1
|
Yang G, Gu J, Wang H, Yang B, Feng S, Zhang Y, Zhang X, Chang X, Shao J, Meng X. Identification, Expression, Characteristic Analysis, and Immune Function of Two Akirin Genes in Grass Carp ( Ctenopharyngodon idella). Animals (Basel) 2024; 14:2443. [PMID: 39199975 PMCID: PMC11350764 DOI: 10.3390/ani14162443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Intensive aquaculture of grass carp often leads to decreased immunity and increased disease prevalence, resulting in economic losses. Improving grass carp immunity is therefore a critical strategy for addressing these challenges. Akirin reportedly participates in myogenesis, growth, and immune responses. However, its role in grass carp remains unclear. Herein, we isolated akirins from the spleen of grass carp and analyzed their tissue-specific expression. Akirin expression was detected following treatment with poly (I:C), LPS, and Aeromonas hydrophila (A. hydrophila). The immunological function of the akirin protein was evaluated in head kidney leukocytes (HKLs). The results revealed that the coding sequence (CDS) of akirin1 is 570 bp, encoding 189 amino acids. There was one predicted nuclear localization signal (NLS) and two predicted α- helix domains. The CDS of akirin2 is 558 bp, encoding 185 amino acids. There were two predicted NLSs and two predicted α-helix domains. Tissue-specific expression analysis showed that akirins are widely detected in grass carp tissues. akirin1 was highly detected in the brain, kidneys, heart, spleen, and gonads, while akirin2 was highly detected in the brain, liver, gonads, kidneys, spleen, and heart. The mRNA levels of akirins were promoted after treatment with poly (I:C), LPS, and A. hydrophila. Recombinant akirin proteins were produced in Escherichia coli (E. coli). il-1β, ifnγ, il-6, tnfα, il-4, iκbα, and nfκb were markedly increased in grass carp HKLs by treatment with the akirin protein. These results suggest that akirins play a role in the immunological regulation of grass carp.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianing Gu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Hao Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Tao W, Li X, Fu X, Shao Y, Guo M, Li C. Akirin2 enhances antibacterial ability via interacting with 14-3-3ζ in V. splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109592. [PMID: 38685443 DOI: 10.1016/j.fsi.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xianmu Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
3
|
Xiong H, Jiang Y, Ji T, Zhang Y, Wei W, Yang H. The identification of a nuclear factor Akirin with regulating the expression of antimicrobial peptides in red swamp crayfish (Procambarus clarkii). Int J Biol Macromol 2021; 183:707-717. [PMID: 33930448 DOI: 10.1016/j.ijbiomac.2021.04.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022]
Abstract
Akirin is a highly conserved nuclear factor among different species. It is closely related to skeletal muscle development, innate immune response, and tumorigenesis in a variety of animals. In invertebrates, Akirin is mainly involved in gene transcription and NF-κB dependent natural immune response. In the present study, a nuclear factor Akirin was identified from Procambarus clarkii. The Akirin protein of crayfish consists of 204 amino acids and is conserved among its family members, especially the nuclear localization signal peptide motif (KRRR). PcAkirin was highly expressed in stomach, intestines, and hepatopancreas. After A. hydrophila challenge, the transcription level of Akirin significantly increased in hemocyte and hepatopancreas. In addition, the recombinant Akirin protein was produced successfully and helpful to resist WSSV infection by increasing the expression level of some immune related genes. On the contrary, after interfering with Akirin gene by dsRNA, the crayfish increased the sensitivity to A. hydrophila and WSSV infections. The results are more obvious in the accumulated mortality of P. clarkii infected with A. hydrophila and WSSV. All these results suggested that Akirin played a significant role in innate immune responses and protected it from WSSV and bacterial infection in crayfish.
Collapse
Affiliation(s)
- Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Shanaka KASN, Madushani KP, Madusanka RK, Tharuka MDN, Sellaththurai S, Yang H, Jung S, Lee J. Transcription profile, NF-ĸB promoter activation, and antiviral activity of Amphiprion clarkii Akirin-2. FISH & SHELLFISH IMMUNOLOGY 2021; 108:14-23. [PMID: 33259930 DOI: 10.1016/j.fsi.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
5
|
Peng C, Xie D, Zhao C, Xu H, Fan S, Yan L, Wang P, Qiu L. Molecular characterization and functional analysis of Akirin from black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2019; 94:607-616. [PMID: 31541777 DOI: 10.1016/j.fsi.2019.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Akirin, which are members of the NF-κB signaling pathway, play critical roles in regulating the expression of antimicrobial peptides. In the present study, the Akirin gene from Penaeus monodon was identified from a transcriptome database and designated as PmAkirin. The complete sequence of the PmAkirin cDNA was 1508 bp, encoding a protein of 213 amino acids, and it showed 99% amino acid identity to the Litopenaeus vannamei Akirin. Two predicted nuclear localization signals (NLSs) were found, and the amino acid sequence alignments showed that PmAkirin was highly conserved at the N-terminus and C-terminus. PmAkirin expression was found to be the highest in the hemolymph, followed by the heart, gill, stomach, hepatopancreas, intestine, and muscle. When challenged with Vibrio parahaemolyticus infection, the PmAkirin mRNA and three antimicrobial peptides (AMPs: PmALF2, PmALF3, and PmCrus4) were upregulated. However, another five AMPs (PmALF6, PmCrus1, PmPEN3a, PmPEN3b, and PmPEN5) were downregulated by V. parahaemolyticus infection. Silencing PmAkirin by dsRNA significantly decreased the expression of the eight AMPs, which lead to an increase in the blood concentration of V. parahaemolyticus and higher mortality in the shrimp. In contrast, the overexpression of PmAkirin significantly increased the expression of the eight AMPs, which led to a reduction in the blood concentration of V. parahaemolyticus and promoted the survival of the shrimp. Taken together, we concluded that PmAkirin plays an important role in regulating the expression of AMPs in black tiger shrimp to defend against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Dongchang Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Haidong Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture, PR China.
