a fundamental effector mechanism of the innate immunity in both vertebrates and invertebrates. The comprehension of its roots in the evolution is a useful step to understand how the main complement-related proteins had changed in order to adapt to new environmental conditions and life-cycles or, in the case of vertebrates, to interact with the adaptive immunity. Data on organisms evolutionary close to vertebrates, such as tunicates, are of primary importance for a better understanding of the changes in immune responses associated with the invertebrate-vertebrate transition. Here we report on the characterization of C3 and Bf transcripts from the colonial ascidian Botryllus schlosseri (BsC3 and BsBf, respectively), a reliable model organism for immunobiological research, and present a comparative analysis of amino acid sequences of C3s and Bfs suggesting that, in deuterostomes, the structure of these proteins remained largely unchanged. We also present new data on the cells responsible of the expression of BsC3 and BsBf showing that cytotoxic immunocytes are the sole cells where the relative transcripts can be found. Finally, using the C3 specific inhibitor compstatin, we demonstrate the opsonic role of BsC3 in accordance with the idea that promotion of phagocytosis is one of the main function of C3 in metazoans.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy.
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy
| |
Collapse
|