| |
Collapse
|
6
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
7
|
Pavithiran A, Bathige SDNK, Kugapreethan R, Priyathilaka TT, Yang H, Kim MJ, Lee J. A comparative study of three akirin genes from big belly seahorse Hippocampus abdominalis: Molecular, transcriptional and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2018; 74:584-592. [PMID: 29355762 DOI: 10.1016/j.fsi.2018.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Akirins, members of the NF-κB signaling pathway, are highly conserved nuclear proteins, which regulate gene expression in many physiological processes, including immunity, myogenesis, carcinogenesis, and embryogenesis. The akirin family in teleost fish consists of two to three genes. In the present study, three akirin genes from Hippocampus abdominalis were identified from a transcriptome database and designated as HaAkirin1, HaAkirin2(1), and HaAkirin2(2). The nuclear localization of HaAkirin1 and HaAkirin2(1) was confirmed by subcellular localization analysis. In contrast, diffused localization of HaAkirin2(2) was identified in the nucleus and cytoplasm that confirmed the aberrant nature of the nuclear localization signal. Phylogenetic analysis revealed a closer relationship of HaAkirins with other known teleost akirins. All three HaAkirin transcripts were ubiquitously expressed in all examined tissues with higher expression in ovary tissue. Immune challenge with LPS, poly I:C, and Streptococcus iniae exhibited a significant increase in the expression of all three HaAkirins in kidney and liver tissues. NF-κB luciferase assays revealed that relative luciferase activity was significantly higher for all three HaAkirin genes than mock controls. These results suggest that HaAkirin genes might play a role in regulating NF-κB dependent immune gene expression and their expression could be induced by bacterial and viral pathogen recognition molecular patterns.
Collapse
Affiliation(s)
- Amirthalingam Pavithiran
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Roopasingam Kugapreethan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
8
|
Liu T, Gao Y, Xu T. Evolution of akirin family in gene and genome levels and coexpressed patterns among family members and rel gene in croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:17-25. [PMID: 25912355 DOI: 10.1016/j.dci.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Akirins, which are highly conserved nuclear proteins, are present throughout the metazoan and regulate innate immunity, embryogenesis, myogenesis, and carcinogenesis. This study reports all akirin genes from miiuy croaker and analyzes comprehensively the akirin gene family combined with akirin genes from other species. A second nuclear localization signal (NLS) is observed in akirin2 homologues, which is not in akirin1 homologues in all teleosts and most other vertebrates. Thus, we deduced that the loss of second NLS in akirin1 homologues in teleosts likely occurred in an ancestor to all Osteichthyes after splitting with cartilaginous fish. Significantly, the akirin2(2) gene included six exons interrupted by five introns in the miiuy croaker, which may be caused by the intron insertion event as a novel evidence for the variation of akirin gene structure in some species. In addition, comparison of the genomic neighborhood genes of akirin1, akirin2(1), and akirin2(2) demonstrates a strong level of conserved synteny across the teleost classes, which further proved the deduction of Macqueen and Johnston 2009 that the produce of akirin paralogues can be attributed to whole-genome duplications and the loss of some akirin paralogues after genome duplications. Furthermore, akirin gene family members and relish gene are ubiquitously expressed across all tissues, and their expression levels are increased in three immune tissues after infection with Vibrio anguillarum. Combined with the expression patterns of LEAP-1 and LEAP-2 from miiuy croaker, an intricate network of co-regulation among family members is established. Thus, it is further proved that akirins acted in concert with the relish protein to induce the expression of a subset of downstream pathway elements in the NF-kB dependent signaling pathway.
Collapse
Affiliation(s)
- Tianxing Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
9
|
Qu F, Xiang Z, Zhang Y, Li J, Zhang Y, Yu Z. The identification of the first molluscan Akirin2 with immune defense function in the Hong Kong oyster Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2014; 41:455-465. [PMID: 25284180 DOI: 10.1016/j.fsi.2014.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/20/2014] [Accepted: 09/24/2014] [Indexed: 06/03/2023]
Abstract
The Akirin protein is a nuclear factor in the innate immune system that is highly conserved from insects to mammals and plays key roles in diverse biological processes, including immunity, myogenesis, development and the cellular stress response. However, the function of Akirins in mollusk, the second most diverse group of animals, is still poorly understood. In this study, we report the discovery of an Akirin2 gene homolog (ChAkirin2) and its biological functions in the Hong Kong oyster Crassostrea hongkongensis. ChAkirin2 is 189 amino acids in length and shares significant homology with invertebrate homologs. Phylogenetic analysis results revealed that ChAkirin2 is clustered with invertebrate Akirin2s. A sequence analysis of the 5' flanking regions of ChAkirin2 indicated that it harbors several potential PAMP-activated transcription factor binding sites (TFB), including sites for NF-κB, C/EBPα, AP-1, SRF, Oct-1 and GATA-1. An RT-PCR analysis showed that ChAkirin2 mRNA was ubiquitously expressed in various tissues and at different embryonic and larval stages. Additionally, upon infection by pathogens (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae) and pathogen-associated molecular patterns (PAMPs: LPS, PGN and polyI:C), the expression of ChAkirin2 was significantly up-regulated. Moreover, fluorescence microscopy observations show that ChAkirin2 is located in the nuclei of HeLa cells, and the overexpression of ChAkirin2 activated the transcriptional activities of the NF-κB reporter gene in HEK293T cells. Altogether, this report provided the first experimental demonstration that mollusks possess a functional Akirin2 that is involved in the innate defense and embryogenesis processes of the oyster.
Collapse
Affiliation(s)
- Fufa Qu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
10
|
Ma J, Xu G, Wan L, Wang N. Molecular cloning, sequence analysis and tissue-specific expression of Akirin2 gene in Tianfu goat. Gene 2014; 554:9-15. [PMID: 25239665 DOI: 10.1016/j.gene.2014.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/05/2023]
Abstract
The Akirin2 gene is a nuclear factor and is considered as a potential functional candidate gene for meat quality. To better understand the structures and functions of Akirin2 gene, the cDNA of the Tianfu goat Akirin2 gene was cloned. Sequence analysis showed that the Tianfu goat Akirin2 cDNA full coding sequence (CDS) contains 579bp nucleotides that encode 192 amino acids. A phylogenic tree of the Akirin2 protein sequence from the Tianfu goat and other species revealed that the Tianfu goat Akirin2 was closely related with cattle and sheep Akirin2. RT-qPCR analysis showed that Akirin2 was expressed in the myocardium, liver, spleen, lung, kidney, leg muscle, abdominal muscle and the longissimus dorsi muscle. Especially, high expression levels of Akirin2 were detected in the spleen, lung, and kidney whereas lower expression levels were seen in the liver, myocardium, leg muscle, abdominal muscle and longissimus dorsi muscle. Temporal mRNA expression showed that Akirin2 expression levels in the longissimus dorsi muscle, first increased then decreased from day 1 to month 12. Western blotting results showed that the Akirin2 protein was only detected in the lung and three skeletal muscle tissues.
Collapse
Affiliation(s)
- Jisi Ma
- Institution of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Yucity District, Yaan 625014, Sichuan Province, China
| | - Gangyi Xu
- Institution of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Yucity District, Yaan 625014, Sichuan Province, China.
| | - Lu Wan
- Institution of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Yucity District, Yaan 625014, Sichuan Province, China
| | - Nianlu Wang
- Institution of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Yucity District, Yaan 625014, Sichuan Province, China
| |
Collapse
|
11
|
Xue X, Wang L, Chen Y, Zhang X, Luo H, Li Z, Zhao H, Yao B. Identification and molecular characterization of an Akirin2 homolog in Chinese loach (Paramisgurnus dabryanus). FISH & SHELLFISH IMMUNOLOGY 2014; 36:435-443. [PMID: 24389387 DOI: 10.1016/j.fsi.2013.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Akirin is a nuclear factor involved in innate immune responses of arthropods and mammals. In this study we have cloned an Akirin2 gene, pdakirin2, from freshwater Chinese loach (Paramisgurnus dabryanus) and characterized its biological functions. Phylogenetic analysis revealed deduced PdAkirin2 had high sequence identities to Akirin2 homologs from fish and mammals (70-91%), it contained two conserved nuclear localization signals (NLSs) with verified sub-cellular localization. Quantitative real-time (qRT)-PCR analysis indicated that PdAkirin2 was present in a wide range of loach tissues and showed up-regulation with challenges of Aeromonas hydrophila NJ-1, LPS and poly I:C. PdAkirin2 as an immune factor had significant effects on the expression of cytokines (TNFα, IFN-α, IFN-γ, IL-4 and IL-1β) and transcription factor NF-κB. This study provides insights into the potential role of PdAkirin2 in the innate immune system.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Liwen Wang
- National Animal Husbandry Extension Service, Beijing 100125, PR China
| | - Yeyu Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Xinshang Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Zhongyuan Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Heng Zhao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| |
Collapse
|